\documentclass[../../script.tex]{subfiles} \begin{document} \section{Sets and Functions} \begin{defi} A set is an imaginary "container" for mathematical objects. If $A$ is a set we write \begin{itemize} \item $x \in A$ for "$x$ is an element of $A$" \item $x \notin A$ for $\neg x \in A$ \end{itemize} There are some specific types of sets \begin{enumerate}[(i)] \item $\varnothing$ is the empty set which contains no elements. Formally: $\exists x \forall y ~y\notin x$ \item Finite sets: $\left\{1, 3, 7, 20\right\}$ \item Let $\Phi(x)$ be a statement and $A$ a set. Then $\left\{x \in A \,\vert\, \Phi(x)\right\}$ is the set of all elements from $A$ such that $\Phi(x)$ holds. \end{enumerate} There are relation operators between sets. Let $A, B$ be sets \begin{enumerate}[(i)] \item $A \subset B$ means "$A$ is a subset of $B$". \item $A = B$ means "$A$ and $B$ are the same" \end{enumerate} Each element can appear only once in a set, and there is no specific ordering to these elements. This means that $\{1, 3, 3, 7\} = \{3, 1, 7\}$. There are also operators between sets \begin{enumerate}[(i)] \item $A \cup B$ is the union of $A$ and $B$. \[ x \in A \cup B \iff x \in A \vee x \in B \] \item $A \cap B$ is the intersection of $A$ and $B$. \[ x \in A \cap B \iff x \in A \wedge x \in B \] This can be expanded to more than two sets ($A \cup B \cup C$). We can also use the following notation. Let $A$ be a set of sets. Then \[ \bigcup_{C \in A} C \] is the union of all sets contained in $A$. \item $A \setminus B$ is the difference of $A$ and $B$. \[ x \in A \setminus B \iff x \in A \wedge x \notin B \] \item The power set of a set $A$ is the set of all subsets of $A$. Example: \[ \mathcal{P}(\{1, 2\}) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\} \] \end{enumerate} \end{defi} \begin{thm} Let $A, B, C$ be sets. Then \begin{align*} A \setminus (B \cup C) &= (A \setminus B) \cap (A \setminus C) \\ A \setminus (B \cap C) &= (A \setminus B) \cup (A \setminus C) \\ A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \end{align*} \end{thm} \begin{proof} Let $A, B, C$ be sets. \begin{equation} \begin{split} x \in A \cap (B \cup C) &\iff x \in A \wedge x \in B \cup C \\ &\iff x \in A \wedge (x \in B \vee x \in C) \\ &\iff (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) \\ &\iff x \in A \cap B \vee x\ in A \cap C \\ &\iff x \in (A \cap B) \cup (A \cap C) \end{split} \end{equation} The other equations are left as an exercise to the reader. \end{proof} \begin{defi} Let $A, B$ be sets. For $x \in A$, $y \in B$ we call $(x, y)$ the ordered pair from $x, y$. The Cartesian product is defined as \[ A \times B = \left\{(x, y) \,\vert\, x \in A \wedge y \in B\right\} \] \end{defi} \begin{rem}\leavevmode \begin{enumerate}[(i)] \item $(x, y)$ is NOT equivalent to $\{x, y\}$. The former is an ordered pair, the latter a set. It is important to note that \[ (x, y) = (a, b) \iff x = a \wedge y = b \] \item This can be extended to triplets, quadruplets, ... \[ A \times B \times C = \left\{(x, y, z) \,\vert\, x \in A \wedge y \in B \wedge z \in C \right\} \] We use the notation $A \times A = A^2$ \item For $\realn^2$ ($\realn$ are the real numbers) we can view $(x, y)$ as coordinates of a point in the plane. \end{enumerate} \end{rem} \begin{defi} Let $A$, $B$ be sets. A mapping $f$ from $A$ to $B$ assigns each $x \in A$ exactly one element $f(x) \in B$. $A$ is called the domain and $B$ the codomain. \begin{figure}[h] \centering \begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] \node[ele] (a1) at (0,4) {}; \node[ele] (a2) at (0,3) {}; \node[ele] (a3) at (0,2) {}; \node[ele] (a4) at (0,1) {}; \node[ele] (b1) at (4,4) {}; \node[ele] (b2) at (4,3) {}; \node[ele] (b3) at (4,2) {}; \node[ele] (b4) at (4,1) {}; \node[draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] {} ; \node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] {} ; \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b4); \end{tikzpicture} \caption{A mapping $f: A \rightarrow B$} \label{fig:mapping} \end{figure} As shown in figure \ref{fig:mapping}, every element from $A$ is assigned exactly one element from $B$, but not every element from $B$ must be assigned to an element from $A$, and elements from $B$ can be assigned more than one element from $A$. The notation for such mappings is \[ f: A \longrightarrow B \] A mapping that has numbers ($\natn$, $\realn$, $\cdots$) as the codomain is called a function. \end{defi} \newpage \begin{eg}\leavevmode \begin{enumerate}[(i)] \item \begin{align*} f: \natn &\longrightarrow \natn \\ n &\longmapsto 2n + 1 \end{align*} \item \begin{align*} f: \realn &\longrightarrow \realn \\ x &\longmapsto \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases} \end{align*} \item Addition on $\natn$ \[ f: \natn \times \natn \longrightarrow \natn \] Instead of $f(x, y)$ we typically write $x + y$ for addition. \item The identity mapping is defined as \begin{align*} \idf_A: A &\longrightarrow A \\ x &\longmapsto x \end{align*} \end{enumerate} \end{eg} \begin{rem}[Mappings as sets]\leavevmode \begin{enumerate}[(i)] \item A mapping $f: A \rightarrow B$ corresponds to a subset of $F = A \times B$, such that \begin{align*} &\forall x \in A ~\forall y, z \in B ~~(x, y) \in F \wedge (x, z) \in F \implies y = z \\ &\forall x \in A ~\exists y \in B ~~(x, y) \in F \end{align*} \item Simply writing "Let the function $f(x) = x^2$..." is NOT mathematically rigorous. \item \[ f \text{ is a mapping from } A \text{ to } B \iff f(x) \text{ is a value in } B \] \item \[ f, g: A \longrightarrow B \text{ are the same mapping} \iff \forall x \in A ~~f(x) = g(x) \] \end{enumerate} \end{rem} \begin{defi} We call $f: A \rightarrow B$ \begin{itemize} \item injective if $\forall x, \tilde{x} \in A ~~f(x) = f(\tilde{x}) \implies x = \tilde{x}$ \item surjective if $\forall y \in B, \exists x \in A ~~f(x) = y$ \item bijective if $f$ is injective and surjective \end{itemize} \begin{figure}[h] \centering \begin{subfigure}[b]{0.45\textwidth} \begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] \node[ele] (a1) at (0,4) {}; \node[ele] (a2) at (0,3) {}; \node[ele] (a3) at (0,2) {}; \node[ele] (a4) at (0,1) {}; \node[ele] (b1) at (4,4) {}; \node[ele] (b2) at (4,3.25) {}; \node[ele] (b3) at (4,2.5) {}; \node[ele] (b4) at (4,1.75) {}; \node[ele] (b5) at (4, 1) {}; \node[draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] {} ; \node[draw,fit= (b1) (b2) (b3) (b4) (b5),minimum width=2cm, label=below:$B$] {} ; \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5); \end{tikzpicture} \caption{Injective mapping. There is at most one arrow per point in $B$} \end{subfigure} \hfill \begin{subfigure}[b]{0.45\textwidth} \centering \begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] \node[ele] (b1) at (4,4) {}; \node[ele] (b2) at (4,3) {}; \node[ele] (b3) at (4,2) {}; \node[ele] (b4) at (4,1) {}; \node[ele] (a1) at (0,4) {}; \node[ele] (a2) at (0,3.25) {}; \node[ele] (a3) at (0,2.5) {}; \node[ele] (a4) at (0,1.75) {}; \node[ele] (a5) at (0, 1) {}; \node[draw,fit= (a1) (a2) (a3) (a4) (a5),minimum width=2cm, label=below:$A$] {} ; \node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] {} ; \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5); \draw[->,thick,shorten <=2pt,shorten >=2] (a5) -- (b2); \end{tikzpicture} \caption{Surjective mapping. There is at least one arrow per point in $B$} \end{subfigure} \caption{Visualizations of injective and surjective mappings} \end{figure} \end{defi} \begin{eg}\leavevmode \begin{enumerate}[(i)] \item \begin{align*} f: \natn &\longrightarrow \natn \\ n &\longmapsto n^2 \end{align*} is not surjective (e.g. $n^2 \ne 3$), but injective. \item \begin{align*} f: \intn &\longrightarrow \natn \\ n &\longmapsto n^2 \end{align*} is neither surjective nor injective. \item \begin{align*} f: \natn &\longrightarrow \natn \\ n &\longmapsto \begin{cases} \frac{n}{2} & n \text{even} \\ \frac{n+1}{2} & n \text{odd} \end{cases} \end{align*} is surjective but not injective. \end{enumerate} \end{eg} \begin{defi}[Function compositing] Let $A, ~B, ~C$ be sets, and let $f: A \rightarrow B, ~g: B \rightarrow C$. Then the composition of $f$ and $g$ is the mapping \begin{align*} g \circ f : A &\longrightarrow C \\ x &\longmapsto g(f(x)) \end{align*} \end{defi} \begin{rem} Compositing is associative (why?), but not commutative. For example let \noindent\begin{minipage}{.5\linewidth} \begin{align*} f: \natn &\longrightarrow \natn \\ n &\longmapsto 2n \end{align*} \end{minipage} \begin{minipage}{.5\linewidth} \begin{align*} g: \natn &\longrightarrow \natn \\ n &\longmapsto n + 3 \end{align*} \end{minipage} Then \begin{align*} &f \circ g (n) = 2(n + 3) = 2n + 6 \\ &g \circ f (n) = 2n + 3 \end{align*} \end{rem} \begin{thm} Let $f: A \rightarrow B$ be a bijective mapping. Then there exists a mapping $\inv{f}: B \rightarrow A$ such that $f \circ \inv{f} = \emph{\idf}_B$ and $\inv{f} \circ f = \emph{\idf}_A$. $\inv{f}$ is called the inverse function of $f$. \end{thm} \begin{proof} Let $y \in B$ and $f$ bijective. That means $\exists x \in A$ such that $f(x) = y$. Due to $f$ being injective, this $x$ must be unique, since if $\exists \tilde{x} \in A$ s.t. $f(\tilde{x}) = f(x) = y$, then $x = \tilde{x}$. We define $f(x) = y$ and $\inv{f}(y) = x$, therefore \begin{equation} f \circ \inv{f}(y) = f(\inv{f}(y)) = f(x) = y = \idf_B(y) \implies f \circ \inv{f} = \idf_B \end{equation} and equivalently \begin{equation} \inv{f} \circ f(x) = \idf_A(x) \implies \inv{f} \circ f = \idf_A \end{equation} \end{proof} \end{document}