\documentclass[../../script.tex]{subfiles} % !TEX root = ../../script.tex \begin{document} \section{Logic} \begin{defi}[Statements] A statement is a sentence (mathematically or colloquially) which can be either true or false. \end{defi} \begin{eg} Statements are \begin{itemize} \item Tomorrow is Monday \item $x > 1$ where $x$ is a natural number \item Green rabbits grow at full moon \end{itemize} No statements are \begin{itemize} \item What is a statement? \item $x + 20y$ where $x, y$ are natural numbers \item This sentence is false \end{itemize} \end{eg} \begin{defi}[Connectives] When $\Phi, \Psi$ are statements, then \begin{enumerate}[(i)] \item $\neg\Phi$ (not $\Phi$) \item $\Phi \wedge \Psi$ ($\Phi$ and $\Psi$) \item $\Phi \vee \Psi$ ($\Phi$ or $\Psi$) \item $\Phi \implies \Psi$ (if $\Phi$ then $\Psi$) \item $\Phi \iff \Psi$ ($\Phi$ if and only if (iff.) $\Psi$) \end{enumerate} are also statements. We can represent connectives with truth tables \begin{center} \begin{tabular}{ c|c||c|c|c|c|c } $\Phi$ & $\Psi$ & $\neg\Phi$ & $\Phi \wedge \Psi$ & $\Phi \vee \Psi$ & $\Phi \implies \Psi$ & $\Phi \iff \Psi$ \\ \hline t & t & f & t & t & t & t\\ t & f & f & f & t & f & f\\ f & t & t & f & t & t & f\\ f & f & t & f & f & t & t\\ \end{tabular} \end{center} \end{defi} \begin{rem}\leavevmode \begin{enumerate}[(i)] \item $\vee$ is inclusive \item $\Phi \implies \Psi$, $\Phi \impliedby \Psi$, $\Phi \iff \Psi$ are NOT the same \item $\Phi \implies \Psi$ is always true if $\Phi$ is false (ex falso quodlibet) \end{enumerate} \end{rem} \begin{defi}[Hierarchy of logical operators] $\neg$ is stronger than $\wedge$ and $\vee$, which are stronger than $\implies$ and $\iff$. \end{defi} \begin{eg}\leavevmode \begin{align*} \neg\Phi \wedge \Psi ~&\cong~ (\neg\Phi) \wedge \Psi \\ \neg\Phi \implies \Psi ~&\cong~ (\neg\Phi) \wedge \Psi \\ \Phi \wedge \Psi \iff \Psi ~&\cong~ (\Phi \wedge \Psi) \iff \Psi \\ \neg\Phi \vee \neg\Psi \implies \neg\Psi \wedge \Psi ~&\cong~ ((\neg\Phi) \vee (\neg\Psi)) \implies ((\neg\Psi) \wedge \Psi) \end{align*} We avoid writing statements like $\Phi \wedge \Psi \vee \Theta$. A statement that is always true is called a tautology. Some important equivalencies are \begin{align*} \Phi ~&\text{equiv.}~ \neg(\neg\Phi)) \\ \Phi \implies \Psi ~&\text{equiv.}~ \neg\Psi \implies \neg\Phi \\ \Phi \iff \Psi ~&\text{equiv.}~ (\Phi \implies \Psi) \wedge (\Psi \implies \Phi) \\ \Phi \vee \Psi ~&\text{equiv.}~ \neg(\neg\Phi \wedge \neg\Psi) \end{align*} Logical operators are commutative, associative and distributive. \end{eg} \begin{defi}[Quantifiers] Let $\Phi(x)$ be a statement depending on $x$. Then $\forall x ~\Phi(x)$ and $\exists x ~\Phi(x)$ are also statements. The interpretation of these statements is \begin{itemize} \item $\forall x ~\Phi(x)$: "For all $x$, $\Phi(x)$ holds." \item $\exists x ~\Phi(x)$: "There is (at least one) $x$ s.t. $\Phi(x)$ holds." \end{itemize} \end{defi} \begin{rem}\leavevmode \begin{enumerate}[(i)] \item $\forall x ~x \ge 1$ is true for natural numbers, but not for integers. We must specify a domain. \item If the domain is infinite the truth value of $\forall x ~\Phi(x)$ cannot be algorithmically determined. \item $\forall x ~\Phi(x)$ and $\forall y ~\Phi(y)$ are equivalent. \item Same operators can be exchanged, different ones cannot. \item $\forall x ~\Phi(x)$ is equivalent to $\neg\exists x ~\neg\Phi(x)$. \end{enumerate} \end{rem} \end{document}