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1.1 Logic

Definition 1.1 (Statements). A statement is a sentence (mathematically
or colloquially) which can be either true or false.

Ezxample 1.2. Statements are
e Tomorrow is Monday
e z > 1 where x is a natural number
e Green rabbits grow at full moon
No statements are
e What is a statement?
e x + 20y where x,y are natural numbers
e This sentence is false
Definition 1.3 (Connectives). When &, U are statements, then
(i) =® (not ®)
(ii) @AW (P and V)
(iii) Vv ¥ (P or V)
(iv) @ = ¥ (if ¢ then V)
(v) & <= VU (@ if and only if (iff.) V)
are also statements. We can represent connectives with truth tables

| U -D|PAV [OVY [d = T | < T

t t t t
f
t
t

(i) V is inclusive

- e

t
t
f
f

- R R

t f f
t t f
f t t
Remark 1.4.

(ii) & = VU, P <= VU, & <= U are NOT the same
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(ili)) & = U is always true if @ is false (ex falso quodlibet)

Definition 1.5 (Hierarchy of logical operators). — is stronger than A and
V, which are stronger than — and <= .

Example 1.6.
“OAY = (ﬂCIJ)
PAY <= ¥ = (PA )<:>\Il
VU = VAT = (=) V (-7)) = ((-V)AD)

We avoid writing statements like ® AV V O. A statement that is always true
is called a tautology. Some important equivalencies are

¢ equiv. =(—P))
® — VU equiv. ¥V — P
¢ <— Vequiv. (¢ = V)A(? = D)
& VU equiv. 7(—=P A V)

Logical operators are commutative, associative and distributive.

Definition 1.7 (Quantifiers). Let ®(z) be a statement depending on z.
Then Vo ®(z) and Jz ®(z) are also statements. The interpretation of these
statements is

e Vo ®(z): "For all z, &(x) holds.”
e Jdx ®(x): "There is (at least one) z s.t. ®(z) holds.”
Remark 1.8.

(i) Vo x > 1 is true for natural numbers, but not for integers. We must
specify a domain.

(ii) If the domain is infinite the truth value of Vo ®(z) cannot be algorith-
mically determined.

(iii) Vo ®(z) and Yy ®(y) are equivalent.
(iv) Same operators can be exchanged, different ones cannot.

(v) Vz ®(z) is equivalent to -3z —~P(x).
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1.2 Sets and Functions

Definition 1.9. A set is an imaginary ” container” for mathematical objects.
If A is a set we write

e x € A for "z is an element of A”
ez ¢ Afor x€ A
There are some specific types of sets
(i) @ is the empty set which contains no elements. Formally: JzVy y ¢ x
(ii) Finite sets: {1,3,7,20}

(iii) Let ®(x) be a statement and A a set. Then {x € A|®(z)} is the set
of all elements from A such that ®(z) holds.

There are relation operators between sets. Let A, B be sets
(i) A C B means ”A is a subset of B”.
(il) A= B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering
to these elements. This means that {1,3,3,7} = {3,1,7}. There are also
operators between sets

(i) AU B is the union of A and B.

r€AUB «<— zcAVvzxeB

(ii) AN B is the intersection of A and B.
r€ANB < r€ANT€EB

This can be expanded to more than two sets (AUBUC). We can also
use the following notation. Let A be a set of sets. Then

Jc
CeA

is the union of all sets contained in A.

(iii) A\ B is the difference of A and B.

re€A\B <= zc€ANx ¢ B
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(iv) The power set of a set A is the set of all subsets of A. Example:
P({1,2}) = {2, {1},{2},{1,2}}

Theorem 1.10. Let A, B,C be sets. Then

A\ (BUC) = (A\ B)N (A\C)
A\ (BNC) = (A\ B)U(A\C)
AU(BNC) = (AUB)N(AUC)
AN(BUC) = (ANB)U(ANC)

Proof. Let A, B, C be sets.

r€AN(BUC) <= z€ ANz eBUC
< z€AN(xeBVvzxel)
< (r€ANzeB)V(xzeArzel) (1.1)
— rzeANnBVzxinAnC
<~ z€(ANB)U(ANC)

The other equations are left as an exercise to the reader. ]

Definition 1.11. Let A, B be sets. For x € A, y € B we call (z,y) the
ordered pair from x,y. The Cartesian product is defined as

Ax B=A{(z,y)|x € ANy € B}

Remark 1.12.

(i) (z,y) is NOT equivalent to {x,y}. The former is an ordered pair, the
latter a set. It is important to note that

(z,y) = (a,b) <= xz=aAy=0D

(ii) This can be extended to triplets, quadruplets, ...
AxBxC={(z,y,2)|]lr€ ANye BANz€C}

We use the notation A x A = A2

(iii) For R? (R are the real numbers) we can view (z,y) as coordinates of
a point in the plane.
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Figure 1.1: A mapping f: A— B

Definition 1.13. Let A, B be sets. A mapping f from A to B assigns each
x € A exactly one element f(z) € B. A is called the domain and B the
codomain.

As shown in figure 1.1, every element from A is assigned exactly one
element from B, but not every element from B must be assigned to an
element from A, and elements from B can be assigned more than one element
from A. The notation for such mappings is

f:A— B

A mapping that has numbers (N, R, - - - ) as the codomain is called a function.
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Example 1.14.
(i)
f:N— N
n+—2n+1

f:R—R

0 x rational
T —
1 =z irrational

(iii) Addition on N
f:NxN—N

Instead of f(x,y) we typically write x 4+ y for addition.
(iv) The identity mapping is defined as
id A A— A
T T
Remark 1.15 (Mappings as sets).

(i) A mapping f : A — B corresponds to a subset of F' = A x B, such
that

Vee AVy,z€ B (z,y) e FA(z,2) e F = y==z
Vee Adye B (z,y) € F

(ii) Simply writing "Let the function f(z) = 22...” is NOT mathematically
rigorous.

(iii)

f is a mapping from A to B <= f(x) is a value in B
(iv)
fyg: A — B are the same mapping <= Vx € A f(z) = g(x)

Definition 1.16. We call f: A - B
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A B
(a) Injective mapping. There is at (b) Surjective mapping. There is at
most one arrow per point in B least one arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

e injective if Ve, 2 € A f(x) = f(Z) = =z =12
e surjective if Vy € B,dx € A f(x) =1y

e bijective if f is injective and surjective

Example 1.17.
(i)
f:N—N
n — n?
is not surjective (e.g. n? # 3), but injective.
(ii)
f:Z—N
n —s n’

is neither surjective nor injective.
(iii)
5 neven
n n+1
5= mnodd

is surjective but not injective.
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Definition 1.18 (Function compositing). Let A, B, C be sets, and let
f:A— B, g: B— C. Then the composition of f and g is the mapping

gof:A—~C
z— g(f(2))
Remark 1.19. Compositing is associative (why?), but not commutative. For
example let
fN—N g:N—N

n+— 2n n——n-+3
Then

fog(n)=2(n+3)=2n+6
gof(n)=2n+3

Theorem 1.20. Let f : A — B be a bijective mapping. Then there exists
a mapping f~1: B — A such that fo f~' =idg and f~'o f =ida. f~'is
called the inverse function of f.

Proof. Let y € B and f bijective. That means 3z € A such that f(z) = y.
Due to f being injective, this  must be unique, since if 3z € A s.t. f(Z) =
f(x) =y, then z = . We define f(z) =y and f~!(y) = z, therefore

Folf 7y =Fff"w)=fle)=y=idply) = fof'=idp (12)
and equivalently

FTlof(a) =ida(z) = f'of=ids (1.3)

O

1.3 Numbers

Definition 1.21. The real numbers are a set R with the following structure
(i) Addition
+:RxR—R
(ii) Multiplication
tRxR—R

Instead of 4+(x,y) and -(z,y) we write x + y and z - y.
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(iii) Order relations

< is a relation on R, i.e. x < y is a statement.
Definition 1.22 (Axioms of Addition).

A1l: Associativity

Va,b,ce R: (a+b)+c=a+ (b+c)

A2: Existence of a neutral element

HVeRVzeR: 2+0=2x

A3: Existence of an inverse element

VeeRI(—x)eR: z+(—x)=0

A4: Commutativity
Ve,yeR: z4+y=y+=x

Theorem 1.23. z,y € R

(i) The neutral element is unique
(ii) Vx € R the inverse is unique
(1)) —(—x) ==
(i) —(z+y) = (—=2) + (-y)

Proof.

(i) Assume a,b € R are both neutral elements, i.e.
VeeR:z+a=z=x+b (1.4)

This also implies that a +b=a and b+ a = b.
— b=bt+aatb=a (1.5)

Therefore a = b.
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(ii) Assume ¢,d € R are both inverse elements of z € R, i.e.
r+c=0=z+d (1.6)
c=0tc=o+d+c2rtctd=0+d=d (1.7)
Therefore ¢ = d.
(iii) Left as an exercise for the reader.
(iv)
z+y+ ((=2) + (=y)) =z +y + (=2) + (-y)
Ad (1.8)
=z+(-2)+y+(-y) =0

Therefore (—x)+ (—y) is the inverse element of (z+y), i.e. —(z+y) =
(=) + (—y).

O

Definition 1.24 (Axioms of Multiplication).

M1: Vz,y,z € R: (zy)z = x(y2)

M2: 1eRVzeR: zl==2

M3: Ve e R\ {0} Jz~teR: 2z '=1

M4: Vx,y e R: zy=yx
Definition 1.25 (Compatibility of Addition and Multiplication).

R1: Distributivity

Ve,y,z€R: z-(y+2)=(x-y)+ (z-2)

R2: 01
Theorem 1.26. z,y € R
(i) 2-0=0
(i) —(x-y) =z (-y) = (-2)-y
(iit) (=) - (—y) =z -y
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(iv) (—x)"' = —(z™") (only for x #0)
(v) zy=0 = 2=0Vy=0

Proof.
(i) z€eR
2 R1
z-0=2-(0+0)=2-04+2-0 (1.9)
24 0=2-0 (1.10)
(i) z,y e R

(iii) Left as an exercise for the reader.
(iv) z € R
r-(~(=0) ) L @ (o)) 2 (o) () T 1 ot (113)

M3 —(—x)_l — 1 1.2(@) (_x)—l _ _($—1) (1.14)

v) z,y € R and 0. Then 3y~ ! € R:
(V) 2,y y y

my:O:xyy*1@x~1%2m:0:0-y*1 (1.15)

Remark 1.27. A structure that fulfils all the previous axioms is called a field.
We introduce the following notation for z,y € R, y # 0

T
4

Definition 1.28 (Order relations).

O1: Reflexivity
VeeR: z<z

02: Transitivity

Ve,y,z€ R: z<yny<z = <z
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03: Anti-Symmetry
Ve,y e R: z<yANy<z = x=y
04: Totality

Ve,ye R: z<yVy<z

O5:
Ve,y,z€R: z<y = z+2<y+z

06:
Ve,ye R: 0<a2AN0<y = 0<zx y

We write x <y forx <yAz#vy
Theorem 1.29. z,y € R

(i) <y = —y< -z

(ii) ©<0Ny<0 = 0<uzxy
(iii) 0 < 1

(iv) 0 <z = 0< a1

(W Oo<z<y = y <zt
Proof.

(i)

= (1.16)

(ii) With y <0 % 0<—yandz <0 % 0 < —z follows from O6:

IA

0< (—z)(-y) ==y (1.17)
(iii) Assume 0 <1 is not true. From O4 we know that
1<0 2 g<11=1 (1.18)

(iv) Left as an exercise for the reader.
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(v)
0<ziro<yt 2B o<ty (1.19)

From z <y follows 0 <y —

28 <(y—z)z ty? i yrly Tt —zely b=t —yt (1.20)
R (1.21)
]

Remark 1.30. A structure that fulfils all the previous axioms is called an
ordered field.

Definition 1.31. Let A C R, x € R.
(i) z is called an upper bound of AifVy e A: y <z
(ii) x is called a maximum of A if x is an upper bound of A and z € A

(iii) « is called supremum of A is z is an upper bound of A and if for every
other upper bound y € R the statement x < y holds. In other words,
x is the smallest upper bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists
a lower bound, a minimum and an infimum. We introduce the notation sup A
for the supremum and inf A for the infimum.

Definition 1.32. a,b € R, a < b. We define
o (a,b):={xeR|la<zAhz<b}
e [a,b ={xeRla<zAz<b}
o (a,00):={reR|a<z}

Ezample 1.33. (—o0, 1) is bounded above (1, 2, 1000, - - - are upper bounds),
but has no maximum. 1 is the supremum.

Definition 1.34 (Completeness of the real numbers). Every non-empty
subset of R with an upper bound has a supremum.

Definition 1.35. A set A C R is called inductive if 1 € A and

€A = zx+1cA
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Lemma 1.36. Let I be an index set, and let A; be inductive sets for every
i€ I. Then (;c; Ai is also inductive.

Proof. Since A; is inductive Vi € I, we know that 1 € A;. Therefore

e A (1.22)
i€l

Now let & € (;c; Ai, this means that x € A; Vi€ I.

— r4+1¢c A VieI:>m+leﬂAi (1.23)
iel

O

Definition 1.37. The natural numbers are the smallest inductive subset of

R. Le.
ﬂ A=:N

A inductive

Theorem 1.38 (The principle of induction). Let ®(x) be a statement with
a free variable x. If ®(1) is true, and if ®(xr) = ®(x + 1), then ®(z)
holds for all x € N.

Proof. Define A = {z € R|®(z)}. According to the assumptions, A is
inductive and therefore N C A. This means that Vn € N: &(n). O

Corollary 1.39. m,n € N
(i) m+neN
(i) mn € N

(isi) 1 <n VneN

Proof. We will only proof (i). (ii) and (iii) are left as an exercise for the
reader. Let n € N. Define A = {m € N|m +n € N}. Then 1 € A, since N
is inductive. Now let m € A, therefore n +m € N.

= n+m+1eN (1.24)
< m+1lecA (1.25)
Hence A is inductive, so N C A. From A C N follows that N = A. O

Theorem 1.40. n € N. There are no natural numbers between n and n+1.
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Heuristic Proof. Show that x € NN (1,2) implies that N\ {z} is inductive.
Now show that if NN (n,n+1) = @ and z € NN (n+1,n+ 2) then N\ {z}
is inductive. O

Theorem 1.41 (Archimedian property).
VeeRIneN: z<n
Proof. If x < 1 there is nothing to prove, so let > 1. Define the set
A={neN|n <z} (1.26)

A is bounded above by definition. There exists the supremum s = sup A.
By definition, s — 1 is not an upper bound of 4, i.e. Ame A: s—1<m.
Therefore s < m + 1.

meACN = m+1eN (1.27)

Since s is an upper bound of A, this implies that m + 1 ¢ A, so therefore
m-—+1>ux. O

Corollary 1.42. Every non-empty subset of N has a minimum, and every
non-empty subset of N that is bounded above has a mazrimum.

Proof. Let A C N. Propose that A has no minimum. Define the set
A:={neN|¥meA: n<m} (1.28)

1 is a lower bound of A4, but according to the proposition A has no minimum,
so therefore 1 ¢ A. This implies that 1 € A.

neAd = n<mVmeA (1.29)

But since there exists no natural number between n and n + 1, this means
that n + 1 is also a lower bound of A, and therefore

n+l<mVmeAd — n+lecd (1.30)
So A is an inductive set, hence A = N. Therefore A = @. ]
Definition 1.43. We define the following new sets:

Z:={zxeR|zxeNyV(—z) €Ny}

Q:= {Zp,qGZAq#O}

Z. are called integers, and Q are called the rational numbers. Ny are the
natural numbers with the 0 (Ng = NN {0}).
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Remark 1.44.
r2,ye€l = rz+y,x-y,(—x) €L
1y€Q = z+y,z-y,(—z)€Qandz ' € Qif x #0
The second statement implies that Q is a field.
Corollary 1.45 (Density of the rationals). z,y € R, = <y. Then
IreQ: z<r<y

Proof. This proof relies on the Archimedian property.

1 1
dgeN: y<q<<:>q<y—:r> (1.31)

Let p € Z be the greatest integer that is smaller than y - q. The existence of
p is ensured by corollary Corollary 1.42. Then % <y and

1
p+12y-q:>y§g+*<£+(y—x) (1.32)
q (g q
p
= < =<y (1.33)
q
O

Definition 1.46 (Absolute values). We define the following function
|-+ R —[0,00)
x ,x >0
x—
{—x ,x <0

Theorem 1.47.
z,y ER = |zy| = |z||y]

Proof. Left as an exercise for the reader. O
Definition 1.48 (Complex numbers). Complex numbers are defined as the
set C = R2. Addition and multiplication are defined as mappings CxC — C.
Let (2,y), (.7) € C.

(z,9) + (2,9) = (x + 2,y + 9)
C is a field. Let z = (z,y) € C. We define
R(z) = Re(z) =z the real part

) =Im(z) =y the imaginary part
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Remark 1.49.

(i) We will not prove that C fulfils the field axioms here, this can be
left as an exercise to the reader. However, we will note the following
statements

e Additive neutral element: (0,0)

Additive inverse of (x,y): (—z, —y)

e Multiplicative neutral element: (1,0)
e Multiplicative inverse of (x,y) # (0,0): (%_Hﬂ’ —%erz)
(ii) Numbers with y = 0 are called real.

(iii) The imaginary unit is defined as i = (0,1)

0,1) - (z,9) = (=y, )

Especially
#=(0,1)> = (-1,0) = —(1,0) = —1

We also introduce the following notation
(z,y) = (z,0) +i-(y,0) =z + iy

Theorem 1.50 (Fundamental theorem of algebra). Every non-constant,
complex polynomial has a complex root. Le. form € N, ag, - ,ap, € C,
oy # 0 there is some x € C such that

n
g ' = ap 4+ a1z + aer? + -+ apz™ =0
i=0

Proof. Not here. O
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2.1. ELEMENTARY INEQUALITIES

2.1 Elementary Inequalities

Ezample 2.1.
ezcR — 22>0
e 22 —2zy+1y?=(x—9y)?>0 Vor,ycR

o 22 192> 21y

Theorem 2.2 (Absolute inequalities). Let x € R, ¢ € [0,00). Then

(i) —le] <o < Jal
(ii) || <c¢ <= —c<z<c
(iii) || >¢c <= < —cVe<ux
() || =0 <= =0
Theorem 2.3 (Triangle inequality). Let x,y € R. Then
|z +y| < |=[ + |y]
Proof. From Theorem 2.2 follows z < |z| and y < |y].

= z+y < |z|+ [yl

However, from the same theorem follows —|z| < z and —|y| < y.

= —|z[—-|yl=2+y
= |z +y| < x|+ |y

Corollary 2.4. n €N, z1,--- ,z, € R. Then

n n
D ai| <o
i=1 =1

Proof. Proof by induction. Let n = 1:

|z1] < |1

22
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This statement is trivially true. Now assume the corollary holds for n € N.
Then

n+1 n n
in = Zwﬁxnﬂ < an + |Tp1]
=1 =1 =1
n
< fal + |zl (2.5)
i=1
n+1

=2_lai
i=1

O

Theorem 2.5 (Bernoulli inequality). Let z € [-1,00) and n € N. Then
(1+z)">1+nx

Proof. Proof by induction. Let n = 1:
l+z>1+41-2 (2.6)

This is trivial. Now assume the theorem holds for n € N. Then

1+2)"=0+2)"1+2z)>(1+nz)(1l+2)
=14+ (n+ 1Dz + na? (2.7)
>1+(n+1)x

2.2 Sequences and Limits

Definition 2.6. Let M be a set (usually M is R or C). A sequence in M
is a mapping from N to M. The notation is (zp)neny C M or (z,) C M. x,
is called element of the sequence at n.
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Example 2.7. Some real sequences are

® Tp = 22:1 k
e 1, = "smallest prime factor of n”  (%,2,3,2,5,2,7,2,3,2,---)

Definition 2.8 (Convergence). Let (z,) C R be a sequence, and x € R.
Then

() converges to x <= Ve >03IN €N: |z, —z[<e Vn>N

A complex sequence (z,) C C converges to z € C if the real and imaginary
parts of (z,) converge to the real and imaginary parts of z. x (or z) is called
the limit of the sequence. Common notation:

n—oo 3 —
Ty — T Ty —— T T}LH;oxn—x

If a sequence converges to 0 it is called a null sequence.
Ezample 2.9.

(i) = € R, z, = = (constant sequence). This sequence converges to z. To
show this, let ¢ > 0. Then for N = 1:

|z, —z| =z —2z|=0<e¢
(ii) x, = % is a null sequence. Let € > 0. By the Archimedean property:
1
dJNeN: -<N

Then for n > N:

(iii) The sequence

does not converge.

Remark 2.10. A property holds for almost every (a.e.) n € N if it doesn’t
hold for only finitely many n. (e.g. n < 10 is true for a.e. n € N)



2.2. SEQUENCES AND LIMITS 25

Theorem 2.11. A sequence (x,) C R (or C) has at most one limit.

Proof. Propose that z, % are different limits of (x,). Without loss of gener-

ality (w.l.o.g.) we can write z < Z. Now define € = (& — 2) > 0.

Ty —> x <= dNp: a:ne(x—e,a:+e):<x—e,x—;$> (2.8)

Ty — T <= dNy: xne(i—e,i+e):<x;x,x+e) (2.9)

Since these intervals are disjoint, the proposition led to a contradiction. [J

Theorem 2.12. Let (x,) C R (or C) be sequence with limit x € R. Then
formeN

lim zp4m =2
n—oo

Proof. Left as an exercise for the reader. O

Definition 2.13. The sequence (z,,) C R is bounded above if {z,, |n € N}
is bounded above. A number K € R is an upper bound if Vn e N: z, < K.

Theorem 2.14. Every convergent sequence is bounded.

Proof. Let (z,,) C R converge to x € R. For e = 1 we trivially know that

ANeNVR>N: |z, —z[<e=1 (2.10)
Let
K = max{z1,x9, - ,oN, || + 1} (2.11)
Then
|z, < K VneN (2.12)

This is trivial for n < N. For n > N we can use the triangle inequality:
n| = [(2n — ) + 2] < |z — 2| + |2 <[z +1 (2.13)
O

Theorem 2.15. If (z,) C R bounded and (y,) C R null sequence, then
(n) - (yn) is also a null sequence.
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Proof. 1f (x,,) is bounded, this means that 3K € (0, c0) such that
|z, < K VneN (2.14)
Since (yp,) is a null sequence we know that
Ve>03dN e NVn>N: |y, <e (2.15)

Now let € > 0, then 3N € N such that

€

> N : n 2.16

Vn > lyn] < 3¢ (2.16)

@0 -yl = [eallyal < K= =€ (2.17)

Therefore (z,,)(y,) is a null sequence. O

Theorem 2.16 (Squeeze theorem). Let (xy,), (yn), (2n) C R be sequences
such that

for a.e. n € N, and let ,, = x, z, — x. Then

lim y, ==z
n—0o0

Proof. Let € > 0. Then 3Ny, No, N3 € N such that

Vn> Ny z, <yp <z (2.18)
Vn>Ny: |z, —x|<e€ (2.19)
Vn > Ng: |z, —x|<e€ (2.20)

Choose N = max{Ny, Na, N3}. Then
Vn>N: —e<zp—c<yp,—cx<z,—x<e€ (2.21)
Therefore |y, — x| < € O

Ezample 2.17. Yn € N: n < n? (why?).

1 1 . 1
— 0< =< - = lim — =0
nZ2 —n n—oo n2

Theorem 2.18. Let (x,,), (yn) C R and x, — x, yp — y. Then x < y.

Proof. Left as an exercise for the reader. O
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Remark 2.19. If x, < y, Vn € N, then x = y can still be true.
Lemma 2.20. Let (z,) € R and = € R.

(xn) — & <= (|xn — z|) is null sequence

Especially:
(xr) null sequence <= |x,| null sequence

Proof.
||zn, — x| — 0| = |2y, — 2 (2.22)

O]

Theorem 2.21. Let (z,), () C R (or C) with x,, = =, yp =y (x,y € R).
Then all of the following are true:

(1)

Jig on o =24y = Ly an + Jim un

(i)

lim zpy, =2y = lim x, - lim y,
n—oo n—oo n—oo

(iii) If y # 0:
. Xy T lim,,—voo T,
lim —=-=_—"—""—
n—=00 Yn Yy limy, 00 Yn

Proof.
(i) Let € > 0. Then 3N, Ny € N such that

Yn> Nl —a] < % (2.23)
Vn>Ny: |y, —y| < % (2.24)
Now choose N = max{Ny, No}. Then Vn > N:
T +yn — (@ +y)| = [(@n — 2) + (yn — y)]
< |zn — 2 + |yn — ¥l (2.25)
2 72" €

= Tp+yYn — 2ty (2.26)
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(ii)
0 < |Tnyn — Y| = [(Tnyn — T0y) + (Tpy — zy)|

< |zn(yn — )| + (20 — 2)y (2.27)
= |@n||yn — y| + |20 — 2||ly] — 0

Therefore |z,y, — zy| is a null sequence and

iii) Now we need to show that if 0 then L+ —
y #

m % We know that
ly| > 0. So 3N € N such that

|y

Vn>N: |y, —y| < o (2.29)
This implies that
Yn>N: 0< |22/| < |yn| (2.30)

From this we now know that i is defined and bounded

1 1 2
=< = (2.31)
Yn| |ynl = 1yl
So finally
1 1 1 1 1 1
S )= wl] o e
Yn Yy Yn ) Yn )
And therefore
Yp —> Y = Yn — 1
Yy
Thin 2151 _ Y01 4 o null sequence (2.33)
Yy
Lem. 2.20 1 1
— _— — —
Yn Yy
O

Corollary 2.22. Letk € N, ag, -+ ,ax,bo,- -+ ,br € R and by, # 0. Then

iy 0T+ aomn? + -+ ap_inf N+ apnt  ag
11m —
n—00 by + byn + bon2 + -+ bp_nk—1 + bpnk by
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Proof. Multiply the numerator and the denominator with —¢
n
G4+ B+l g
n_nkl 7 n T, (2.34)
0

b b be—1

Ezample 2.23. Let x € (—1,1). Then lim, o 2™ =0

Proof. For x = 0 this is trivial. For x # 0 it follows that || € (0,1) and

ﬁ € (1,00). Choose s = ﬁ — 1 > 0 and apply the Bernoulli inequality

(Theorem 2.5).

(I+s)">14n-s (2.35)
1 " 1 1 1 -0
0< |z|" = - < A R
1+s (1+s)" " 14n-s 14n-s
The squeeze theorem now tells us that |2 = |z|* — 0 and therefore 2™ —
0. O

Definition 2.24. A sequence (z,,) C R is called monotonic increasing (de-
creasing) if x, 41 > xy (Tpy1 < @) Yn € N.

Theorem 2.25 (Monotone convergence theorem). Let (z,) C R be a mono-
tonic increasing (or decreasing) sequence that is bounded above (or below).
Then (x,,) converges.

Proof. Let (z,,) be monotonic increasing and bounded above. Define
x =sup{x,|n € N} (2.37)
A

Now let € > 0, then = — € is not an upper bound of A, this means AN € N
such that zy > x — e. The monotony of (x,) implies that

Vn>N: z, >z —¢ (2.38)
So therefore
rT—e<Tp<TH+e = |z, —x|<e€ (2.39)
O
Remark 2.26.
(z5,) is monotonic increasing <= Tntl >1 VneN
Tn
(z5,) is monotonic decreasing <= Tntl <1 VneN

Tn
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Example 2.27. Consider the following sequence

1’1:1
1 a
:L'nJrl:i <$n+>a ac [0,00)
n

Notice that 0 < z,, Vn € N. For n € N one can show that

1 a? 1 a?
xi+1:4<az%—l—2a+$2> :4<xi—2a+362>+a

n n

2
1 a
:<xn—> +a>a
4 Ty

So x?L > a VYn > 2, and therefore x% < x,. Finally

1 a 1
$n+1=2<wn—|—xn) §§($n+$n)=£€n Vn > 2

This proves that (z,) is monotonic decreasing and bounded below.

Theorem 2.28 (Square root). This theorem doubles as the definition of the
square root. Let a € [0,00). Then 3z € [0,00) such that x* = a. Such an
is called the square Toot of a, and is notated as r = +/a.

Proof. First we want to prove the uniqueness of such an x. Assume that

2? = y? = a with 2,y € [0,00). Then 0 = 22 — y? = (z — y)(z + ¥).

= r+y=0 = z=y=0 (2.40)

Now to prove the existence, review the previous example.
xn — x for some z € [0, 00) (2.42)
By using the recursive definition we can write
2y Tpp1 =22 4+a — 22 +a (2.43)

— 2’ =240 = 2°=a (2.44)
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Remark 2.29. Analogously 3lz € [0,00) Va € [0,00) such that 2" = a.

(Notation: {/a or = = a%). We will also introduce the power rules for
rational exponents. Let z,y € R, u,v € Q.

(:E . y)'LL — xuyu ‘,B'U, . :L,'U — xu—l—v (x’ll,)’l) — :E’U"U
Theorem 2.30. Let z,y € R, n € N. Then
0<z<y = Vo< Yy
Let n,m e N, n<m, x € (1,00), y € (0,1). Then
Vo> N Vy < Xy
Proof. Left as an exercise for the reader. O
Theorem 2.31. Let a € (0,00). Then
lim {/n=1 lim {/a=1
n—oo n—oo
Proof. Let € > 0. Then
N noey (2.45)
(n+¢e)n
This means that n
AINeNVn>N: ——<1 (2.46)
(n+€)"

Therefore
n<(l+e = l-e<1<Yn<lde <= |[VYn-1]<e (247

This proves the first statement. The second statement is trivially true for
a=1,s0let a > 1. Then dn € N such that a < n:

= 1< Va< Yn——1 (2.48)
Squegre p/g 12 (2.49)

Now let a < 1. Then é <1

n—00 n—oo ,/1 1

Definition 2.32. Let z € C, z,y € R such that z = z + iy.

|2| == V2z = Va2 + y2
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Theorem 2.33. Let u,v € C. Then

1 1
|- v = |ul|v] ul T Tl lu+v| < |ul + |v]
Proof.
luv| = Vuv - uv = Vi - v0 = Vui - Voo = |ul|v] (2.51)
1 1 1 1

For the final statement, remember that complex numbers can be represented
as z = x + 1y, and then

So therefore
lu+of* = (u+v)- (@ +7)
= uu + vu + uv + vo

= \u|2 + 2Re(uv) + MZ

< |uf* + 2|av| + |v|? (2.55)
= [ul? + 2lulfv] + |v]?
= (|ul + |v])?

]

Lemma 2.34. Let (z,) C C, z € C.
(zn) —— 2z <= (|zn — z|) null sequence

Proof. Let x, = Re(z,) and y, = Im(z,). Then x = Re(z) and y = Im(2).
First we prove the ” <=7 direction. Let (|2, — z|) be a null sequence.

0 <l|zn|—|z| =|Re(zn — 2)| < |2n — 2| —— 0 (2.56)

Analogously, this holds for y, and y. We know that (|z, — z|) is a null
sequence if x,, —— x (same for y, and y), therefore

= zp —— 2 (2.57)
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To prove the ” =7 direction we use the triangle inequality:

0<|zn — 2| = |(zn — ) +i(yn — )|

< lan — 2+ |ilyn —y)| — 0 (2.58)
N———
[yn—yl
By the squeeze theorem, |z, — z| is a null sequence. ]

Remark 2.35. Lemma 2.34 allows us to generalize Theorem 2.21 and Corol-
lary 2.22 for complex sequences.

Definition 2.36 (Cauchy sequence). A sequence (z,,) C R (or C) is called
Cauchy sequence if

Ve>03INeNVn,m>N: |z, —x,| <e

Theorem 2.37 (Cauchy convergence test). A sequence (z,) C R (or C)
converges if and only if it is a Cauchy sequence.

Proof. Firstly, let (x,) converge to z, and let € > 0. Then

€

AN eNVn> N : \xn—x|<2 (2.59)
So therefore Vn,m > N:
[Ty — | = |2n — 2+ 2 — 2| <|zp — |+ |z — 20| <€ (2.60)

This proves the ” = 7 direction of the theorem. To prove the inverse let
() be a Cauchy sequence. That means

ANeNVn,m>N: |z, —zn| <1 (2.61)
= |ZTp| = |Zp —2N t2N| < |Tp —TN|+|T
0| = on — 2N + o8| < |20 — 25|+ |2N] (2.62)
<l|lzn|+1 Vn>N
We will now introduce the two auxiliary sequences
Yn = sup{zy |k > n} zp = inf{zy |k > n} (2.63)

(yn) and (z,) are bounded, and for n < n

{zg |k >n} D{zr|k>n} (2.64)
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= yp = sup{zglk > n} <sup{ailk > n} =ys (2.65)

— (z,,) monotonic decreasing and therefore converging toy  (2.66)
Analogously, this holds true for (z,) as well. Trivially,
Zn < Tn < Yn (2.67)

If y = z, then (x,) converges according to the squeeze theorem. Assume
z <y. Choose € > 5% > 0. If N is big enough, then

sup{zy |k > N} =yn >y —e (2.68)
inf{zxy |k >N} =2y <z+e (2.69)

So for every N € N, we know that

Jdk>N: xp>y— 2 (2.70)
A>N: 2 <z+2€ (2.71)
For these elements the following holds

Yy—z
2

(2.72)

|z — 21| > €=

This is a contradiction to our assumption that (x,) is a Cauchy sequence,
so y = z and therefore (z,,) converges. O

Remark 2.38.
(i) @, = (—1)™. For this sequence the following holds
VneN: |z, —zp1| =2
So this sequence isn’t a Cauchy sequence-

(ii) It is NOT enough to show that |z, — x,11| tends to 0! Example:

(zn) = /n

B _ Y tltvn
VRt l= V= (Vad -V S

At
vn+1+yn
]- nA)OOO

T Vntl+vn

However (y/n) doesn’t converge.
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(ili) We introduce the following

Limes superior limsup 2, = lim sup{zy |k > n}
n—00 n—=oo
Limes inferior liminf z, = lim inf{zy |k > n}

limsup,,_,, zn, > liminf,, . x, always holds, and if (x,) converges
then
n—oo . . .
T, —— ¢ <= limsupz, = liminfz,
n—00 n—oo
Definition 2.39. A sequence (z,) C R is said to be properly divergent to
oo if
Vk € (0,00) AN ENYR>N: z, >k
We notate this as
lim x, = o0
n—o0

Theorem 2.40. Let (z,) C R be a sequence that diverges properly to oo.

Then 1
lim — =0
n—0o Ty,

Conversely, if (yn) C (0,00) is a null sequence, then

1
lim — = o0
n—0 Yp

Proof. Let € > 0. By condition
1 1
AN eNVn>N: |z, > - (<:>||<e> (2.73)
€ ZTn

Therefore ﬁ is a null sequence. The second part of the proof is left as an
exercise for the reader. O

Remark 2.41 (Rules for computing). In this remark we will introduce some
basic "rules” for working with infinities. These rules are exclusive to this
topic, and are in no way universal! This should become obvious with our
first two rules:

1 1

:I:oo:0 6200
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Obviously, division by 0 is still a taboo, however it works in this case since
we are working with limits, and not with absolutes. Let a € R, b € (0, 00),
€ (1,00), d € (0,1). The remaining rules are:

a + 00 = 00 a—00=—00
00 + 00 = 00 —00 — 00 = —00
b-0o =00 b (—00) = —00
00+ 00 = 00 00+ (—00) = —00
¢ = o0 c =0
d* =0 d> =00

There are no general rules for the following:
00 — 00 > 0-00
00

1OO

Theorem 2.42. Let (z,,) C R be a sequence converging to x, and let (k,) C
N be a sequence such that
lim k, = o0

n—oo
Then
lim xx, ==
n—oo
Proof. Let € > 0. Then
ANeNVR>N: |z, —x|<e (2.74)
Furthermore ) )
INeNVR>N: k,>N (2.75)
Therefore B
Vn>N: |z, —z|<e (2.76)

Ezxample 2.43. Consider the following sequence
S n%" 4 2n"
nT 3 _opgn
This can be rewritten as
n? +2n"  (n")?%+2(n")

n3n —npn (nn)?) _ (nn)

Introduce the subsequence k, = n™:

k242K o onIm 4 oopn
lm ——F=0 = lim —/— =0
k—oo k3 —k n—oo N3 — pht
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2.3 Convergence of Series

Definition 2.44. Let (z,,) C R (or C). Then the series

o0

D

k=1
is the sequence of partial sums (s,):

n
o=
k=1

If the series converges, then Y77 denotes the limit.

Theorem 2.45. Let (x,) CR (or C). Then

o0
an converges = (x,,) null sequence

n=1
Proof. Let s, = > >°; xp. This is a Cauchy series. Let € > 0. Then
AN eNVn>N: |spt1 — Sn| = |Tnt1| <€ (2.77)
O
Ezample 2.46 (Geometric series). Let x € R (or C). Then
(o.9]
Dt
k=1

converges if |z| < 1. (Why?)

Ezample 2.47 (Harmonic series). This is a good example of why the inverse
of Theorem 2.45 does not hold. Consider

Tp = —
n

This is a null sequence, but Y32 ; + does not converge. (Why?)

Lemma 2.48. Let (x,) C R (or C). Then

[ee) [e.e]
an converges <= E Ty converges for some N € N
k=1 k=N
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Proof. Left as an exercise for the reader. O

Theorem 2.49 (Alternating series test). Let (xy,) C [0,00) be a monotonic
decreasing null sequence. Then

> (—1)Fay,

k=1

converges, and
N

STk = Y (- DFag| < ey
k=1 k

=1

Proof. Let s, = Zzzl(—l)kxn, and define the sub sequences a, = sop,
bn, = Son+1- Then

Upt1 = S2n — (Tant+1 — Tont2) < Sop = apn (2.78)
>0

Hence, (a,) is monotonic decreasing. By the same argument, (b,,) is mono-
tonic decreasing. Let m,n € N such that m < n. Then

by < by = ap — Topg1 < ap < apy (279)

Therefore (ay,), (by) are bounded. By Theorem 2.25, these sequence converge

(an) =25 a (bp) =25 b (2.80)
Furthermore
bp — Gp = —ZTopi] —0 = a=b (2.81)

From eq. (2.79) we know that

by <b=a<ap (2.82)

So therefore
|son —al =an —a < ap — by = Tyl (2.83)
|52n+1 - a’ =b—byp < amy1 — by = T2 (284)
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Ezample 2.50 (Alternating harmonic series).

1 1 1 1 1 1 1 1
:<1_2>_4+<3_6>_8+<5_10>_12
1 1 1 1. 1 1
"2 176 8 w0 12"

:1<1_1+1 111 )
2 2 3 4 5 6

1

_53

But s € [%, 1], this is an example on why rearranging infinite sums can lead
to weird results.

Remark 2.51.

(i) The convergence behaviour does not change if we rearrange finitely
many terms.

(ii) Associativity holds without restrictions

o o
Zwk = Z(l‘zk + Tok-1)
k=1 k=1
(iii) Let I be a set, and define
I —R
7 — a;

Consider the sum

S

i€l
If I is finite, there are no problems. However if [ is infinite then the
solution of that sum can depend on the order of summation!

Definition 2.52. Let (z,,) C R (or C). The series > ;- xj, is said to con-
verge absolutely if > "7, |zx| converges.
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Remark 2.53. Let (z,) C [0,00). Then the sequence
n
=D
k=1

is monotonic increasing. If (s,) is bounded it converges, if it is unbounded
it diverges properly. The notation for absolute convergence is

oo
Z |z| < 00
k=1

Lemma 2.54. Let Y 2 x) be a series. Then the following are all equivalent
(1)
o0
Z:L‘k converges absolutely
k=1
(i)
(> in

kel

ICN ﬁm’te} s bounded

(iii)
Ve > 03I CN finite VJ C N finite: Y |ag| < e
keJ\I

Proof. To prove the equivalence of all of these statements, we will show that
(i) = (ii) = (iii) = (i). This is sufficient. First we prove (i) =
(ii). Let

[e.e]

> Jan| =k € [0,00) (2.85)

n=1

Let I C N be a finite set, and let N = max . Then

N o)
D Lzl <D fnl % > lzal (2.86)
n=1 n=1

nel
Monotony of the partial sums

Now to prove (ii) = (iii), set

w3

kel

ICN ﬁnite} (2.87)



2.3. CONVERGENCE OF SERIES 41

Let € > 0. Then by definition of sup

31 CN finite: Y |ax] >k —¢ (2.88)
kel

Let J C N finite. Then

k—e<d fagl < ) |kl <K (2.89)
kel keluJ
Hence
Dlrkl= D lal =) lwkl <e (2.90)
keJ\I keluJ kel

Finally we show that (iii) = (i). Choose I C N finite such that

VJ CN finite: > |ayl <1 (2.91)
keJ\I

Then VJ C N finite

Dol < D7 Jakl ) lawl <D Janl +1 (2.92)

keJ keJ\I kel kel

Therefore Y, |zx| is bounded and monotonic increasing, and hence it is
converging. So Y o |zx| < co. O

Theorem 2.55. FEvery absolutely convergent series converges and the limit
does not depend on the order of summation.

Proof. Let Y .2, x be absolutely convergent and let € > 0. Choose I C
N finite such that
VICN: ) ol <e (2.93)
kel

Choose N = max I. Define the series

n
Sn=» a4 (2.94)
k=1
Then for n <m < N
n
lsn—sml < D Jul <) ] <e (2.95)
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Hence s, is a Cauchy sequence, so it converges. Let ¢ : N — N be a bi-
jective mapping. According to Lemma 2.54 the series > ;- T(n) CONVETZES
absolutely. Let € > 0. According to the same Lemma

€

5 (2.96)

I C N finite V.J C N finite: > [ay| <
keJ\I

Choose N € N such that
Then for n > N

Dom =Y wm|=| D m— > m
k=1 k=1

ke{l,-- ,N]\I ke{p(1),+,¢(n)I\I (2.98)

E: h%‘+— E: \xk\<e

ke{l,- ,NJ\I ke{a(1),+,¢(n)\I

IN

Therefore

lim_ (Z T — Z%(k)) =0 (2.99)
k=1 k=1

O
Theorem 2.56. Let Y .-,z be a converging series. Then
[e.e] o0
D a7 fak
k=1 k=1
Proof. Left as an exercise for the reader. O

Theorem 2.57 (Direct comparison test). Let Y o, xp be a series. If a
converging series Y,y exists with |xi| < yg for all sufficiently large
k, then Y ;2 x) converges absolutely. If a series > oz, diverges with
0 <z <z, for all sufficiently large k, then Y 2= xy diverges.

Proof.

n n n oo
Z || < Zyk = Zxk bounded “23> Z |zl < oo (2.100)
k=1 k=1 k=1 k=1

n n oo
sz < ka = Zxk unbounded (2.101)
k=1 k=1 k=1

O]
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Corollary 2.58 (Ratio test). Let (z,,) be a sequence. If 3g € (0,1) such
that

Tn+1
Tn

<q

for a.e. n € N, then Y 32, x), converges absolutely. If

Tn+1
Tn

>1

then the series diverges.

Proof. Let ¢ € (0,1) and choose N € N such that

vn>N: | <y (2.102)
T
Then
lenal < alewl, fonal < gzl < land, - (2.103)
This means that
o) N 00
Dolael <D lml+ Y Vo] < oo (2.104)

Hence, > 72, zj, converges absolutely. Now choose N € N such that

Vn>N: |Zfi s (2.105)
Ty,
However this means that
|Tpt1] > |zn| YR > N (2.106)

So (xy) is monotonic increasing and therefore not a null sequence. Hence
> pe x diverges. O

Corollary 2.59 (Root test). Let (zy,) be a sequence. If 3¢ € (0,1) such

that
Vizal < q

for a.e. n €N, then Y2, x), converges absolutely. If

Vien| >1

for alln € N then Y 72 | x), diverges.
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Proof. Left as an exercise for the reader. O

Remark 2.60. The previous tests can be summed up by the formulas

. ':UTL+1 . n

| o | <7 a3l Vlem| <1
. xn-i—]. : n

HILH;O . > 1 nlglgo Vien| > 1

for convergence and divergence respectively. If any of these limits is equal
to 1 then the test is inconclusive.

Example 2.61. Let z € C. Then

k

exp(z) := Z %

k=0
converges. To prove this, apply the ratio test:

2[Rz
(k+1)z)F  k+1

The function exp : C — C is called the exponential function.

Remark 2.62 (Binomial coefficient). The binomial coefficient is defined as

()= (i30) = () v

and represents the number of ways one can choose k objects from a set of n

objects. Some rules are
<:> =0 ifk>n

(1)

(i)

(iii)
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(iv)
Ve,ye C: (z+y)" Z()k”k

k=1

Theorem 2.63.

Vu,v € C: exp(u+v) =exp(u) - exp(v)

Proof.
exp(u) - exp(v) = (Z l;;) : <Z Z:) = Z Z Z::,:ll
n=0 m=0 n=0m=0 "

Remark 2.64. We define Euler’s number as
e :=exp(1)

We will also take note of the following rules Va € C,n € N

exp(0) = exp(z) exp(—z) =1 = exp(—z) = )

exp(nz) =exp(r +x+x+ -+ x) = exp(x)
1 T
exp(z)n = exp(;)

Alternatively we can write
z

exp(z) =e
Theorem 2.65. Let x,y € R.

(i)

r <y = exp(z) < exp(y)

45

(2.107)
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(i)
exp(z) >0 Vz eR
(iii)
exp(z) >1+z VxeR
(i)
nd
lim =0 VdeN
n—oo exp(n)
Proof.
(i) Left as an exercise for the reader.
(ii) For x > 0 this is trivial. For z <0
(@)= —— >0 (2.108)
exp(x) = o .
(iii) For x > 0 this is trivial. For z <0
ok
x
> o (2.109)
k=0
is an alternating series, and therefore the statement follows from The-
orem 2.49.
(iv) Let d € N. Then Vn € N
0< ™ N (2.110)
exp(n) arl %’f '
O

Definition 2.66. Define
sin,cos : R — R
as

sin(z) := Im(exp(iz))
cos(z) := Re(exp(iz))
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Remark 2.67.

(i) Euler’s formula
exp(ix) = cos(z) + isin(x)

(ii) V2 € C: exp(z) = exp(2)

|exp(iz)|* = exp(iz) - exp(iz) = exp(iz) - exp(—iz) = 1

Also:
1 = cos?(z) + sin’(z)

On the symmetry of cos and sin:

cos(—x) + isin(—x) = exp(—ix) = exp(ix) = cos(z) — isin(x)

(iii) From

— (iz)
exp(iz) = ) k‘ ((*=1,i'=i,i’=—-1,i=—i,i*=1,--)
k=0 )

follow the following series
k 2k+1 0 (—1)k$2k
sin(x Z 2k+1 cos(x):zi(%:)!
k=0 k=0
(iv) For x € R
exp(i2z) = cos(2x) + i sin(2z)
= (cos(z) + isin(z))?

= cos?(z) — sin?(z) + 2i sin(z) cos(z)

By comparing the real and imaginary parts we get the following iden-
tities

cos(2x) = cos?(z) — sin?(x)
sin(2z) = 2sin(x) cos(x)

(v) Later we will show that cos as exactly one root in the interval [0, 2].
We define 7 as the number in the interval [0, 4] such that cos(%) = 0.

— sin(g) S

cos and sin are 27-periodic.
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Theorem 2.68. Vz € C

Z n
lim (1+7) — lim
n

n—oo

Proof. Without proof.

48
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3.1 Vector Spaces

We introduce the new field K which will stand for any field. It can be either
R, C or any other set that fulfils the field axioms.

Definition 3.1. A vector space is a set V with the operations

Addition Scalar Multiplication
+:VxV —=V KXV —V
(z,y)—z+y (o, y) — ax

We require the following conditions for these operations
i) 0eVVeeV: z4+0=z
(i) VeeVI(—x)eV: z+(—x)=0
(iii) Ve,y e V: z+y=y+zx
(iv) Vz,y,2€V: (x+y)+z=a+ (y+=2)
(v) VaeKVz,yeV: alz+y)=ar+ay
(vi) Va, e KVz €V : (a+ B)r=ax+ Bz
(vii)) Va, e KVz € V: (af)z = a(fx)
(viii) Ve eV: 1-z=ux
Elements from V are called vectors, elements from K are called scalars.

Remark 3.2. We now have two different addition operations that are denoted
the same way:

() +:VxV oV
(i) +: KxK—>K

Analogously there are two neutral elements and two multiplication opera-
tions.

Ezample 3.3.
(i) K is already a vector space

(i) V = K% In the case that K = R this vector space is the two-
dimensional Euclidean space. The neutral element is (0,0), and the
inverse is (x1, x2) = (—x1, —x2).- This can be extended to K".
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(iii) K-valued sequences:
V ={(xn)nen | X €K Vn e N}

(iv) Let M be a set. Then the set of all K-valued functions on M is a
vector space
V=A{f|f:M—K}

Definition 3.4. Let V be a vector space, let z,z1, -+ ,z, € V and let
McCV.
(i) x is said to be a linear combination of x1,--- ,x, if Jay, -+ ,a, € K
such that

n
T = g QpTE
k=1

(ii) The set of all linear combinations of elements from M is called the
span, or the linear hull of M

n
span M := {Z QLT

k=1

neN, ay, - ,a, €K, ml,---,anV}

(ili)) M (or the elements of M) are said to be linearly independent if

VYai, - ,an €K, 21,-- 2, €V
n
Zakl‘k:() = a1=ag=---=a, =0
k=1

(iv) M is said to be a generator (of V) if

span M =V

(v) M issaid to be a basis of V' if it is a generator and linearly independent.
(vi) V is said to be finite-dimensional if there is a finite generator.
Example 3.5.

(i) For V = R? consider the vectors z = (1,0), y = (1,1). These vectors
are linearly independent, since

az + By = a(1,0) + (1,1) = (0,0) = a+B8=0AB8=0
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So therefore a = 8 = 0. We can show that span{z,y} = R? because
(o, B) = (= B)z + By
So {z,y} is a generator, hence R? is finite-dimensional.

(ii) For V = R? consider x = (1,-1,2), y = (2,—1,0), z = (4,-3,3).
These vectors are linearly dependent because

22 4y —z = (0,0,0)
(iii) Let V.={f|f:R — R}. Consider the vectors

fn:R—R
z—z"

The fo, fi,--*, fn, -+ are linearly independent, because

oo o)
0= Zk = O"Qkfk = Zk‘ = Onakltk
=1 =1

implies ag = a1 = --- = a, = 0. The span of the fi is the set of all
polynomials of (< n)-th degree. The function z + (z — 1)? is a linear
combination of fy, -, fs:

(x—13 =232 +3z -1

Remark 3.6. Let V be a vector space, y € V a linear combination of
Y1, ,Yn, and each of those a linear combination of z1, - ,x,. Le.

n
ElOél,"',anEK: ?/:Zakyk
k=1

and

n
Wbry e K y = Zﬁk,m
=1

Then

n

n n n n
Y= k=Y k> P = Py | T
k=1 =1 k=1

k=1 = =1

€K
So therefore
span(span(M)) = span(M)
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Theorem 3.7. Let V be a finite-dimensional vector space, and let 1, , T, €
V. Then the following are equivalent

(i) z1,--- ,Tp s a basis.
(ii) x1,- - ,zy 18 a minimal generator (Minimal means that no subset is a
generator).
(iii) x1,--- ,xy is a maximal linearly independent system (Mazximal means
that x1,- -+, Tn,y s not linearly independent).
(iv) Yz € V there exists a unique ai,--- ,a, € K
n
x = Z QLT
k=1
Proof. First we prove ”(i) == (ii)”. Let z1,---,x, be a basis of V.
By definition x1,--- ,x, is a generator. Assume that zo, -, z, is still a
generator, then
n
dag, -+ ,a, € K: $1:Zakxk (3.1)
k=1
However this contradicts the linear independence of the basis. Next, to prove
7(ii) = (iii)” let x1,--- ,x, be a minimal generator. Let aq,--- ,a, € K
such that

n
k=1

Assume that one coefficient is # 0 (w.l.o.g. a; =0). Then

n
ak
T = ——=x 3.3
1= o (3.3)
k=2
r1, -+, Ty is a generator, i.e. forx € V
n n a
k
B, B €K =D B = (ﬁk— ) T (3.4)
a1
k=1 k=2
But this implies that xo,--- ,x, is a generator. That contradicts the as-
sumption that z1,--- ,x, was minimal.

= a1 =0ag=--=qa,=0 (3.5)
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Now let y € V. Then

n
I, m €K y=> (3.6)
k=1
So x1,- -+ ,Zn,y is linearly dependent, and therefore x1,- - , x, is maximal.
To prove ”(iii) = (iv)” let z1,--- , 2y be a maximal linearly independent

system. If y € V| then

ElOél,"',Oék,BGKI Zak'xk+ﬁy20 (37)
k=1

Assume 8 = 0, then consequently
X1, -,y linearly independent — oy =as ==, =0 (3.8)

This is a contradiction, so therefore 3 # 0:
Y= —— T (3.9)

The uniqueness of these coefficients are left as an exercise for the reader.
Finally, to finish the proof we need to show ”(iv) = (i)”. By definition

V =span{z1, - ,z,} (3.10)
Hence, {z1, - ,x,} is a generator. In case
n
0="> apz (3.11)
k=1
holds, then a; = -+ = «,, = 0 follows from the uniqueness. O

Corollary 3.8. FEvery finite-dimensional vector space has a basis.

Proof. By condition, there is a generator x1,--- ,xz,. Either this generator
is minimal (then it would be a basis), or we remove elements until it is
minimal. O
Lemma 3.9. Let V be a vector space and x1,--- ,xx € V a linearly inde-

pendent set of elements. Let y € V, then

x1,-+ Tk, Yy linearly independent <= y ¢ span{xi, -, Ty}
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Proof. Toprove” <" assumey # span{xy,--- ,x}. Therefore x1,--- , zk,y
must be linearly independent. To see this, consider

n
O:Zakajk—i—ﬁy i, 0, €K (3.12)
k=1

Then S = 0, otherwise we could solve the above for y, and that would
contradict our assumption. The argument works in the other direction as
well. =

Theorem 3.10 (Steinitz exchange lemma). Let V' be a finite-dimensional
vector space. If x1,--- ,Tm 1S a generator and yi,--- ,Yn a linear indepen-
dent set of vectors, thenn < m. In case 1, - ,Tym and yi, -+ ,Yn are both
bases, then n = m.

Heuristic Proof. Let K € {0,--- ;min{m,n} — 1} and let

L1, "y TKyYK+1y" " »Yn (313)

be linearly independent. Assume that

TR41,7 " 5T € SPAn{T1, -+, Tk, YK+2,° * »Yn} (3.14)
Then
Yk+1 € span{zy, -+ , Ty} Cspan{zy, - ,Tr,Yk+2, s Ym}  (3.15)
This contradicts with the linear independence of x1, -+ Tk, Y42, Yn-
Furthermore,
Jx; € Vi x; & span{zi, -, TK,YKk+2, " 2 YUn} (3.16)
Wllo.g. z:1=xky1. By Lemma 3.9, 1, -+ ,Zx+1,YK+2, " * - Yn is linearly

independent. We can now sequentially replace y; with x; without losing the
linear independence. Assume n > m, then this process leads to a linear

independent system x1,--- , Tm, Ym+1, - ,Yn. But since x1,--- ,z, is a
generator, ¥m41 is a linear combination of x1, -+ ,xy. If 1, -+ 2z, and
Y1, - ,Yn are both bases, then we cannot change the roles and therefore
m=n. [

Definition 3.11. The amount of elements in a basis is said to be the di-
mension of V', and is denoted as dim V' .

Example 3.12.
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(i) Let V =R" (or C"). Define
ek:(()?()?"' 707%707"' 70)

k-th position
Then e, -+ , e, is a basis, in fact, it is the standard basis of R™ (C").

(ii) Let V be the vector space of polynomials

Vz{f:]R—)R

n
neN, ay, - ,a, €R, f(:v):Zakxk VmER}
k=1

This space has the basis
{x — 2™ |n € Ny}
Corollary 3.13. In an n-dimensional vector space, every generator has

at least n elements, and every linearly independent system has at most n
elements.

Proof. Let M C span{z1,---,x,}. Then

V =span M C spanzy,- - , Ty (3.17)

Hence, 1, -+ ,x, is a generator. On the other hand, assume
dy € M \ span{xy,--- ,z,} (3.18)
Then x1,- -+, Zp,y is linearly independent (Lemma 3.9), and we can sequen-
tially add elements from M until x1, -+, Zn, Ynt1, ** »Yntm IS & genera-
tor. O

Definition 3.14 (Vector subspace). Let V be a vector space. A non-empty
set W C V is called a vector subspace if

Ve,ye WVaeK: z4+ayeW
Ezample 3.15. Consider
W ={(x,x) e R*|x e R}
This is a subspace, because

(O x) +a(n,n) = (x +an,x +an)

However,
A={(xm e R’ +7* =1}
is not a subspace, because (1,0), (0,1) € 4, but (1,1) ¢ A.
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Remark 3.16.
(i) Every subspace W C V contains the 0 and the inverse elements.
(ii) Let W C V be a subspace. Then
n
Ve, -,z €W, ag, - ,a, € K: Zakxk eWw
k=1
Furthermore, M C W =— span M C W.
(ili) M C V is a subspace if and only of span M = M.
(iv) Let I be an index set, and W; C V subspaces. Then
M
i€l
is also a subspace
(v) The previous doesn’t hold for unions.

(vi) Let M C V:
span M = ﬂ %4
W DM subspace of V'

3.2 DMatrices and Gaussian elimination

Definition 3.17. Let a;; € K, with i € {1,--- ,n}, j € {1,--- ,m}. Then

ailp a2 - A1m
az1 a2 - a2m
anl1 Aanp2 - Qpm

is called an n x m-matrix. (n,m) is said to be the dimension of the matrix.
An alternative notation is

A= (aij) e Knxm

K™*™ is the space of all n x m-matrices. The following operations are defined
for A, B € K™™, C e K™
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(i) Addition

ain +bir o arm + b
A+ B = :
an1 + bnl crr o Opm t bnm
(ii) Scalar multiplication
aapy e Qi
a-A=
[0707%%} e AApm,
(iii) Matrix multiplication
aji1ci1 +ai2c21 + -+ AimCm1 -+ Q11C1 + A12C2 + - -+ A1mCnl
AC = : :
Ap1Cl1 + ap2C21 + -+ ApmCm1  *++  AplCil + Ap2C2) + ++ + + ApmCmi

or in shorthand notation
m
(AC)Z] = Zaikckj
k=1

(iv) Transposition

The transposed matrix AT € K™*" is created by writing the rows of
A as the columns of AT (and vice versa).

(v) Conjugate transposition
AT — @)
Remark 3.18.
(i) K™ (for n,m € N) is a vector space.
(ii) A- B is only defined if A has as many columns as B has rows.
(iii) K™*! and K'*" can be trivially identified with K".
)

(iv) Let A, B,C, D, E matrices of fitting dimensions and o € K. Then

(A+ B)C = AC + BC
A(B+C)=AB+ AC
A(CE) = (AC)E
a(AC) = (aA)C = A(aC)
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(A+ BT = A" + BT (A+B)=4+B
(aA)T = a(A4)" (ad) = A4
(A0)T =T . AT (AC) =CA

Proof of associativity. Let A € K™ C € K™*! E € K*P. Further-
more let i € {1,--- ,n},j€{1,--- ,p}.

H
MN

(AC)irEyj = Z Zazkckk " Ckj

k=1 —

Z “Ck " Ckj
=1
l (3.19)
(Z kkekj>
k=1

>
=~ |l
—_

b

I

—_
T

|
IME

I
-

= Zaﬁ} ’ (CE)l}j
k=1
= (A(CE))y;
— A(CE) = A(CE) (3.20)
]

(v) Matrix multiplication is NOT commutative. First off, AB and BA are
only well defined when A € K"*™ and B € K™*". Example:

0 1) (0 0 _ (1 0)_, (0 0y (0 1)_ (00
0 0/\1 0/ \0 O 1 0/\0 0/ \0 1
(vi) Let n,m € N. There exists exactly one neutral additive element in

K™*™ " which is the zero matrix. Multiplication with the zero matrix
yields a zero matrix.

(vii) We define
1, 1=

5ij = -
" {0 else

The respective matrix I = (d;;) € K"*"™ is called the identity matrix.
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(viii) A # 0 and B # 0 can still result in AB = 0:

0 1\° /(00

0 0/ \0 O
Ezample 3.19 (Linear equation system). Consider the following linear equa-
tion system

a1121 + ajpx2 + -+ + a1 Ty; = b1

9121 + a22xo + -+ + A2mTm = bo

Ap1T1 + Ap2T2 + -+ + ApmTm = by,

This can be rewritten using matrices
aiy - Gim Ty b1
A= 0 r=|: b=
Gpl - Gnpm Tm by,
Which results in
Az =B, AeK™" zeK™! beK™!
Such an equation system is called homogeneous if b = 0.

Theorem 3.20. Let A € K"™*™ b € K". The solution set of the homoge-
neous equation system Ax = 0, (that means {x € K™ | Az =0} C K™) is
a linear subspace. If x and T are solutions of the inhomogeneous system
Ax = b, then x — I solves the corresponding homogeneous problem.

Proof. A-0 =0 shows that Ax = 0 has a solution. Let z,y be solutions, i.e.
Ax =0 and Ay = 0. Then Va € K:

Az + ay) = Az + A(ay) = Az +a( Ay ) =0 (3.21)

0 ;

0
= z+ay € {reK"|Ax =0} (3.22)

Next, let z, % be solutions of Az = b, i.e.
Az =b, AT=5b (3.23)
Then

Alx —Z)=Az—Az=b—-b=0 (3.24)

Therefore, © — Z is the solution of the homogeneous equation system O
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Remark 3.21 (Finding all solutions). First find a basis eq,-- - , ey of
{zr e K" | Az = 0}

Next find some zg € K™ such that Axzg = b. Then every solution of Ax = b
can be written as
r=x9+ are; + -+ ageg

Ezample 3.22. Let

1200 1 1 3
0010 0 9 9
A=100 01 -1 b=13 =11
0000 0 4 0

Then Ax = b has no solution, since the fourth row would state 0 = 4.
However, Az = ¢ has the particular solution

8
I
SR =)

If we consider the homogeneous problem Ay = 0, we can come up with the
solution

-2 -1

1 0
y=10 ly2+1 0 |ys

0 1

0 1

and in turn find the set of solutions

{y e K5 ‘ Ay =0} = span {(-2, 1,0, 0,0)7,(~1,0,0,1, I)T}

{z eK®| Az = ¢} ={(3,0,2,1,0)" + a(-2,1,0,0,0)" + 3(~1,0,0,1,1)" }
Definition 3.23 (Row Echelon Form). A zero row is a row in a matrix
containing only zeros. The first element of a row that isn’t zero is called the

pivot.
A matrix in row echelon form must meet the following conditions

(i) Every zero row is at the bottom
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(ii) The pivot of a row is always strictly to the right of the pivot of the
row above it

A matrix in reduced row echelon form must additionally meet the fol-
lowing conditions

(i) All pivots are 1
(ii) The pivot is the only non-zero element of its column

Remark 3.24. Let A € K*™ and b € K. If A is in reduced row echelon
form, then Ax = b can be solved through trivial rearranging.

Definition 3.25 (Matrix row operations). Let A be a matrix. Then the
following are row operations

(i) Swapping of rows i and j

(ii) Addition of row i to row j

(iii) Multiplication of a row by A # 0

(iv) Addition of row ¢ multiplied by lambda to row j

Theorem 3.26 (Gaussian Elimination). Every matriz can be converted into
reduced row echelon form in finitely many row operations.

Heuristic Proof. If A is a zero matrix the proof is trivial. But if it isn’t:
e Find the first column containing a non-zero element.
— Swap rows such that this element is in the first row

e Multiply every other row with multiples of the first row, such that all
other entries in that column disappear.

e Repeat, but ignore the first row this time
At the end of this the matrix will be in reduced row echelon form. O

Definition 3.27. A € K"*™ is called invertible if there exists a multiplica-
tive inverse. l.e.

dBeK"™": AB=BA=1

We denote the multiplicative inverse as A~!
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Remark 3.28. We have seen matrices A # 0 such that A2 = 0. Such a
matrix is not invertible.

Theorem 3.29. Let A, B,C € K", B invertible and A = BC. Then
A invertible <= C invertible

Especially, the product of invertible matrices is invertible.
Proof. Without proof. O

Remark 3.30. Matrix multiplication with A from the left doesn’t "mix” the
columns of matrix B

Theorem 3.31. Let A be a matriz, and let A be the result of row operations
applied to A. Then .
T invertible: A=TA

We say: The left multiplication with T applies the row operations.

Heuristic proof. You can find invertible matrices 11, - - - , T}, that each apply
one row operation. Then we can see that
A=T,Tp_1---T1 A (3.25)
N————
T

Since T is the product of invertible matrices, it must itself be invertible. [

Corollary 3.32. Let A € K™ b e K", T € K*™*™, Then Az = b and
TAx = Tb have the same solution sets.

Proof. If Ax = b it is trivial that

Ar=b = TAxz =1Tb (3.26)

If TAx =Tb, then
Ar =T 'TAz =T 'Tb=0b (3.27)
O

Lemma 3.33. Let A € field™ ™ be in row echelon form. Then
A invertible <= The last row is not a zero row

and
A invertible <= All diagonal entries are non-zero
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Proof. Let A be invertible with a zero-row as its last row. Then
0,---,0,1)- A= (0,---,0,0) (3.28)

Multiplying with A~! from the right would result in a contradiction. There-
fore the last row of A can’t be a zero row.

Now let the diagonal entries of A be non-zero. This means we can use
row operations to transform A into the identity matrix, i.e.

37 invertible: TA=1 — A=T""1 (3.29)
O

Corollary 3.34. Let A € K"*™. Then
A invertible <= Fuvery row echelon form has non-zero diagonal entries
and
A invertible <= The reduced row echelon form is the identity matriz

Proof. Every row echelon form of A has the form T'A with T an invertible
matrix. Especially, 35 invertible such that SA is in reduced row echelon
form. Then

T A invertible <= A invertible (3.30)

O]

Remark 3.35. Let A € K™ be invertible, B € K"*™. Qur goal is to
compute A~!B. First, write (A|B). Now apply row operations until we
reach the form (I|B). Let S be the matrix realising these operations, i.e.
SA =1. Then B =SB = A 'B. If B = I this can be used to compute
AL

Example 3.36. Let

s
Il
S O =
O =
==

Rewrite this as

1 1 1|1 00
01 1{0 10
00 110 01
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Turn this into

1 1 0|1 0 -1
01 0/0 1 -1
00 10 0 1
And finally
10 0|1 -1 O
01 0(0 1 -1
00 1(0 0 1
The right part of the above matrix is A~1.
Definition 3.37. Let A € K®*™ and let z1,-- - , 2z, € KI*™ be the rows of
A. The row space of A is defined as
span {21, -+, 2n}

The dimension of the row space is the row rank of the matrix. Analogously
this works for the column space and the column rank. Later we will be able
to show that row rank and column rank are always equal. They’re therefore
simply called rank of the matrix.

Theorem 3.38. The row operations don’t effect the row space.

Proof. 1t is obvious that multiplication with A\ and swapping of rows don’t
change the row space. Furthermore it is clear that every linear combination
of z1 + 29,29, -+, 2z, is also a linear combination of 21, 29, - , 2z,, and vice
versa. ]

Theorem 3.39. Let A be in row echelon form. Then the non-zero rows of
the matriz are a basis of the row space of the matriz.

Proof. Let z1,---, 2z, € K™ be the non-zero rows of A. They create the

space span{z1,- -, 2z}, since zx, - - - z, are only zero rows. Analogously,
a1z1 +agzo+ -+ apzp =0 (3.31)

Let j be the index of the column of the pivot of z;. Then z3,--- , 2z, have

zero entries in the j-th column. Therefore
a1 Zi5 =0 = a; =0 (3.32)
~—
#0

By inductivity, this holds for every row. O
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Remark 3.40. (i) To compute the rank of A, bring A into row echelon
form and count the non-zero rows.

(ii) Let vy, -, vy € K™ To find a basis for
span {vy, -+ Uy }

write vi,--- , U, as rows of a matrix and bring it into row echelon
form.

3.3 The Determinant

In this section we always define A € K®*™ and 21, - , 2, the row vectors of
A. We declare the mapping

det : K"*" — K

and define
det(A) := det(z1, 22,...,2n)

Definition 3.41. There exists exactly one mapping det such that

(i) It is linear in the first row, i.e.

det(z1 + A\21, 22, -+ , zn) = det(z1, 22, -+ , 2n) + Adet(21, 22, -+, 2p)
(ii) If A is obtained from A by swapping two rows
det(A) = —det (A)

(i) det(I) = 1

This mapping is called the determinant, and we write

ail -+ GlIn
det A =
an1 - Qnn
Ezample 3.42.
a1 aiz| _
= Q11022 — 421012
a21 @22

ail a2 a3
a1 G2 a23| =a11022033 + @12G23031 + 413021032
aszy as2 ass

— (31022013 — (32023011 — 433021012
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Remark 3.43.

(i) Every determinant is linear in every row

(ii) If two rows are equal then det(A) =0

67

(iii) If one row (w.l.o.g. z1) is a linear combination of the others, so

Z1 = Qozg + Qi3z3 + - -

then

det(z1, 29, - - -

+ apzn, Q1, - ,0n c K
,2n) =g det(ze, 29,23, , 2pn) +
0
agdet(z3, 22,23, + , 2n) +
0
oy, det(zp, 22, 23, + 4 2n)
0
=0

(iv) Adding a multiple of a row to another doesn’t change the determinant

(v) Define
iy
M;(N)
Lij(\)
Then

swaps rows ¢ and j
multiplies row ¢ with A # 0

adds A-times row j to row i

det(Tj;A) = — det(A)
det(Lij(\)A) = det(A)

det(M;(\)A) = Adet(A)

Lemma 3.44. Let det be the determinent, and A, B € K<™,

row echelon form, then

det(AB) =ai1 a2 ----

Any - det(B)

Let A be in
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Proof. First consider the case of A not being invertible. This means that
the last row of A is a zero row, which in turn means that det(A) = 0. This
also means that the last row of AB is a zero row and therefore det(AB) = 0.
Now let A be invertible. This means that all the diagonal entries are
non-zero. It is possible to bring A into diagonal form without changing the
diagonal entries themselves. So, w.l.o.g. let A be in diagonal form:

A= M,(apy) -+ Ma(age)Mi(a11)] (3.33)
and thus
det(AB) = det(M,(any) -+ - Ms(az2)Mi(a11)B) (3.34)
=app - azs - app det(B)
O
Remark 3.45. For B = I this results in
det(A) = ajjag - ann
Theorem 3.46. Let A, B € K"*™. Then
det AB =det A-det B
Proof. Let i,j € {1,--- ,n} and XA # 0. Then
det(T;jAB) = — det(AB) (3.35a)
det(L;j(A)AB) = det(AB) (3.35b)

Bring A with Tj; and L;;(\) operations into row echelon form. Then

det(AB) = 11022 Qpp ° det(B) (336)

and therefore
det(AB) =det A-det B (3.37)
O

Corollary 3.47.

A € K™ invertible <= det A #0
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Proof. Row operations don’t effect the invertibility or the determinant (ex-
cept for the sign) of a matrix. Therefore we can limit ourselves to matrices
in row echelon form (w.l.o.g.). Let A be in row echelon form, then

detA;éO < a11a22-~-am7é0
< an #0,a22 #0,- -+ ,app #0 (3.38)

<= A invertible since diagonal entries are non-zero

O
Theorem 3.48.
det A = det AT
Proof. First consider the explicit representation of row operations:
7 7
1
i 0 1
T;; = 1 (3.39a)
j 1 0
1
J
1
i 1 A
Lij(\) = 1 (3.39b)
1
1
Thus we can see
det(T;;) = det(T}5) = -1 (3.40a)
det(L;j(\) = det(Li;(N)') =1 (3.40D)
Let T be one of those matrices. Then
det((TA)T) = det(AT - TT)
=det AT - det TT (3.41)

=det AT - det T

and
detTA=detA -detT (3.42)
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And therefore
det((TA)") = det(T4) < det AT =det 4 (3.43)

Now w.l.o.g. let A be in row echelon form. Let A be non-invertible, i.e.
the last row is a zero row. Thus det A = 0. This implies that A” has a
zero column. Row operations that bring A” into row echelon form (w.l.0.g.)
perserve this zero column. Therefore the resulting matrix must also have a
zero column, and thus det (AT) =0.

Now assume A is invertible, and use row operations to bring A into a
diagonalised form (w.l.o.g.). For diagonalised matrices we know that

A= AT — det A =det AT (3.44)
O

Remark 3.49. Let A;; be the matrix you get by removing the i-th row and
the j-th column from A.

det A = Z(—l)i+j Qg det(Aij), Jje {1, s ,n}
i=1

Remark 3.50 (Leibniz formula). Let n € N, and let there be a bijective

mapping
o:{l,---,n} —{1,---,n}

o is a permutation. The set of all permutations is labeled .S,,, and it contains

n! elements. Then .
det A = Z sgn(o) H @i o (i)
gESy i=1

A permutation that swaps exactly two elements is called elementary per-
mutation. Every permutation can be written as a number of consecutively
executed elementary permutations.

sgn(o) = (-1)"

where ¢ is the permutation in question and k is the number of elementary
permutations it consists of.
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3.4 Scalar Product

In this section V' will always denote a vector space and K a field (either R
or C).

Definition 3.51. A scalar product is a mapping
(]):VxV-—K
that fulfils the following conditions: Vui,ve, wi,we € V, A €K

Linearity vi|wy + Awg) = (wr|wy) + A (v1|ws)

vi|wy) = (wi|vy)

(
Conjugated symmetry (
Positivity (vi1lv1) >0

(
(

Definedness vilvg) =0 = v1 =0

Conjugated linearity v1 + Ag|wy) = (v1|w) + A (va|w)

The mapping

Il : vV —K

v — +/(v|v)

Ezample 3.52. On R" the following is a scalar product

n
<(IL‘1,$2,"‘ 7xn)T|(y17y27'” 7yn)T> = Z$kyk
k=1

The norm is then equivalent to the Pythagorean theorem

”U‘|=\/W:\/x%+x%+...+x%

Analogously for C"

3

<(u1,uz,--' 7un)T‘(U17’U27"' ’vn)T> = kVk

Remark 3.53. e The length of v € V' is ||v]]

e The distance between elements v,w € V is ||[v — w||
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(v]w)

e The angle ¢ between v,w € V is cos ¢ = ol Tl

Theorem 3.54. Let v,w € V. Then

Cauchy-Schwarz-Inequality | (v|w) | < ||v]|||wl]]
Triangle Inequality lv 4wl < |v] + |Jwl|

Proof. For A € K we know that

0 < (v—2Awlv—Aw) = (v —Awlv) — A (v — Aw|w)
= (ofo) = X (wlo) — A (vlu) + AX, (wlw)
A2

Let \ = mﬂ}g Then

W w|v w\|v 2
o (10~ o b+
ol — \<wrv [l | | (wport?
% I /K I?
]

Through the monotony of the square root this implies that

0 < Jlul? lw]®

| (wlo) | < Jlvllllwl]
To prove the triangle inequality, consider

Hv—i—wH2 (v + wlv + w)
= (v|v) + (vw) + (wlv) + (w|w)
~—— ——  N——
[lo)l® (v]w) [[w]?
< |lv[I* + 2 Re (v|w) + [[w]®
< [0l + 2l lw]| + [[w]f?
= ([[o]l + [Jw]])?

Using the same argument as above, this implies

lo +wl| < [l + [lwl]

72

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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Definition 3.55. v, w € V are called orthogonal if
(v|w) =0

The elements vy, --- ,v,, € V are called an orthogonal set if they are non-
zero and they are pairwise orthogonal. I.e.

Vi,j € {1,---,m}: (vilvj) =0

If ||vi|]| = 1, then the v; are called an orthonormal set. If their span is V'
they are an orthonormal basis.

Theorem 3.56. If vy,--- ,v, are an orthonormal set, they are linearly in-
dependent.
Proof. Let ay,--- ,ay € K, such that
0=a1v] + agvs + - - - + anvn, (3.50)
Then
0 = (vi|0) = (vi|arv1 + a2va + - + A vy)
= a1 (vi|v1) + ag (viva) + -+ - + ay, (Vilvg) (3.51)
= <U2‘|’Ui> (S {17 T ,TL}

Since v; is not a zero vector, (v;|v;) # 0, and thus a;; = 0. Since i is arbitrary,
the v; are linearly independent. O

Ezample 3.57. (i) The canonical basis in R™ is an orthonormal basis re-
garding the canonical scalar product.

(ii) Let ¢ € R. Then
) )"

v1 = (cos ¢, sin ¢ vy = (—sin ¢, cos ¢

are an orthonormal basis for R2

Theorem 3.58. Let vi,---,v, be an orthonormal basis of V. Then for
veV:

n

v = Z (vilv) v;

=1
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Proof. Since vy,--- ,v, is a basis,
n
daq, - ,a, € K: v= E ;Y
i=1

And therefore, for j € {1,--- ,n}

n

(lv) =Y i (vjlvi) = o (vj]vg)
llvl"=1

74

(3.52)

(3.53)

O

Theorem 3.59. Let A € K™ ™ and (-|-) the canonical scalar product on

K". Then
(v|Aw) = <AH'U‘w>

Proof. First consider
n n
(Aw); = Z Ajjw; (3.54a) (Afw); = ZAjiUi
=1 i=1
Now we can compute

n n

3

<v|Aw> = ZQTZ(A’LU)Z = vy - Aijwj = i ZAijFiwj

i=1 i=1 j=1 i=1 j=1
n n n n

= E E A’L]’ITZ‘ w; = E Aij’l)i wj
Jj=1 \i=l j=1 \i=1

=Y (Afv); - w;
j=1

(A

Definition 3.60. A matrix A € R™*" is called orthogonal if
ATA=AAT =1

or

AT =471

(3.54b)

(3.55)



3.4. SCALAR PRODUCT 75

The set of all orthogonal matrices
O(n) := {AERnxn{ATA:I}
is called the orthogonal group.
SO(n) ={A=Rnxn|ATA=Tndet A=1} C O(n)
is called the special orthogonal group.6

Ezample 3.61. Let ¢ € [0, 27|, then
A— cos¢p —sing
~ \sing cos¢
is orthogonal.

Remark 3.62. (i) Let A, B € K"*" then
AB=1 — BA=1
(1)
1=det] =det ATA=det AT - det A = det’A

(iii) The i-j-component of AT A is equal to the canonical scalar product of
the i-th row of A7 and the j-th column of A. Since the rows of AT
are the columns of A, we can conclude that

A orthogonal <= (ri|rj) = d;;

where the r; are the columns of A. In this case, the r; are an orthonor-
mal basis on R". This works analogously for the rows.

(iv) Let A be orthogonal, and z,y € R"
(Az|Ay) = (AT Azly) = (z[y)
|Az]| = /(Az|Az) = \/(z[x) = ||

A perserves scalar products, lengths, distances and angles. These kinds
of operations are called mirroring and rotation.
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(v) Let A, B € O(n)
(AB)' . (AB) = BTATAB=BTIB=1

This implies (AB) € O(n). It also implies I € O(n). Now consider
A € O(n). Then

(A_l)TA_lz(AT)T'AT:AAT:I

This implies A™1 € O(T). Such a structure (a set with a multiplication
operation, neutral element and multiplicative inverse) is called a group.

Ezample 3.63. O(n), SO(n), R\ {0}, C\ {0}, Gi(n) (set of invertible ma-
trices) and S, are all groups.

Definition 3.64. A matrix U € C™*" is called unitary if
vt =1=0U0"

We also introduce
{UECnxn’UHU:I}

the unitary group, and
{UeCnxn|UTU=1InNdetU =1}

the special unitary group.

3.5 Eigenvalue problems

Definition 3.65. Let A € K"*™. Then A € K is called an eigenvalue of A,
if
FeK", v£0: Av=) v

Such a vector v is called eigenvector. We call
{ve K" | Av = \v} =: E)
eigenspace belonging to A.

Ezample 3.66. Let

b
Il
o o
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Then
1 2 1
A- [0l =]0]=2-10
0 0 0
1 1 1
A-|-1])=|-1]=1-|-1
0 0 0
1 1 1
A =|0]=1-10
1 1 1
The eigenspaces are
1
Es=<k-{0 kE€R
0
1 1 1 1
Fi=<¢k-|-1]+p-10] |k, peR ) =span —-11,10
0 1 0 1

Remark 3.67. The eigenspace to an eigenvalue A is a linear subspace.
Remark 3.68. We want to find A € K, v € K" such that

Av=Xv <= (A—-X)v=0
K
e nxn

If (A—AI) is invertible, then v = 0. So the interesting case is when (A — A1)
not invertible.

(A — AI) not invertible <= det(A — \I) =0

This determinant is called the characteristic polynomial. This polynomial
has degree n, and the eigenvalues are the roots of that polynomial. So let A
be an eigenvalue of A, then

(A= XHv=0

is a linear equation system for the components of v.

Example 3.69. Let
_ 0 1 2%2
A= <_1 0> eC
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The characteristic polynomial is

-2 1

det(A — \I) = ‘_1 I\

' =N+1
Its roots are

AL =1 Ay = —1i

To find the eigenvector belonging to A1, we declare v; = (z,y) € C? and
solve the linear equation system

(A—)\ll)vl =0 —iz+1y =20
—lz—iwy =0

It has the solutions x = —¢ and y = 1, so

a=(3)
== (1)

It is to be noted that the eigenvectors aren’t unique (multiples of eigenvectors
are also eigenvectors).

Doing the same for vy yields

Ezample 3.70. Let D be a diagonal matrix, with the diagonal entries A;.
Then

AL — A
A2 — A
det(D — \I) =
An — A

The roots (eigenvalues) are A1, A2, -, Ay, and the eigenvectors are De; =
/\iei.

Definition 3.71. A € K™*" is called diagonalizable if there exists a basis
of K™ that consists of eigenvectors.

Theorem 3.72. A matriz A € K"*" is diagonalizable, if and only if there
exists a diagonal matriz D and a invertible matrix T such that

D=T'AT
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Proof. Let eq, ez, - ,e, be the canonical basis of K". Define TDT~! = A,
and let Ay, -, A\, be the diagonal entries of D. Then we know that
De; = Njej, Vie{l,---n} (3.56)
Since T is invertible, the T'eq, - - - T'e,, form a basis.
A(Te;) = T(T ' AT)e; = TDe; = Thie; = \i(Te;) (3.57)

Therefore T'e; is an eigenvector of A to the eigenvalue A;. Now let vy, -+, v,
be a basis of K" and

Av; = >\i'Ui7 A1, ,)\n e K" (3.58)
Write write vy, - , v, as the columns of a matrix, therefore
T = (v1,v2,- -+ ,Up) (3.59a)
A1
D= : (3.59Db)
An
So Te; = v;, and thus

This means that (AT —TD)e; =0, Vi € {1,--- ,n}.
— AT =TD (3.61)
T is invertible (left as an exercise for the reader), and thus

— T 'AT =D (3.62)

Ezample 3.73. (i) Let

=(4)

The eigenvalues and eigenvectors are
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() =) () ==0)

Therefore

which has the inverse

Finally,

1/4i 1\(1 1 1/(2i 0 i 0
—1 _ = — —
AT =5 <—i 1> (z —i> 2 <0 —2i> (0 —i)

This is a diagonal matrix, therefore A is diagonalizable.

b o)

is not diagonalizable since its only eigenvector is (1,0)%.

(ii) The matrix

Remark 3.74. For diagonal matrices the following is true
k

A2 Ak

A1

A3 PY
If T='AT = D (where D is a diagonal matrix), then

DF = (T7'ATY =T YAT - T AT - ... = T AFT

k times

— AF =TDpkFr1

Theorem 3.75. Let A € R™™ be a symmetric matriz, i.e. A= AT. (Or
if A€ C™" q self-adjoint matrizv A = A ). Then A has an orthonormal
basis consisting of eigenvectors and is diagonalizable.
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Proof. Let A € C be an eigenvalue of A € K"*" with eigenvector v € K"
and A = A, Then

A (v|v) = (v|Aw) = (v]|Av) = <AHU‘U> = (Av|v) = (wv) = X (v|v)  (3.63)

Therefore B
(A=A) (v|v)y =0 (3.64)
——
0
= A=A =0= A=) = McR (3.65)

Now let A, p € R be eigenvalues to the eigenvectors v, w, and require A # p.
Then

p (vlw) = (v] Aw) = (Avfuw) = X (v]w) = A (vlw) (3.66)
And thus
(p=AN)@Ww)=0 = v Lw (3.67)
S——
0 =0

O]



Chapter 4

Real Analysis: Part II

82



4.1. LIMITS AND FUNCTIONS 83

4.1 Limits and Functions

In this chapter we will introduce the notation
B (z) =(x —€,x+¢€)

Definition 4.1. Let D C R and = € R. z is called a boundary point of D
if
Ve>0: DNB(x)#0

The set of all boundary points of D is called closure and is denoted as D.

Ezample 4.2. (i) x € D is always a boundary point of D, because

x € DN B(x)

(ii) Boundary points don’t have to be elements of D. If D = (0,1), then
0 and 1 are boundary points, because

€ (0,1) N Bc(0) = (—€,€) Ye>0

N

(iii) Let D = Q. Every = € R is a boundary point, because Ve > 0, B¢(z)
contains at least one rational number. I.e. Q = R.

Remark 4.3. If x is a boundary point, then
Ve>03dyeD: |z—y|<e
If = is not a boundary point, then
Je>0VyeD: |[x—y|>e€
Theorem 4.4.
x € R is a boundary point of D C R <= 3(x,) C D such that x,, — x

Proof. Let x be a boundary point of D. Then

1 1
VnENﬂanDﬂ<x—,x+) (4.1)
n n

The resulting sequence (x,) is in D, and

1
|z — xp| < - (4.2)
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holds. Therefore, x,, converges to x. Now let (z,) C D, with x,, — x. This
means

Ve>03INeN: |z—zn|<e (4.3)

Then
N € DN Be(x) (4.4)
Since € is arbitrary, x is a boundary point of D. O

Definition 4.5. Let D C R and f: D — R. Let ¢ be a boundary point of
D. We say that f converges to y € R for x — z¢ and write

lim f(z) =y

T—T0
if
Ve>030>0: |[z—xo|<d = |f(z)— fly)] <e

Remark 4.6. This definition only makes sense for boundary points g of D.
The most imoprtant case is

D = (xo—a,zo+a)\{zo}
Ezample 4.7. (i) Let a € R

fR—R
T — azr

Consider a # 0: Let € > 0. We want that

!
|f(x) — 0] = |a||z] <€
Choose § = ﬁ Then we have

€

2] =z 0] <0 = |f(z) = 0] = al|z| < |ald = |al €

lal
Therefore
lim f(z) =0
z—0
(ii) Consider
fiR—R

1, x>0
T +—
-1, <0
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f doesn’t converge for x — 0. Assume y € R is the limit of = at 0.
This means that there is a 6 > 0 such that
lf(x)—y| <1lif|z|=]z—-0]<d
Then, for any x € (0,0) we have

2=[f(z) = f(=2)[ < |f(z) —y|+ |y — f(=2)| <2
—— N——

<1 <1

which is a contradiction.

Theorem 4.8. Let f : D — R, x¢ a boundary point of D and y € R. Then

lim f(z) =y <= VY (x,) C D with x, — x0: ILm f(zn) = x0

Proof. Assume that lim,_,,, f(z) and that there is (z,) C D converging to
z. Let € > 0, then

0>0: |z—29|<d = |f(z)—y|<e (4.5)
Since x, — g, we know that
ANeNVn>N: |z,—x0| <6 (4.6)
For such n, the epsilon criterion |f(z,) — y| < € also holds, and thus
flan) =y (4.7)

Now to prove the ” <=7 direction, assume that lim,_,,, f(z) # v, i.e.
Je>0Vi>03TreD: |x—xo| <IN|f(x)—y|>¢€ (4.8)
Choose Vx € N one z,, such that
(n — 70| < % but | f(zn) —y| > € (4.9)
Then z,, — xg, but |f(z,) —y| > e Vn €N, so
Jim f(zn) #y (4.10)

This indirectly proves ” <= ". O
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Ezample 4.9. Consider D = R C {0}, we want to prove

1
lim =1
z—01—2x
So let (z,,) C D with z,, — 0. Then
1 n—o00
—1
1—=x,
= lim =1
=01 —2x

However, the limit lim,_,1 doesn’t exist. Let x,, = %+ 1 with x,, — 1. Then

1 n—00
— g =N —— -0
1—(;+1)

This doesn’t converge, thus there is no limit.

Corollary 4.10. Let f,g: D — R, x¢ a boundary point and y,z € R such
that

Jim f(z) =y Aim g(z) =z
Then
A (f(z) +g(2)) =y +2
Jim (f(2) - g(@)) =y -z
If  #0, then
Jim (1) =2

Proof. Here we will only prove the last statement. Let lim, ,,, = 2z # 0.
Then
30 > 0 Vo € Bs(zo) : |g(z) — 2| < |2| (4.11)

g doesn’t have any roots on Bs(xg). Let (z,) C D N Bs(xp) converge to xg.
According to prerequisites, we have
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nl;r{:o flzn) =y (4.12a) nl;rglo g(xn) =2#0 (4.12b)
Thus
T (U N N (O (4.13)
o) 2 T A g(a) 2

O]

Corollary 4.11 (Squeeze Theorem). Let f,g,h: D — R and x a boundary
point of D. If fory € R

T T—T0
and
f(x) <g(x) < h(z) Ve Be(xg)
then
Jim g(z) =y

Ezample 4.12. Consider exp(z). We already know that
1+x <exp(z) VxeR

This also implies that

1
11—z <exp(—z)= P (@) Ve e R

So
1

1—=x

142 <exp(x) <

The limits of these terms are

z—0 z—=0\1—2x

1
lim(14+2)=1 lim( ):1

And using the squeeze theorem this results in

lim exp(0) =1

z—0

Definition 4.13. Let f: D — R and zg a boundary point of D. We say f
diverges to infinity for x — xg and write

g, (@) = oo

if
VK € (0,00) 30 >0: |z —ax0|<d = f(x) > K
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Definition 4.14. Let D C R be unbounded above. We say f converges for
x — 00 to y € R and write

lim f(z) =y
if
Ve >0 3K € (0,00) Vo > K : |f(x) —y| <e

Remark 4.15. Let f: D — C and xg a boundary point of D. Then

lim f(z)=yeC

= lim Re(f(x)) = Re(y) A lim Tm(f(2)) = Tm(y)

<~ lim |f(z)—y|=0
T—T0

Definition 4.16. Let D C K, f : D — K and 9 € D. f is called
continuous in xq if

Ve>030>0: |z—x0| <0 = |f(z) — f(zo)] <€

If f is continuous in every point of D, we call f continuous.
f is called Lipschitz continuous if

AL € (0,00) Va,y € D [f(z) — f(y)| < Llz — |
L is called Lipschitz constant
Remark 4.17. Let f: D - K

f is continuous in g € D <= lim f(z) = f(=0)
T—TQ

Ezample 4.18. We want to show that

f:R—R

{L‘l—)ﬂf2

is continuous. To do that, let g € R, € > 0. We want

!
|f () = f(wo)| = |2* — 2§| = |z — wollz + zo| < €

So we choose

€
d=min<l,—— >0
{ 2W0+1}
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Then for every x with |z — 2| <

[f(x) = f(@o)| = & = woll + x| < d(|2[ + [xo) < d(|zo] + & + |z0])

S5(2‘(L‘0’+1) < 2‘%0‘—1—1)26

= (
2|zo| + 1
Theorem 4.19. FEvery Lipschitz continuous function is continuous

Proof. Let f : D — K be a Lipschitz continuous function with Lipschitz
constant L > 0. Le.

Ve,ye D |f(z) = f(y)l < Lz -yl (4.14)
Let o € R and € > 0. Choose 6 = . Then |z — 20| < § implies
F(@) — flao)l < Llz — o] <L-6=e (4.15)
O
Ezample 4.20. (i) Consider the constant function z — ¢, ¢ € K.
[f(@) = f)l=le—c=0<1-[x—y|
(ii) Consider the linear function x — cx, ¢ € K.
[f(z) = f()| = ez — cy| = e[|z — y]
These two functions are Lipschitz continuous, and therefore continuous.
(iii) Consider x — Re(x). Then
[Re(z) — Re(y)| = |Re(z — y)| < |z —y|

Analogously this works for Im(z). Both of those are Lipschitz contin-
uous.

(iv) Lipschitz continuity depends on D. E.g.

f:00,1] — R

[EI—)IL’2

is Lipschitz continuous:

If(x) = fW)l =z —yllz+yl <2 |z —y
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However,

g:R— R

r— 2°
is NOT Lipschitz continuous, because

1) —
oo+ 1) gl e
(n+1)—n

Remark 4.21. Let f: D — K.

f is continuous in zg € D
—
V(zn) C D with z, — z9: lim f(z,) = f(x0)
n—oo

90

If f, g are continuous in xg, then f + g and f - g are also continuous in g,
and if g(xg) # 0 then f/g is also continuous in xg. Notably, polynomials
are continuous. A rational function (the quotient of two polynomials) is

continuous in all points that are not roots of the denominator.

Theorem 4.22. Let D C K, and let

f: D — K continuous in xg € D
g: f(D) — K continuous in f(xq)

Then g o f is also continuous in xg.

Proof. Let € > 0. Since g is continuous in f(xg),
301 >0: |y — flzo)|l <01 = lg(y) — 9(f(x0))| <€
Since f is continuous in xg,
92 >0: |z —x0| <02 = |f(x) — f(mo)| < &1
For such x the following holds

(g 0 f)(2) = (g0 f)(wo)| = lg(f(x)) = g(f(w0))| <€

which implies that g o f is continuous in x.

(4.16a)
(4.16b)

(4.17)

(4.18)

(4.19)
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Ezxample 4.23. Consider the following mappings
f:R— R, z+— ||

1_
1— x|
1+ |z

It is clear that h = gof. Since f, g are continuous, h must also be continuous.

h:R— R, z+—

Example 4.24. The functions exp, sin and cos are continuous. We know that

lim exp(k) — 1 _

1
h—0 h

From this follows that

lim exp(k) = exp(0) = 0
h—0

Thus, exp is continuous in 0. Let zg € R, then
li = li h) = li h
Jim exp(w) = lim exp(zo + h) = lim exp(zo) exp(h)
= exp(xo) — lim exp(h) = exp{xo}
h—0

Now, consider the function x — exp(iz). For g € R

| exp(i(xo + h)) —exp(iho)| = | exp(izo)| | exp(ih) — 1
— —

exp(izo)exp(ih) 1
= (ih)* = <m>k‘
<1 1=
k=0 k! k=1 k!
o | (ih)*
<2
k=1
RSN
_ZW_ZW_l_eXp“hD_l
k=1 k=0

For h — 0, the absolute function converges |h| — 0, and therefore
lim h0| exp(i(zo + h)) — exp(iz)| =0
due to the squeeze theorem. lLe., x — exp(ix) is also continuous. Thus
cosx = Re(exp(ix)) sinz = Im(exp(ix))

are also continuous due to the concatination of continuous functions.
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Lemma 4.25. Let a,b € R with a < b, and let
f:la, b — R
be a continuous function. Furthermore, let y € R. Now if the set

{z €la,0]| f(z) =y}
18 non-empty, it has a smallest element.

Proof. Let M be non-empty. Set zp = inf {M}. Then it is to be shown that
xg € M, or that f(xg) > y. There exists a sequence (x,) C M such that
Tn — xo. Because of the continuity of f,

flxo) = f(lim 2,) = lim f(z,) >y (4.20)
holds, thus zg € M. ]

Theorem 4.26 (Extreme value theorem). Let a,b € R with a < b, and let
f :la,b] = R continuous. Then the function f attains a maximum, i.e.

Jxg € [a,b] Vz € [a,b] :  f(x) < f(zo)
Proof. First we show that f is bounded. Assume f is unbounded above, i.e.
{z €[a,b]| f(z) >n}=M,, neN (4.21)

According to the last lemma, every M,, has a smallest element x,. The
sequence (Zp)nen is monotonically increasing (M,+1 C M,,) and bounded
above by b. Thus, x, converges to some xy € [a,b]. Now consider the
sequence (f(zn))nen. By definition
lim f(z,) > lim n =00 (4.22)
n—oo n—oo
And since f is continuous, lim, s f(z,) = f(xo) must hold. This contra-
dicts the assumption, so f is bounded.
Now set

y =sup{f(z)|z € [a,b]} (4.23)

In case f is equal to y everywhere, there is nothing to show. So assume
that there are values for which f # y. According to the definition of the
supremum, the sets

{a: € [a, ) ‘ F@) >y — 1} (4.24)

n
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are non-empty for all n € N, and thus they have a smallest element x,. The
sequence (T, )nen is monotonically increasing and bounded, i.e. it converges
to xo € [a,b]. Therefore

y > f(wo) = lim f(z,) > lim y— Lo y (4.25)

n—00 n

From this follows
f(xo) =y = f(x0) upper bound of {f(x)|z € [a,b]} (4.26)
OJ

Theorem 4.27 (Intermediate value theorem). Let a,b € R with a < b, and
[ :]a,b] = R a continuous function with f(a) < f(b).

y € (f(a), f(b)) = 3Jzg € (a,b): flzo) =y
Proof. Without proof. O

Ezample 4.28. cos has in [0, 2] exactly one root. Consider the definition

B > (—1)k.%'2k
COST = Z Tk)'

k=0

We know that cos0 = 1. Furthermore we can show that

22 22 24
—1= 1—5 §cos(2)§1—§+ﬂ<0
2nd partial sum 3rd partial sum

The intermediate value theorem tells us that there exists a root in [0, 2].
Now we need to show that cos is strictly monotonically decreasing on [0, 2].
Choose z € [0,2]. Then

23

z<sinz < z— —
3!

The addition theorem tells us that
cos(x) — cos(y) = —2sin (T) sin (1‘2—y) <0

for z,y € (0,2] and = > y. Thus cos is strictly monotonically decreasing on
[0,2].
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Corollary 4.29. Let I be an interval and f : I — R continuous. Then f(I)
s also an interval.

Proof. Left as an exercise for the reader. O

Theorem 4.30. Let I be an interval, f: I — R continuous. If f is strictly
monotonically increasing, then the inverse function f=' : f(I) — I emists
and is continuous.

Heuristic Proof. f(I) is an interval, and f is injective. This is because if
f(z) = f(z), then = = Z or else f wouldn’t be strictly monotonic. This
means

Jg:fI) —R: flr)=y < gy) == (4.27)
Let yo € f(I) and € > 0. We require that z( is not a boundary point of I.
Then choose 0 < € < € such that (zo — €, xo + epsilon) € I. Choose

§ =min ¢ f(xo0 +€) — yo,yo — f(xo —€) p >0 (4.28)

>0 >0

If y € f(I) with |y — yo| < 6 then
f(zo —epsilon) < xg— 6 <y <yo+0 < flzo+¢é) (4.29)
From the strict monotony of g we can conclude
zo — epsilon < g(y) < zo + € (4.30)

19(y) — a(yo)| = 9(y) —zol < €< (4.31)

Thus, g is continuous in yy. Since yo € f(I) was chose arbitrarily, all of g is
continuous. To prove the monotony of g, assume y < g and g(y) > g(g) for
v,y € f(I). From the monotony of f we know that

y>y (4.32)
which is a contradiction, so g is strictly monotonic. O
Ezample 4.31. (i) Let n € N and consider

f:]0,00) — R
T — "



4.2. DIFFERENTIAL CALCULUS 95

f is continuous and strictly monotonically increasing. Thus the inverse
function

Y/ :]0,00) — RT

is also continuous.
(ii) Consider exp : R — R. It’s clear that exp(R) = (0, 00), so the mapping
In:(0,00) - R
is continuous and strictly monotonically increasing.

(iii) Equal arguments can be made for the trigonometric functions.

4.2 Differential Calculus

Definition 4.32. Let I be an open interval ((a,b), a < b, a,b = oo possible).
Let f: 1 —>Kand x € I. f is called differentiable in x if

Fle) — g L) =)

h—0 h

Difference quotient

exists. f’(x) is called the differential quotient, or derivative of f in z. f is
called differentiable if it is differentiable in every x.

Ezample 4.33. (i) Let f(z) = ¢ with ¢ € K be a constant function

, oy c—c:
fz) hso R 0

(ii) For n € N consider f : R — R x> 2"

f/(z) = lim —(x Hh)t - = lim Z <n> hE= k=1 = pant

h—0 h h—0 k
k=0
(iii) Consider the exponential function
h) — h)—1
f/($) _ }Lg% GXp(fE + }1 EXP(CL') _ }ILIE}% eXp(x)eXp(h) _ exp(a:)

Theorem 4.34. Let f : I — K be differentiable in x. Then f is also
continuous in x.
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Proof. Let f be continuous in x. Then
lim(f(x+h)— f(x)) =0 (4.33)
h—0
Assume f to be uncontinuous in z. This means that
Je>0V0>03he(=6,0): |f(x+h)—f(x)]>e€ (4.34)
In particular, for every n there exists an h,, € (%1, %) C {0}, such that
[f(z+hn) — fz)] = € (4.35)

hy,, is a null sequence and

[+ hn) — f(2)

M

Y > 1 =n-€— 00 (4.36)
n n
So the above term doesn’t converge, thus
flo+ h]z — @) (4.37)
Therefore, f isn’t differentiable in x. O

Remark 4.35. The inverse is not true.

Theorem 4.36. Let I be an open interval and f,g : I — K differentiable
inx €I. Then f+ g and f - g are differentiable too, and if g(x) # 0 then
f/g is also differentiable.

(f+9)(2) = f'(z) +g'(x)
(f-9)(x) = f(2)g(x) + f(2)g'(x)

(5) =307

Proof. Left as an exercise for the reader. O

Theorem 4.37 (Chain rule). Let I,J be open intervals, and let
g:J —1 f:1—K

g and f are to be differentiable in x and f(x) respectively. Then f o g is
differentiable in x and

(fog) =4g'(x) f'(g(x))
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Proof. Consider the following function

flg(x)+8)—f(9(x))
Rl s {f’@(z)i Lo ew
¢ is continuous, since f is continuous and
lim 6(€) = /'(9(x)) = 6(0) (4.39)
V¢ € J the following holds
Flg(@) +€) — flg(x)) = (6) - € (4.40)
With this we can now show that
flg(z+h) = flg@) _ flg(@)+ (g(z +h) — g(2))) — f(9(x))
" _ ¢lglz+h) - g(fﬂ))}zg(fc +h) —g(z))
= dlg(x +h) - g@)l; g(z + h;L —9(@)  (441)
— 200 @)
220 g (@) - [ (9()
]

Definition 4.38. Let I be an interval and f : I — R. xg € I is called a
global maximum if

f(@) < f(zo) Vo el
zo € I is called a local maximum if
Je>0: f(x) < f(zg) V€ (zo — €20 +¢€)
An extremum is either maximum or minimum.
Ezample 4.39. (i) Let f:[-1,1] = R, f(z) = 2%

e 19 =0 is a local and global minimum

e o = *1 is a local and global maximum
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(ii) Consider

f:R—R

T
x»—>cosa:—|—§

f has infinitely many local extrema, but no global ones!

f(z)
,\/

(iii) Consider
f:R—R

1, =z rational
:1: . .
0, « irrational

e 1o rational is a global maximum

e 1 irrational is a global minimum

Theorem 4.40. Let I be an open interval, and f : IRR a function with a
local extremum at xo € I. Then

f differentiable in xg = f'(x9) =0
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Proof. Assume f’(xg) # 0 (w.lo.g. f'(zg) > 0, otherwise consider —f).
Then

f(zo+h)— f(z)

30 >0: z — f'(z0)| < f'(wo) Vh e (=6,6)  (4.42)
Especially
B) —
o< fTot })l 1@0) e (s, 0) (4.43)
For h > 0 this means f(zo + h) > f(x0). And for h < 0 this means that
f(zo + h) < f(xg). Thus zg is not an extremum. O

Remark 4.41. Let f : I — R be differentiable. To find the extrema of f,
calculate f’ and find its roots. However, the roots are to be insepcted more
closely, as f’(x¢) = 0 is not a sufficient criterion (The function could have
inflection points or behave badly at the boundaries of ).

Theorem 4.42 (Mean value theorem). Let a,b € R with a < b, and let
f,9:[a,b] = R be differentiable. Then 3¢ € (a,b) such that

(f(b) = f(a))g'(€) = f'(€)(g(b) — g(a))

f(b)

Proof. Consider all

h(zx) = (f(b) = f(a))g(z) — f(x)(g(b) = f(a)) (4.44)

h is differentiable, which means h is continuous on |[a, b]:

h(a) = f(b)g(a) — f(a)g(b) = h(b) (4.45)
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We need to show that b’ has a root in [a,b]. If h is constant, this is trivial.
So we assume Jz € (a,b) such that h(z) > h(a). Since h is continuous on
(a,b) there exists a global maximum zy € [a,b] with z¢p # a and zy # b.
This implies that A'(z9) = 0. If h(z) < h(a) the same argument can be
made. O

Remark 4.43. This theorem is often written as

f0) = fla) _ f(§)
g(b) —gla)  g'(§)

And if g(z) =z
f0) = fla) _
)= _ ey

Corollary 4.44. Let I be an open interval and f : I — R differentiable.
Then

(I) C [0,00) <= monotonically increasing

(i) f'(I) C (0,00) = strictly monotonically increasing
(I) C (—00,0] <= monotonically decreasing

() f'(I) C (—00,0) = striuctly monotonically decreasing

Proof. We will only show the 7 = 7 direction for (i). Assume f isn’t
monotonically increasing, then Jz,y € I such that x < y but f(z) > f(y).
The mean value theorem thus states, 3¢ € (z,y) such that

y—x
All other statements are proven in the same fashion. ]

Ezample 4.45. f strictly monotonically increasing does NOT imply that
f'(I) € (0,00). Consider f(z) = a.

Corollary 4.46 (L’Hopital’s rule). Let a,b,zo € R, with a < xy < b and let
fyg: (a,b) = R be a differentiable function. We require f(xo) = g(zop) = 0.
If ¢ (x) #0 Vo eI\ {xo} and if
/
lim f(z)

a=ao g'(z)

exists, then
!/
lim L(m) = lim f(z)
A g(z) e (@)
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Proof. Between two roots of g there must be at least one root of ¢’. ILe.
g(x) #0 Vx € I\ {zo}. This means, that

Vo (aay 2, 1@ @)= f@0) _ (&) f'(a)

= = — lim 4.47
(@)~ g@ —glwn)  gE&)  Athg@
Since &, € (z, )
Ex =% g (4.48)
For the limit from the left, this implies
/
T ACORN N ) (4.49)
ws0 gl@) | +s g (@)
This argument can be made for the limit from the right as well. O

Remark 4.47. (i) For the computation of the limit it is enough to consider
fand g on (xg — d, 29 + 0) with 6 > 0.

(ii) L’Hépital’s rule also works for one-sided limits

(iii) Let f,g : (a,b) \ {zo} — R be differentiable. Then it is enough to
require

lim f(z) = lim g(z) =0

T—T0 T—T0

(iv) L’Hopital’s rule doesn’t generally apply to complex valued functions.

(v) By substituring f(z) = f (1) and g(z) = g (1) we can also use

@) _ o F@

(vi) The inverse

is NOT true.
Ezample 4.48. Consider

) 1:2 «“p»
lim —m = —
=01 — cosx 0

The functions here are

f(z) = 2? g(x) =1—cosx
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with the derivatives

f(z) =2z g (x) =sinz
However, the limit of the derivatives is still
. 2.%. “0’7
lim — = -
z—0 sin T 0

We can derive the functions again

f(x)=2 g"(z) = cosx
And thus
72
lim =2 — lim ———=2
z—0 COS T z—01 — cosx

Theorem 4.49 (Derivative of inverse functions). Let I be an open inverval,
and f : I — R differentiable with f'(I) C (0,00). Then f has a differentiable
inverse function f~1(z): f(I) = R and for y € f(I) we have
1
Y W) =
U= = FiFw)

Proof. f is strictly monotonically increasing, thus f~' exists and is contin-
uous. Let y € f(I), z:= f~!(y) and

&) =f"y+h) -y (4.50)

T

Then
z+&h) = y+h) = fle+&h)=y+h=f(x)+h  (451)

Which in turn implies

flx+&(h)) — flx)=h (4.52)
Now we have
flly+h) -y _ §(h)
h flz+&(h) — f(x)
([ fa+Eh) = F@)\ 7 ,
() e
h—0 , -1 1
@)= gy >
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Ezample 4.50. (i) Let n € N and consider

f:(0,00) — R
z— "

The derivative is f(x) = na"~1. The inverse function is

1 1 1 1
_ () — — = =G
9y) =y 9 PO~ n(gp) y
(ii) The natural logarithm. Let f(z)0expz and g(y) = Iny. Then
S S
= epn(w)

(iii) Let f(z) = 23. Then

1y YV =0
=) {\3/@ ) <0

f~1 is not differentiable in y = 0.

Definition 4.51. Let I be an open interval. f : I — R is said to be
(n+1)-times differentiable if the n-th derivative of f (f(™) is differentiable.
f is said to be infinitely differentiable (or smooth) if f is n times differ-
entiable for all n € N.
f is said to be n times continuously differentiable if the n-th derivative
£ is continuous.

Definition 4.52. Let I be an open interval, and f : I — R n times differ-
entiable in x € I. Then

n k) (g
Tnf(y)zzf @) ()

Pt k!

is called the Taylor polynomial of n-th degree at x of f.

Theorem 4.53 (Taylor’s theorem). Let I be an open interval and f : I —
R an (n + 1)-times differentiable function. Let x € I and h : I — R
differentiable. For every y € I, there exists a £ between x and y such that

(n+1)
(1) - Tutw) - 1) = Oy i) - )
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Proof. Let
g:I —R
TP~ (4.54)
t— Z i —t
k=0

Apply the mean value theorem to g and h to get

g'(&)(h(y) — h(x)) = (g(y) — g(x))W' (&) = (f(y) = Tuf(y))R'(§)  (4.55)

and thus

k! k!
k=
Telescop?ng series (4'56)
_ M n
By inserting £ we receive the desired equation. 0

Remark 4.54. (i) This is useful for when h/(£) # 0

(ii) The choice of h can yield different errors

Roy1(y,2) = f(y) — Tnf(y)

(iii) The Langrange error bound is for h(t) = (y — t)"*':
_ ) nt1
Rnyi(y,z) = m(y —x)

(iv) This theorem makes no statement about Taylor series.

Corollary 4.55. Let (a,b) C R and f : (a,b) — R a n-times continuously
differentuable function with

0=f@)=f"@) == V()

and f £ 0. If n is odd, then there is no local extremum in z. If n is even
then

F) (x) >0 = x is a local mazximum

f™M(x) <0 = x is a local minimum
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Proof. Wlo.g. f™ > 0. We will use the Taylor series with Lagrange
error bound. According to prerequisites, f( is continuous, i.e. Je > 0
such that f("(€) > 0 on (z — €,z + €). The Taylor formula tells us, that
Vy € (x —e,x +€) 3§ € (z — €, + €) such that

F (&)

n!

fy) =Taa(f(y) = fly) = fz) = (y — )" (4.57)
For n odd, f(y)— f(x) assumes positive and negative values in every neigh-
bourhood of x. If n is even then f(y) — f(z) cannot be negative, thus x is
a local minimum. O
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5.1 Metric and Normed spaces

Definition 5.1 (Metric space). A metric space (X, d) is an ordered pair
consisting of a set X and a mapping

d: X x X — [0, 0]
called metric. This mapping must fulfil the following conditions Ve, y, z € X:
e d(z,y) >0 (Positivity)
e d(z,y) =0 <= x =1y (Definedness)
o d(z,y) =d(y,z) (Symmetry)
o d(z,y) <d(x,z)+d(z,y) (Triangle inequality)
Ezample 5.2. (i) Let M be a set. Then

d(%,y) = {1’ x#y

0, else
is called the discrete metric.
(ii) Let X be the set of edges of a graph.

d(x,y) := Minimum amount of edges that have

to be passed to get from x to y

(iii) Let X be the surface of a sphere.

d(x,y) := "Bee line”
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(iv) Let X be the set of points of the European street network.

d(x,y) := Shortest route along this network

(v) Let (X,dx), (Y,dy) be metric spaces. Then

dxxy (z1,91), (22, 92)) == dx (21, x2) + dy (y1,Y2)
defines a metricon X x Y.

Definition 5.3 (Normed space). (V,|-||) is said to be a normed space if V'
is a vector space and
-+ V' — 0, 00)

is a mapping (called norm) with the following properties
e ||z|]| > 0 (Positivity)
e |z]| =0 < x =0 (Definedness)
o [[Az] = [Alll]
o [z +yll < [[=[| + ||yl (Triangle inequality)

To every norm belongs a unique induced metric
d(z,y) = llz -yl
Ezample 5.4 (R™ with Euclidian norm).

I+ R — [0, 00)

2 2
(1"171"27'”7$n)’—> .’E1+$2+—|—gj%

Then (R™, ||-||) is a normed space.

Ezample 5.5. (i) (21,22, -+ ,xn) — |z1| + |22| + - - - + |24] is also a norm
on R".

(ii) On
V ={f:]0,1] — R| f continuous}

we can define the supremum norm

[flloo = sup {]f ()

|z € [0,1]}
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(iii) We can define sequence spaces as

P = {(wn) cect

with the norm

A special space is ¢2, called Hilbert space

Remark 5.6. The Minkowski metric is not a metric in this sense.

Definition 5.7 (Balls and Boundedness). Let (X, d) be a metric space, and
r € X,r > 0. We then define

B.(z)={y € X |d(z,y) <r} Open ball
K, (x)={y e X|d(z,y) <r} Closed ball
A subset M C X is called bounded if

JreX,r>0: M C B,(x)

5.2 Sequences, Series and Limits

Definition 5.8 (Sequences and Convergence). Let (X, d) be a metric space.
A sequence is a mapping N — X. We write (z,),,cy OF (Zn)-
The sequence (x,) is said to be convergent to z € X if

Ve>03INeNVn>N: dz,x) <e

x is said to be the limit, and sequences that aren’t convergent are called
divergent.

Remark 5.9. On R the metric is the Euclidian metric |- |, therefore this new
definition of convergence is merely a generalization of the old one.

Theorem 5.10. Let (x,) be a sequence in the metric space (X,d) and x €
X. Then the following statements are equivalent:

(i) (xy,) converges to x

(i) Ye > 0 Bc(z) contains all but finitely many elements of the sequence
(almost every (a.e.) element)
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(7ii) (d(z,xy)) is a null sequence
Proof. (ii) is merely a reformulation of (i), and (i) <= (iii) follows from
d(xp,x) = |d(zpn, x) — 0 (5.1)
O
Theorem 5.11. Let (:U(”)) =( gn),xén), e ,w((in)) c R4 and

:C:(xl,---,xd)ERd

)

(:c(")) 1s said to converge to x if and only if xl(n converges to x; for all i in

{1,---,d}
Proof. For y = (y1,--- ,yq) € R? we have

lyall <yl Vi e {1,---,d} (5.2)
If (x(")) converges to x, then

o

— x| < Hx(") —a:H —0 (5.3)

If (xz(")) converges to z; Vi € {1,---d}, then

o

€

Vd

Ve>03dIN €eNVn > N : < Vie{l,---d} (5.4)

Thus

Hx(”) — :cH = \/(azgn) —x1)%2 4 (g;é") —29)2 4+ (xgl”) — 24)?

e e € (5.5)
<u /o
=\ + d + + 5
=€
So (x(”)) converges to x. O

Theorem 5.12. FEvery convergent sequence has exactly one limit and is

bounded.
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Proof. Assume that x,y are limits of (z,) with  # y. Then d(z,y) > 0.
There exists N1, No € N, such that

d
d(zp,x) < (a;,y) Vn > Ny (5.6a)
d(z,y)
2

d(xn, ) < Vn > Ny (5.6Db)
From this follows that
d($7 y) S d(ﬂj‘, xn) + d(ﬂ?n, y) < d(xa y) V max {Nla NQ} (57)

which is a contradiction, thus sequences can have only one limit.
Now if (x,) converges to x, then

AN eNVn>N: d(x,x) <1 (5.8)

Then
d(xp,x) < max{d(x1,x),d(z2,x), - ,d(ry_1,2),1} (5.9)
O

Theorem 5.13. Let (V,||-||) be a normed space over K. Let (xy,),(yn) CV
be sequences with limits z,y € V and (\,) C K a sequence with limit A € K.
Then

Tn+Ynp — T+ Yy ATy — AT
Proof. Left as an exercise for the reader. O

Definition 5.14 (Cauchy sequences and completeness). A sequence () in
a metric space (X, d) is called Cauchy sequence if

Ve >03dN e N: d(zp,xm) <€ Ym,n>N

A metric space is complete if every Cauchy sequence converges. A complete
normed space is called Banach space.

Ezample 5.15.
(R,|]) and (C,|-|) are complete
(Q,]+]) is not complete

Theorem 5.16. FEvery convering series is a Cauchy sequence
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Proof. Let (x,) — x. This means that

Ve>0eN €N d(xn,z)<§ Vn >N (5.10)

Then
ATy, Tm) < d(Tp,z) +d(x,Tm) <€ Ym,n >N (5.11)
O

Theorem 5.17. R™ with the Fuclidian norm is complete.

Proof. Let (m(”)) C R"™ be a Cauchy sequence. We know that
vy eR™: |yl <llyll Vie {1, ,n) (5.12)
We also know that (xgn)) are Cauchy sequences because
\@gm - gg;”)‘ < wa — g H Vie{l,...,n} (5.13)

Thus ZL‘En) — x; and therefore (x(”)) — . O

Definition 5.18 (Series and (absolute) convergence). Let (V,||-||) be a
normed space and (z,) C V. The series

o0
D> o
k=1
is the sequence of partial sums
n
=
k=1

If the series converges then Y ;2 zj also denotes the limit. The series is
said to absolutely convergent if

o0
Dl < oo
k=1

Theorem 5.19. In Banach spaces every absolutely convergent series is con-
vergent.
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Proof. Let (V. |-]]), (z) C V and require > o2 (V. |||)zrn < co. We need
to show that s, = Y ,_, xx is a Cauchy sequence. Let ¢ > 0 and ¢, =
> p—q llzk|l. (tn) is convergent in R, and thus a Cauchy sequence. Le.

AN eN: |t,—t|<e Vm,n>N (5.14)

For n > m > N:

n

>

k=m+1

n
< Y @kl =ta —tm = [tn —tm| <€ (5.15)
k=m+1

|80 — smll =

O

Theorem 5.20. Let (V. |-||) be a Banach space, > 7, x, absolutely conver-
gent and let o : N — N be a bijective mapping. Then

Z Tk = Z Lo (k)
k=1 k=1

Proof. Analogous to Theorem 2.55 O

5.3 Open and Closed Sets

Definition 5.21 (Inner points and Boundary points). Let (X, d) be a metric
space, A C X and =z € X.

(i) x is said to be an inner point of A, if

Jde>0: B(zr)CA

(ii) « is said to be a boundary point of A if

Ve>0: B(z)NA#DAB(x)N(X\A)#0D

~
Be(z) contains Bc(x) contains points
points from A from outside of A

(iii) The set
{z € X |z is inner point of A}

is called the interior of A, and is denoted as A.
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(iv) The set
{z € X |z is boundary point ofA}

is called the boundary of A, and is denoted as JA.

(v) AUOA is said to be the closure of A, and is denoted as A.

Example 5.22. Consider X = R%. Then

A={(r,y) eR|0<y <1}
(z,y) eR*|0<y <1}
8A:{(x,y)€R2‘y:1\/y:O}
(z,y) eR*[0 <y <1}
Remark 5.23. (i) Ac A
(ii) Boundary points of A can be elements of A or not.
(i) ACAUDA, ANdA=o
(iv) 0A=0X\ A

Theorem 5.24. Let (X,d) be a metric space, A C X and x an interior
point or boundary point of A. Then

(xpy) CA: )y ——
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Proof. If x € A then this is trivial, so let ¢ A. Then

VneN Jz, € (B;(x) NA# @) (5.16)
We need to show that (x,) converges to x.
1
Ve>0eN eN: N <€ (5.17)
For n > N we have
1 < S < (5.18)
n=N € '
and thus .
d(zp,x) < < (5.19)
O

Definition 5.25 (Open and Closed sets). Let (X,d) be a metric space.
A C X is said to be

(i) open, if every point in A is an interior point
(i) closed, if A contains all its boundary point
(iii) neighbourhood of x € A, if x is an interiot point of A
Theorem 5.26. Let (X,d) be a metric space and A C X.

A open <= X \ A closed

Proof.

Aopen < VzecA: zc A (5.20a)
— VexeA: zeiA (5.20b)
<= X \ A contains all boundary point of A (5.20c)
<= X \ A contains all boundary points of X \ A (5.20d)
<= X\ A closed (5.20e)

O

Remark 5.27. That doesn’t mean A has to be either open and closed.
Ezample 5.28. Let (X,d) be a metric space, x € X and r > 0. Then
B.(z) ={y € X |d(z,y) <r} is open
K. (z)={y € X |d(x,y) <r} is closed
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Remark 5.29. Consider the special case a,b € R with a < b

(a,b) = Bo-a (a—;b) open

2

a+b

[a,b] = Kb a < > closed
2

Theorem 5.30. Let (X,d) be a metric space and A C X.

A closed <= V() C A convergent: lim x, € A
n—o0

Proof. Assume A is closed. Let (z,,) C A be convergent to z. then
Ve >03IN eN: z, € Bx) Yn>N (5.21)

This means that every e-ball around x contains at least one point from A.
Le. x is always a point (or a boundary point) of A. From A closed follows
x € A.

Now assume = € JA. Then

d(zp) CA: (zp) —— (5.22)
According to the prerequisites, x € A. O

Theorem 5.31. Let (X,d) be a metric space, and T the set of all open
subsets. Then

(i) oer, Xer

(i) The union of any number of sets from T is an open set

(iii) The intersection of finitely many sets from T is an open set

mtET

Proof. Left as an exercise for the reader. O
Remark 5.32. (i) 7 is said to be the topology induced by d

(i) e @, X are also closed
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e The intersection of any number of closed sets is closed

e The union of finitely many closed sets is closed
(iii) Infinitely many intersections of open sets are not open in general.

Theorem 5.33. Let (X,d) be a metric space and A C X. Then
A open = 0A, A closed
Proof. Let A be open and x € A C A. This means
Jde>0: B(x)CA (5.23)
We have to show that B(z) C A. Let y € B(x). Since Be(z) is open
30 >0: Bs(y) C Be(z) C A (5.24)

This means that y € Be(x) is interior point A. Le. C (z) C A, and thus z

is interior point of A.
Let B= X\ A. Then 0A = 0B

X=AUB=AUDAUBUOB=AUHAURB (5.25)
Then
A and B are disjoint = A, B disjoint (5.26a)
— A disjoint to A, B (5.26b)
This results in o
0A =X\ (AUB) = 0A closed (5.27)
—
open
and ) .
A=AUOA=AUOA = X\ B closed (5.28)
O

Theorem 5.34. Let (X,d) be a metric space and A C X

lJ o=4 and [l ¢=4
O open C closed
OCA AcCC
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Proof. Let Ais open and AcA

= |J o4 (5.29)
OCA open

Now let O C A be open and x € O, i.e.
Je>0: B(z)COCA = z€eA (5.30)

This implies that O C A. Since this holds for all open O C A, this statement
is proven. The other statement follows from the complement. ]

Theorem 5.35. Let (X,d) be a complete space and A C X be closed. Then
(A,da) is complete.

Proof. Left as an exercise for the reader. O

Remark 5.36. Topological terms (open, closed, continuous, compact) don’t
just depend on A, but also on X.

Definition 5.37. Let (X, d) be a metric space and z € X.
(i) x is said to be an isolated point if Je > 0 such that B¢(xz) = {x}.
(ii) = is said to be a limit point if it’s not an isolated point.

Definition 5.38 (Punctured neighbourhood, Punctured ball). U C X is
said to be a punctured neighbourhood, if there is a neighbourhood U of =
with U = U \ {z}

A punctured ball is B.(z) = B \ {z}.

Definition 5.39 (Limit of mappings). Let (X,dx),(Y,dy) and z a limit
point of X. Let U be a punctured neighbourhood of z and f : U — Y.
Then f converges to y € Y in x (y is said to be the limit of f in x), if

Ye>035>0: (7)€ Bly) [d(f(E)y) <d
if & € Be(x) [d(z,z) < ]
Ezample 5.40. Let f,g:R%?\ {0} — R.

f(z) = |zl 9(z) =
Then lim,_,¢ f(z) = 0, because for € > 0 and § = /e we have

A(7,0) = 7~ 0| =7 < & = d(f(7),0) = ||7]* = 0| = |7]]* < ¢ = &°
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Theorem 5.41.

Tp—T

f convergestoy €Y inx <= V(x,) CX: f(zp,) —=y

Proof. Let (z,) C X with z,, —— x. Let € > 0, then

36 >0: f(z) € Be(y) if z € Bs(x) (5.31)
Furthermore
AN eN: =z, € Bs(x) Y/n> N (5.32)
Then
f(z2) € Buly) V=N (5.33)

To prove the other direction, assume f doesn’t converge to y in y. This
means

Je>0: 3% € By(x) but £(&) ¢ Bely) V6 >0 (5.34)

Therefore
VneN: 3z, € Bi(z) (5.35)

We know that @,, — x since d(z,,z) < %, but f(z,) doesn’t converge to
y since d(f(zn),y) > €. O

Corollary 5.42. Let (X,d) be a metric space, x € X a limit point and U
a punctured neighbourhood of x. Let f,g: U — K with

lim f(%) =y lim ¢(7) = y2
T—x r—T
Then
%ig}(:(erg)(if):leryz %ig;(f‘g)(ﬂf)zyl-yz

(N
%5130(9)(@_3/2

Heuristic Proof. Draw parallels back to number sequences ]
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5.4 Continuity

Definition 5.43. Let (X,dx), (Y,dy) be metric spaces. f :x — y is said
to be continuous in x € X if

Ve>030>0: 7€ Bs(x) = f(Z) € Be(f(x))
f is said to be continuous is it is continuous in every point.
Ezample 5.44. (i) Let (X, d) be a metric space.

id: X — X
T

is continuous (choose § = ¢).
(ii) The function
f:R* —R?
(2, y) — (2, —y)
is continuous. For (Z,%), (z,y) € R? we have

1£(@,9) = f@ P =G -2,y - PII° =@ —2)? + (y — §)*

(iii) Consider
f:R? SR
0, z-y=
(z,y) —
1, z-y#0

f is non continuous in (0, 0).
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Remark 5.45. (i)

f continuous in z <= Ve >035 >0: f(Bs(z)) C B(f(z))

(ii) Continuity is a local property, this means if x € X, U a neighbourhood
of z and f, ¢ functions with f|y = g|y, then

f continuous <= ¢ continuous

Theorem 5.46. Letxg € X, g: X =Y and f:Y — Z. If g is continuous
in xg and f is continuous in g(xg), then f o g is continuous in xg.

Proof. Since f, g are continuous we know that

Ye>030>0: ye Bylglao) = f(y) € Blfg(x0)))  (5.360)
V6>03p>0: x€ By(rg) = g(x) € Bs(g(zo)) (5.36b)

Then Va € B,(xg) we have
(f e g)(xo) = f(g(x0)) € Be(f(g(x0))) (5.37)
O

Definition 5.47 (Lipschitz continuity). A function f : X — Y is said to
be Lipschitz continuous if

L>0: dy(f(z), f(y)) <L-Dx(z,y)
L is called Lipschitz constant. If L = 1, f is called contraction.

Ezample 5.48. Let f,g:[0,1] — R.
fla) =a? g9(z) =z

f is Lipschitz continuous, ¢ is not.
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Theorem 5.49. FEvery Lipschitz continuous function is continuous.

Proof. Let f: X — Y be Lipschitz continuous, with Lipschitz constant L.
Let € > 0, then for z € Be(zo)

d(f(x), f(xg)) < L-d(xz,x9) <€ (5.38)

Thus, f is continuous in x(, and since we chose an arbitrary xg, f is contin-
uous everywhere. O

Ezample 5.50. (i) Consider
m K" — K
(x17x27 T 7-%'%) — Z;

Then
|mi(x) — mi(y)| = |z —yi| < |lz -yl

So ; is a contraction.
(ii) Let (X,d), (X x X,dxxx) be metric spaces. Then

d:XxX —R
(z,y) — d(z,y)

is a contraction. Let x1,x2,y1,y2 € X and apply the triangle inequal-
ity
d(x1,y1) < d(z1,72) + d(w2,y1) < d(21,22) + d(y2, Y1) + d(22, Y2)
This implies
|d(z1,y1) — d(z2,y2)| < d(21, 22) + d(y1, y2)
= dxxx((z1,72), (y1,92))
which means the metric is continuous.
(iii) Analogously, this works for ||-||.

Theorem 5.51. Let f: X — Y.

. . . x is an isolated point in X
[ is continuous in x € X <= " N e iy p ()
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Proof. Let f be continuous in z € X. If x is an isolated point there is
nothing to show, so let « be a limit point. Then

Ve>036>0: f(z)e€ B(f(x)) VT € Bs(x) (5.39)
Now let = be an isolated point, i.e. 3§ > 0 such that Bs(x) = {z}. Then

f(Baeita(x)) = {f(x)} C Be(f(x)) Ve>0 (5.40)

If z is a limit point and limz_,, f(Z) = f(x), then let € > 0

36>0: f(Bs(z)) C B(f(x)) (5.41)

This then implies
f(Bs) C Be(f(2)) (5.42)
O

Corollary 5.52.
f:X =Y continuous in x € X <= Y (x,) C X : flzn) 225 f(x)
This means, for continuous f we have

lim f(zn) = f(lim )

n—oo n—oo
Corollary 5.53. Let f1,---, fn: R™ — R. Then define
f:R™ — R"
r— (fi(x), fa(x), -, ful®))
f is continuous if and only if f1,--- , fn are continuous.

Corollary 5.54. Let f,g: X — R be continuous in © € X. Then

f+y 9
are continuous in x, and if g(x) # 0 then

f

g

18 also continuous in x.
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Ezample 5.55. Let n = (n1,--- ,n,) € Njj and = € K". Define
o =zt 2l
7 is called multi index. We set

ml==m+mnz+ns+-+m
Let ¢, € K Vn with [n| <N N € N. Then we call

a polynomial with n variables. Such polynomials are continuous. Example:
(21, 2) —> 27 + 23+ 2f + 27
Remark 5.56. In the context of polynomials (and power series) we define
0°=1

Reminder: If f: X — Y and U C Y then f~!(U) is said to be the preimage
of U under f. It’s the set of all points of X that get mapped to U.

fHU) ={x e X|f(z) €U}

Theorem 5.57. Let f : X — Y

(1)
. . . Ff~1(U) is a neighbourhood of
[ is continuous in v <= x  VUneighbourhood of f(x)
(i)
f is continuous <= f~1(O) is open YO C'Y open
(iii)

f is continuous <= f~1(C) is closed VC C Y closed
Proof. We will prove (i). Let U be a neighbourhood of f(x), i.e.
de>0: B(f(x)cCU (5.43)
Since f is continuous

3>0: f(Bs(x)) C Be(f(x)) (5.44)
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which in turn means

Bs(z) € f~H(Be(f(x))) € f71(U) (5.45)
so f~1(U) is a neighbourhood of f(x). Now let € > 0. Since B.(f(z)) is a
neighbourhood of f(z), f~1(Bc(f(x))) is a neighbourhood of . This means
30> 0: Bs(z) C fTH(Be(f(x))) (5.46)

Thus f(Bs(x)) C Be(f(z)) which means f is continuous in x.
(ii) and (iii) are left to the reader. O

Definition 5.58 (Subsequences and (sequential) compactness). Let (X, d)
be a metric space, and (z,) C X, (ng) C N are strictly monotonically
increasing. Then (z, ) is said to be a subsequence of (x,).

A subset A C X is said to be (sequentially) compact, if every sequence
(xn) C A has a subsequence convergent in A.

Remark 5.59. If (x,) converges to x € X, then every subsequence of (x,)
converges to . However, consider

(20) = (~1)"

This sequence doesn’t converge, but the subsequences (z2,) and (z2,+1)
converge to (different) values.

Ezample 5.60. Let X =R, then (0,1) and N are not compact. Because

(20 = =) C (0,1) (¢n=n) C N

n

have no convering subsequences.
Theorem 5.61.
A CR"™ is compact < A closed and bounded
Proof. Assume A is not closed, i.e. for z € 0A\ A
3(z,) C A with z,, —— (5.47)

Every subequence of (z,,) converges to x, but  # A. From this follows that
A is not compact. Assume A is not bounded, i.e. A\ B,(0) # @ Vn € N.
Now choose (z,,) C A such that [|(z,)] > n. (x,) cannot have a convergent
subsequence, because on the one hand for (z,,) convergent to x we have
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|zn, || = [lz]|, but on the other hand ||z, || > nr — oo. This proves the
7 = 7 direction, to prove the inverse, consider the case n = 1: Let A C R
be bounded and closed. Then

9K >0: ACl =[-K, K] (5.48)

Let (x,) C A be a sequence. We recursively define more intervals. Let
I, = [a,b) such that x,, € Ij for infinitely many n € N. Half the interval:

b— h—
Ik’-i—l = |:(1/; 9 a) or Ik+1 = |:2a/,b> (5493,)

such that x,, € Iy41 for infinitely many n € N. By doing this we are creating
a sequence of nested intervals of length K -27%%2. Now set n; = 1, and then
recursively define

Ngg1 > max {ni,---,ng} and z,, € I (5.50)

We now need to show that (x, ) is convergent. Apply the Cauchy criterion:
For | > k we know that x,, and z,, € I}, i.e.

T, — @y < K - 27KF2 E22 (5.51)

This means, z,, is a Cauchy sequence, so it converges to x € R. Since A is
closed, we have x € A. O

Theorem 5.62. Continuous mappings map compact sets to compact sets.

Proof. Let f: X — Y be continuous and A C X compact. Let (z,) C f(A).
We need to show that (x,) has a convergent subsequence. We know that

3 (yn) CA: z,= f(yn) (5.52)

Since A is compact, there must be subsequences (yy, ) with y,, LmicN y € A.

Because of the continuity of f, we have

f(yny,) — f(y) € f(4) (5.53)
N——

{L’nk

Thus, f(A) is compact. O
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Remark 5.63. Let f : R™ — R™ be a continuous mapping. f maps closed,

bounded sets to closed, bounded sets. In general, closed sets are NOT

mapped to closed sets, and bounded sets are NOT mapped to bounded sets.
Example: f:(0,00) = R, z+» 271

f0(0,1) )= (1,00) f([L,00]) = (0,1]
~—— —— ~—— ~——
bounded unbounded closed not closed

Corollary 5.64. Let A C R™ be compact and f: A — R continuous. Then
f assumes its maximum on A. Le.

JreA: fly)<flx) Wed

Proof. f(A) is compact, so it’s closed and bounded. We want to show

that compact subsets K of R have a maximum M := sup K such that
rp, — M. Since K is closed we know that M € K, so M is a maximum.
Especially, 3z € f(A) maximum and 3z € A with f(z) = z O

Theorem 5.65. Let A C R™, B C R™ be compact subsets and f: A— B a
bijective, continuous mapping. Then f~1 is also continuous.

Proof. Define g := f~1. g is also bijective and maps B — A. Let C C A be
closed. Since A is bounded, C' is also bounded. Thus, f(C) is also compact
(i.e. bounded and closed), and we have

f(C)={f(z) e Bl|z € C}
={f(9(y)) € Blg(y) € C} (5.54)
={yeBlgly) eCr=9""(C)

So g~1(C) is bounded, and since C' was an arbitrary closed set, g is also
continuous. O

5.5 Convergence of Function sequences

Definition 5.66 (Pointwise convergence). Let M be a set, f, : M —
K Vn € Nand f : M — K. The sequence (f,) is said to be pointwise
convergent to f if
lim f,(x) = f(x) Ye e M
n—oo
Ezample 5.67. Consider
fn:[0,1] — R

1— 1
N nz, x €0, ]
0, else
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0.8 -

0.4 f :

f2
4 I3

|
0 0.2 0.4 0.6 0.8 1

The f,, are continuous for all n € N and converge pointwise to
f:[0,1] — R
1, ==
T +—

0, z#0
f is not continuous.
Remark 5.68. Let M be a set. Then

BM)={fp,: M —K|IK €R: |f(z)|]< K Vxe M}

is a linear subspace of the space of all functions M — K. We can define the
supremum norm

oo : B(M) — R
fr— sup {|f(z)}
zeM
Proof. We will now proof that ||-||, is a norm. It is defined, because
[flloe =0 = [f(2)] =0 Vo e M (5.55)

This implies
flx)=0 VxeM = f=0 (5.56)

The triangle inequality is proven by first considering

@) <N fl Vf e BM)VeeM (5.57)
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Let f,g € B(M), then
[f (@) +g(@)] < [f@)] +19(x)] < [[fll + 9]l Yz €M (5.58)
Which implies
If+ 9l = Sgﬂl}\f(ﬂf) +9@)] < flloo + llgllo (5.59)

O]

Definition 5.69 (Uniform convergence). A sequence of bounded functions

(fn)?
fn:M —K

is said to be uniformly convergent to f : M — K if its norm converges.
fn = flloe =20
Remark 5.70. Formally, pointwise convergence means
Ve>0Vre M IN eNVn>N: |folx)— f(z)] <e
and uniform convergence means
Ve>03dIN eNVzx e MVn>N: |fulx)— f(x)] <e
Theorem 5.71. The function space B(M) is complete.

Proof. Let (f,) C B(M) be a Cauchy sequence in terms of [-|| . Firstly,
we have for some fixed z € M

[fn(@) = fm(2)] < 1 fn = fnll (5.60)

Since (f,) is a Cauchy sequence, (f,(x)) is also a Cauchy sequence in K.
Because K is complete, (f,,(z)) converges, and we define

flx) = li_)m fn(x) (5.61)
thus (f,) converges pointwise to f. Let € > 0. Then
AN eN: [[fon- fullo <€ Yn,m>N (5.62)

Then Vz € M, VYn,m > N we have

[fn(@) = fm(2)] < lfn = fnlloo <€ (5.63)
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We can find the limit for m — oo

[f(z) = fa(@)| < e (5.64)

and

[flloe = sup [f| < sup [f(x) = fu(z)] + sup [fu(x)] = €+ [|fnllc  (5.65)
xeM zeM zeM

Thus, f is bounded. Furthermore

1f = fallow = sup | f(z) — fu(z)| <€ (5.66)
zeM
which in turn implies
n—oo
If = fall ——0 (5.67)
O

Definition 5.72. Let (X, d) be a metric space, then Cy(X) is said to be the
space of all continuous bounded functions.

Remark 5.73. If X is compact (e.g. a bounded, closed subset of R™) then
all continuous functions are bounded. We then write C(X) for Cp(X).

Theorem 5.74. Let (X,d) be a metric space. Cyp(X) is closed in B(X). In
other words, every uniformly convergent sequence of continuous functions
converges to a continuous function.

Proof. Let (f,) C Cp(X) be a sequence that uniformly converges to f €
B(X). Let z € X and € > 0, then

INeN: |f- anOOy% Vn >N (5.68)
Choose a fixed n > N. Since f, is continuous, this means that

36> 00 |fal@) ~ fay)l < 5 Yy € Bs(a) (5.69)

Then we have for all such y

[f(@) = fW)] < [f(2) = fal@)] + [fulz) = Fu)] + [ faly) = F()]
<2 Hf - fn”oo + fn(-r) - fn(y) <€

This proves the continuity of f in . Since x € X was chosen arbitrarily, f
is continuous everywhere. O

(5.70)
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Definition 5.75. Let 2y € K and (a,,) C K. Then

0
Z an(x — z0)"
n=1

is called a power series around zg. The number

[e.9]
Z an(x — z0)" Converges}

n=1

p = sup {Ix — 0|

is the convergence radius.

Remark 5.76. All results so far (including proofs) can be extended to R"-
valued functions, or functions with values in a Banach space in general.

Theorem 5.77. Let Y 7 | an(x — x0)" be a power series with convergence
radius p € [0,00)U{oo}. If |x — xo| < p then the series converges absolutely,
for |z — zo| > p it diverges.

1 = lim sup '{/W
P n—00

Proof. W.l.o.g. choose g = 0: For |z| > p the series diverges by definition.
If || < p then there exists y € K such that |z| < |y| < p and Y o7, apy”
convergent. Especially, (a,y") is a null sequence. This means 3C' > 0 such
that |a,y"| < C VneN

= > x "
D lana™ =D lany"||=| <C- > |5 <oo (5.71)
n=1 n=1 n=1 Y

This statement only holds for p > 0. O
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Remark 5.78. (i) We have

00
Qnp a” converges
| |

n=1

p:sup{ae [0, 00)

(i) If the following limit exists, then

Ezxample 5.79. The series ,
"
n=1
is convergent on (—1,1), so p = 1. The limit function is

1

T —
1—=x

Theorem 5.80. Let Y 7, an(x — x0)" be a power series with convergence
radius p > 0. Let 0 < a < p. Then this power series converges uniformly on
Ko(zp). Especially

Proof. W.lo.g. choose zg = 0. Let 0 < a < p. We know that Y 7, a,z"
converges on K,(0).
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Define
n: Ki(0) — K
/ (0) (5.72)
z+—— 2" VYneN
We can see that

[flloo = sup |[ful= sup =a" (5.73)

z€K,(0) zeK,(0)

and thus - - -
S anfn = lanfalle =D lan]" < o0 (5.74)

n=1 n=1 n=1

because a < p. The series Y7 | a, fy is absolutely convergent in C'(K,(0)).
Since C(K4(0)) is complete, Y 07 | a, fr is convergent because the partial
sums Z,]yzl an, fr, are continuous VN € N. Therefore f is also continuous on
K4(0). Let x € B,(0). Then there exists some a > 0 such that |z| < a < p.
Thus, f is continuous on K,(0). Since K,(0) contains a neighbourhood of
xz, and continuity is a local property, f is also continuous in x. Because
x € B,(0) was chosen arbitrarily, f is continuous. O

Remark 5.81. exp, sin, cos are continuous.

Ezample 5.82. The statements above can be extended to Banach space-
valued power series (e.g. matrix-valued functions). The norm on R™*"™ is

[A]l = sup {||Az[| | vz € B1(0)}

Define
o0 An
exp(A) := é o
This converges VA € R™"™ because
o o oo
An 1, 1.
Z ol ZHHA | < ZEHA”
n=1 n=1 n=1
= exp([|4]]) < o0

Thus, > -7, % converges absolutely. Now consider the function

R — R™*™

t — exp(At)
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This is a matrix-valued power series

o0 oo
B (At A"
n=1 n=1
with a convergence radius of p = oo. In this case exp(A + B) doesn’t nec-
essarily have to equal exp(A) - exp(B).
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6.1 Partial and Total Differentiability

Definition 6.1. Let U C R"™ be open, x € (21, ,2,) € U and define the
function f : U — R™. The mapping f is said to be partially differentiable
in x in terms of z; if

t ? f(x17”'7xi715t71‘i+15"',xn>
is differentiable in x;, i.e.

. flx, i, by, x,) — f(on, LT,
3¢f($)=}llli% ( +h ) — f( )

exists. 0;f(x) is said to be the partial derivative of f in = in terms of z;.
Another notation is

of
al’i
This mapping is said to be partially differentiable in z if it is partially
differentiable in terms of x; Vi € {1, -+ ,n}.
Ezample 6.2. Consider
f:R?—R

1, z=0Vvy=0

x, —
(@) {0, else

f is partially differentiable in (0, 0), but not continuous.

Theorem 6.3. Let U C R be open, x € U and f: U — K.

f is differentiable in x
=
JaeK,¢:U—=K: f(y)=f(z)+aly—2)+¢y) VyeU

and

lim (@)

you ly —a|
Proof. We will first prove the ” <=7 direction. So let a, ¢ be as demanded
in the theorem. Then

f) = f=) _ o o) vzl yoo
y—a ly—zl y—=

(6.1)
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which means f is differentiable in x and f/(z) = a. Now let f be differen-
tiable, and set

d(y) = f(y) — f(x) = f'(2)(y — @) (6.2)
Which is equivalent to the equation in the theorem, with a = f’(x). Then

iy ) (HOSW) ) ey ey

yoe |y —x| y—a ly—z|

O]

Definition 6.4. Let U C R", x € U and f : U — R™. f is said to be
(totally) differentiable in x if a matrix A € R™*™ and a mapping ¢ : U — R™
exist, such that

fly)=f@)+Aly —z) +o(x) VyelU

and

)

v fly — |
f is said to be (totally) differentiable if it is (totally) differentiable in every
point z € U.

Theorem 6.5. Let U C R™ be open, x € U and f: U — R™ with

f:(f17”'7fm)7 fl)"'afm:U—>R

If f is totally differentiable in x, then it is partially differentiable as well,
and the matriz A is given by

aji = 0; fj(z)

Proof. Let A, ¢ be as demanded above. Let e, - - , e, be the canonical basis
for R®. We insert y = = + he; and receive

f(x+ he;) = f(x) + h - Ae; + ¢(x + he;) (6.4)
By rearranging this yields

[z + hei) — ()
h

— Ae; + gb(x'z'he) . |Z| 20y e, (6.5)

Thus, f is partially differentiable in x in terms of z; with 0;f(x) = Ae;. 0O
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Definition 6.6. The matrix (9;fj(x))i; is called the Jacobian matrix of f
in x. We write Df(x). If f is totally differentiable, then D f(z) is said to
be the (total) derivative of f in x.

For m =1 (so f : R® — R), the Jacobian matrix has one column, and
we call it gradient

Df(x) =: Vf(x)

Note: I will adhere to the physical notation of the gradient, using the Nabla
operator V.

Ezample 6.7. Let A € R™*" and define

fA:Rn—>Rm
T — Ax

Then we have

faly) = Ay = Az + Ay — x) = fa(z) — faly — )
Thus, fa is differentiable (¢ = 0) and the derivative is
Dfy(x) =A Vx e R"
For another example, let
f:(0,00) x (0,27) — R?
(r, ) — (7 cos ¢, sin @)

Then f is partially differentiable.

D(r,6) = <cos¢ —rsin¢)

sing Tcoso

So f is also totally differentiable (We’ll get back to this later).

Remark 6.8. (i) Let U C R™ be open and f : U — R™ differentiable, then
the derivative Df is a function U — R™*™

(ii) Total differentiability is also called local linear approximation. Linear-
ity is the property

Alz + \y) = Az + Ny Y,y e R"" A e R
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(iii) For arbitrary vector spaces V,W, a mapping V — W is said to be
linear if

Az + \y) = Az + My Vz,y e R" A€ R

So we can analogously define differentiability for mappings f: V — W
between arbitrary normed vector spaces.

(iv) f is totally differentiable in x if and only if the Jacobian matrix exists

and
i { W) — f(@) = Df(@)(y — @)

Ty ly — ||

(V) Letf:(fla"'afm) Wlthfla’fmU%R

=0

f totally differentiable <= f; totally differentiable Vi € {1,--- ,n}

The Jacobian matrix D f;(x) is the i-th row of D f(x).
(vi) Total differentiability implies continuity.

(viii) The mapping h — D f(x) - h is linear.

)
(vii) Partial and total differentiability are local properties.
)
(ix) The derivative x — D f(z) is not linear in general.

Theorem 6.9 (Chain rule). Let U C R™ be open, V- C R™ open, x € U,
g: U — V differentiable in x, and f : V — RF differentiable in g(x). Then
f o g is differentiable and

D(fog)=Df(g(x)) - Dg(x)

Proof. Differentiability of g in x means

oy : U —R™: g(y) — g(x) = Dyg(z)(y — ) + d¢(y) (6.6)

Differentiability of f in g(x) means
3oV > RF zlgl(lm) or(2)|lz —glz)]| ' =0 (6.7)

and

f(z) = f(g(x)) + Ds(9(x))(z — g(x)) + ¢5(2) (6.8)
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Now set z = g(y), then

f(9(y)) = f(g(x)) + Ds(g(x)) - Dyg(z)(y — z)

N N——

(fog)(w)  (fog)(x) (6.9)
+ (Dy(9(2))9g(y) + ¢£(9(y)))

And we finally need to show
Dy(g(2))dg(y) + 05 (9(y)) y—a

0 6.10
v—al (010
We know that
Pq(y)
Df(g(z)) —0 (6.11)
ly — |
because
z+—— Df(g(z))z linear and thus continuous (6.12)
We define a new mapping
Pv:U—R
= -1 6.13
L[5 l—g@I T = # () (6.13)
0, z=g(x)
1 is continuous in g(z). Then Vy € U we have
¢r(9(y) _ lg(y) — g(=)|
e 6.14
PRS2 rer] (049
7T
and
lg(y) — g(= HDg y—x %)
||y—$\| IIy—mll Hy—ﬂfH
< HDg H (6.15)
Hy—UCH Hy—xH
<||Dg(x)]| YT
thus v is bounded.
—g(x
— wlg)) - D= g (6.16)
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Theorem 6.10. Let U C R™ and f : U — R™. IfVx € U the partial

derivatives 0; f (x) exist and are continuous Vi € {1,--- ,n}. then f is totally
differentiable.
Proof. Without proof. O

Definition 6.11. Let U C R" be open. f : U — R is said to be contin-
uously differentiable if all partial derivatives exist and are continuous. The
vector space of all such functions is denoted as C''(U, R™), or in the special
case m = 1 as C1(U).

Ezxample 6.12. 1. Coming back to a previous example, we consider
_ [cos¢ —rsing
Df(r,¢) = (sin¢ cos ¢ )

Thus, f is continuously differentiable, and therefore totally differen-
tiable.

2. Let N € N and ¢, € K for every multiindex n € Nj with |n| < N.
Then the polynomial

P:R" — K
T — Z ey
n
[n|<N

is continuously differentiable, and therefore totally differentiable.

- moom
Oix" = 0; (x{", x32, -+, x")

o i1, i1 Mikl

=yt xS e T )

This is another polynomial, and therefore continuous.

We introduce the following new notation, for x,y € R™:

%:: {z+tly—=x)|te(0,1)}

Sy ={x+tly—2z)|tel01]}

They denote the connecting line between = and y.
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Theorem 6.13 (Intermediate value theorem for R-valued functions). Let
U CR" be open, z,y € U and Sy C U. Now let f : U — R differentiable
on Sz, and continuous in x,y. Then

I €Sey: fly)—flz)=DfE)y—2)
Proof. Consider

g:[0,1] — R

t— flz+t(y —x)) (6.17)

Apply the one dimensional intermediate value theorem. Due to the chain
rule, g fulfils the prerequisites. 36 € (0, 1) such that

fly) = f(2) = 9(1) = g(0) = g(0) = Df(z +0(y —2))(y —z)  (6.18)
For € = 4+ 6(y — x) follows the initial statement. O

Theorem 6.14 (Intermediate value theorem). Let U C R™ be open, S, C
U and f: U — R™ differentiable on S, and continuous in x,y. Then

HeSey: Ify) —f@I <[Df(E)y— )|

Proof. For a € R™, consider the (real) helper function

a’ f(z) = (al f(x)) (6.19)
According to the previous theorem
3 €Be: a' fly)—a" f(z) =a"Df(E)(y — ) (6.20)

In this implication the chain rule has been applied. We can rewrite this
using the scalar product

1f () = F @7 = [(f(y) = F(@)|DF(E)(y - 2))]

(6.21)
< £ (y) = F@)IDf(E)(y — )l

O]

Corollary 6.15. Let U C R" be open and f : U — R™ a differentiable
function.
Df=0onU = IV C U : f constant on V
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Proof. Let x € U, choose € > 0 such that Bc(z) C U. Then

Vy € Be(z) 3§ € Say: | f(y) = @) < IDf(E)y—2)[ =0  (6.22)
This implies

1f(y) = f@)l =0 = f(y) = f(x) Vy € Be(x) (6.23)
O

Remark 6.16. Functions with vanishing derivatives must be constant. Con-
sider

f:(-2,-1)u(,2) —

-1, =<0
T —
1, x>0

Local constancy implies constancy on connected sets.

6.2 Higher Derivatives

Definition 6.17. Let U C R™ and let f be (the only) partial derivative of
order 0. Now define recursively

(i) f issaid to be (k+1)-times partially differentiable if all partial deriva-
tives of order k are partially differentiable.

(ii) The partial derivatives of order (k + 1) are the functions 0;g ¢ €
{1,--+ ,n} where g is the partial derivative of order k of f.

The k-th partial derivative in terms of ¢ of f is denoted as
o f

f is said to be k-times continuously differentiable if all partial derivatives
of order k are continuous. C¥(U,R™) is the vector space of all k-times
continuously differentiable functions.

f is said to be infinitely differentiable (or smooth) is it is k-times differ-
entiable Vk € N, and the vector space of all infinitely differentiable functions
is denoted as C°(U,R™).

For total differentiability we have

f:R* — R™ Df:R™ — R™*"
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Remark 6.18. Let f : R™ — R™ be sufficiently often differentiable. Consider

for u € R"”
f(x+ hu) — f(z)
h

Vv
Directional derivative along u

x+— Df(x)u= lim
k—0

Now consider for fixed =

D?f(z) : R" x R" — R™
(u,v) —> D(Df(-)u)(z)v

D?f(z) is linear in v and u, and

D2 f(z)(uy + Aug,v) = D(Df(-)(uy + Aug))(x)v
(Df()ur + ADf(-)uz)(x)v

(Df(-)

2

Df(-Jur)(@)v + AD(Df(-)uz)(z)v

D
D
D? f(x)(u1,v) + AD*f () (uz, v)

D?f(x) is a bi-linear mapping.

Definition 6.19. Let U C R™ and f : U — R™. Define recursively for
k> 1:

(i) f is said to be (k + 1) times (totally) differentiable on U, if the term
DF()(uq,--- ,ug) is differentiable on UVuy,--- ,u;, € R™.

(ii) The (k4 1)-th derivative of f in = € U is the multi-linear mapping
DkJrlf(x) : (Rn)k+1 Ly R™
(ul’ T ,’LLk,U) — D(Dkf()(ula T auk))(x)v

Remark 6.20. Let fi,---, fin : U — R, then the function
f:U—R™
x> (fi(@), -, fm(@))

is k-times totally differentiable if and only if the fi,--- , f, are totally dif-
ferentiable.

(Dkf(x)(ula ’Uk))j = Dkfj(x)(ulv"' ’uk)

Remark 6.21. D* f(z) really is multi-linear (linear in every point) Vk € N.
Other multi-linear mappings are
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(i) The scalar product on R”
R"xR® — R

(ii) The determinant
R™"™ — R

Remark 6.22. A matrix A € R™*" is uniquely determined by its effect on
the canonical basis eq,--- ,e,. This means if v € R, then Jaq,--- ,a, € R
that are uniquely determined such that

vV=aqai,e1+ -+ apey

Then
Av = o Aer + - - + o Aey,

Ae; is the i-th column of A. An analogous statement for multi-linear map-
pings would be, that
A:R™k 5 R™

is uniquely determined if A(e;,, €;,, - - , €, ) known Viq,--- ,ip € {1,--- ,n}.

Theorem 6.23. Let U C R"™ be open, f: U — R™ k-times differentiable in
x and let ey, -+ , e, be the canonical basis of R™. Then

Dkf(x)(eiu"' 7€ik) = azk 8l1f($)
V/I/“ 77/](3 e {17 ’n}

Proof. For k = 1 this is already proven. So we can use proof by induction;
assume the statement holds for a k, i.e. Viy,--- ,ix € {1, -+, k}

DFf(x)(eiy, - yei) = 0y - 0y ()

Then for 4, - -- y ks k1 € {1, s ,n}
DFFLf(@) €y iei) = DDPF( ) ewy, - ea)) (@) - iy
= aik+1aik e 81'1 f($)

The order in which partial derivatives are applied is important! ]
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Ezample 6.24. Consider
f:R?—R
(z1,x3) —> 27 cos(zz)
Then we can calculate
D2f(a:)(u,v) U = ujel + uze2,V = vi€1 + V262
As follows
D?f(x)(u,v) = w01 D? f(z)(e1, e1) + urveD* f () (e1, €2)
+ ugv1 D2 f () (€2, ') + ugua D? f(2) (€2, €?)
= ujvy - 2 - cos(xe) — 221 sin(z2)uve

— 2y sin(wg)viug — :U% cos(xe)ugve
Theorem 6.25. Let U C R" be open, and f : U — R™ k-times continuously
differentiable. Then f is k-times totally differentiable.

Proof. This is already proveb for k = 1. So we can use induction over
k; assume the statement is correct for k¥ € N. Let u1,- - ,ur € R”, then
D¥f()(u1,--- ,uy) is a linear combination of the partial derivative of f
of order k, and is thus continuously differentiable once more. Therefore
D2f()(uq,- - ,uy) is totally differentiable, and thus f is (k+1)-times totally
differentiable. O

Theorem 6.26 (Theorem of Schwarz). Let U C R™ be open, and also
f € C*(U,R™). Then

Ve e U Yu,v € R": D?f(x)(u,v) = D*f(z) (v, u)
and
Ve e U Viy,ig € {1,--- ,n}: 0;,0;, f(x) = Oi,partial;, f(x)

Proof. Let m =1, x € U, € > 0 such that Be(z) CU. f u=0o0rv =20
then both sides of the equation vanish, so let u,v € R™\ {0} and
€

O<t<ce:= (6.25)
2 - max {{[ul], o]}

Define the helper function

g1 : [Ovt] — R

s+— f(x+tv+ su) — f(x + su) (6.26)
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And apply the one dimensional intermediate value theorem. 3¢ € (0,¢) such
that

91(t) = g1(0) = g1(§) -t = (Df(z + tv + §u)u — Df(z + Eu)u) -t (6.27)
Analogously, define and apply the intermediate value theorem to

g2:[0,t] — R

s— Df(x+ sv+&u)u (6.28)

and get n € (0,1)

92(t) = 92(0) = ga(m)t = D(Df(-)u)(x + nv + Su)uvt

= D%f(x +nv+ u)(u,v)t (6.29)

using these results, we can get £,n € (0,t) for all ¢t € (0, ¢) such that

flz+tv + tu) — f(z + tv) — f(x + tu) + f(z)
=q1(t) —91(0) = (Df(z + tv+ {u)u — Df(x + Eu)u)t (6.30)
= (g2(t) — g2(0))t = D*f( + nv + &u) (u, v)t

So we can write

limf(a: +tv+tu) — f(z+tv) — f(x +tu) + f(z)
t—0 12
= lim D*f (z + nv + §u) (u,v) (6.31)
— —_———
—x
= DQf(I')(U,’l))

The left side is symmetric in terms of swapping u and v, so the right side
must be as well. O

Note, that
D*f(z)(ei,, €ip) = 03,05, f(x) = 05,01, f (x) = D* f(z) (€4, €1,)
Remark 6.27. Via induction:

(i) D*f(x)(u1,--- ,ux) is independent from the order of the w;, if D f is
continuous.

(ii) The limit of the second derivaative is useful in the numerical discussion
of differential equations.
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Theorem 6.28 (Taylor’s Theorem). Let U C R™ be open, f : U — R be
(I41)-times differentiable and h € R™ such that x+th € U Vt € [0,1]. Then
30 € [0, 1] such that

l

Fla+h) =37 DR f() (b ) +

k=1

1

0T 1)!Dl+1f(x +6h)(h,--- ,h)

Heuristic Proof. Apply the one dimensional Taylor theorem with Lagrange
error bound onto a helper function

g:10,1] — R

t — f(x +th) (6.32)

Remark 6.29. (i) Consider h =Y. | hje;. Then
D*f(x)(h,h) = Y hihyD*f(x)(ei,e5) = Y 00 f(x)hih;
i,j=1 tj=1

(ii) Analogously to one dimension, we can formulate criteria for local ex-
trema:

Df(z)=0,---, D' f(z) = 0 and D' f(x) # 0

e z is a local minimum if [ is even and D' f(z) is positive.
e 7 is a local maximum if [ is even and D!f(z) is negative.

e 7 is no local extremum of [ is odd or if D'f(z) is undefined.

Definedness is complicated to determine for [ > 2.

6.3 Function Sequences and Differentiability
Ezample 6.30. Consider (fy):
fn:R—C

1
T — —e
n
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Then
1
[folle =~ ——0
n
<~
(fn) converges uniformly to the zero function
But

fa(@) = ie™" = i(e'")"

converges (pointwise even) only for x = 2kmw, k € Z.
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Remark 6.31. Let f: X — V where V is a normed vector space. Define

[flloe = sup {lIf(@)[[ |2 € X}

the supermum norm. Also define

e B(X,V) the space of bounded functions from X — V

e Cp(X,V) the space of continuous, bounded functions from X — V/

Theorem 6.32. Let U C R”™ be open and f, : U — R™ continuously
differentiable ¥n € N. If (f,) and (D f,) converge uniformly to f : U — R™

and g : U — R™*™ then f is differentiable and Df = g.

Proof. First consider m = 1. We use the operator norm on R™*"™, First, let
D f,, be continuous Vn and thus g is continuous. Choose x € U and ¢ > 0,

then
€

36>0: [gly) —g(@)| < 3

if |ly—zl <6
Furthermore

dN eN: HDfn—g||oo<§ Vn > N

Let y € Bs(z). Then according to the intermediate value theorem,

VneN3E, € Spy={x+tly—x)|tel01]}

such that
fa(y) = fn(@) = D fu(&n)(y — @)

(6.33)

(6.34)

(6.35)

(6.36)
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We have &, € Bs(z). Then
b
v =]
1
1D fr (&n)ll=D fr () ly—2|l

SHDfn(gn) - Dfn(m)H

SHDfn(gn) - g(én)” + Hg(én) - g($)“ + Hg(x) - Dfn(x)H

<[Dfr = glloo + l9(n) — (@)1l + llg — D fall

=2[[Dfn = gl + [19(&n) — g(@)|| <€

[fn(y) = fu(@) = Dful2)(y — 2)]

For n — oo we have

)~ @) g~ )] < ¢ Vo € Bi(s)

Since € > 0 is arbitrary, we get

1

im —
el

|f(y) = f(x) —g(z)(y —2)]| =0

This means that f is differentiable in = with D f(z) = g(z).
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(6.37)

(6.38)

(6.39)

O]

Remark 6.33. On Cx(U,R™) (the space of continuous, differentiable and

bounded functions with bounded derivative) we can define a norm:

Iflley = I1flloe + 1D Fll

Then the above theorem is equivalent to the statement that CL (U, R™) with

||f”c1 is complete.

Theorem 6.34. Let f(x) = Y 7 anx™ be a power series with positive

convergence radius p. Then f is differentiable on B,(0) and

f(z) = i na,z™
n=0

Proof. We need to inspect the convergence radius R of

(o) 1 (o]

g na,z" == g na,x"
T

n=0 n=0

(6.40)
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(/n) converges to 1, so Je > 0 such that for sufficiently big n we have

(1— ) ¥/an < vy < (1+ " an (6.41)

and thus
1-— 1 1
‘= (1 —¢)-limsup {/|an| <limsup {/|na,| = = < re (6.42)
P n—00 n—00 R P
50 1 11+
e < XS (6.43)
p R p
Since this holds for every e, this implies p = R. Now for z € B,(0) set
o
g(x) = Znanx”_l (6.44)
k=1

Let « € B,(0) be fixed and choose a > 0 such that |z| < a < p. This means
that

N N
fn(z) = Z anz" and gn () == Z anz™ !
n=0 n=0

converge uniformly on B,(0) to f and g. Obviously, fy = gn, so f is
differentiable and f’ = g. Since differentiabiility is a local property, the
desired statement follows Vz € B,(0). O

Corollary 6.35. Let f(z) = > o7, anz™ be a power series with convergence
radius p > 0. Then f € C*(B,(0)), and

-1
ar = fM(0) - (k)
Furthermore, the series representation (if it exists) is unique.

Proof. The infinite Differentiability follows inductively from the previous
theorem. Also inductively we have

R (z) = i nn—1)--(n—k+ Daaz™* (6.45)

n=0

Choose z = 0 and receive

fR0O)=nn—-1)---(n—k+1)an (6.46)
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Ezample 6.36 (Derivative of the exponential function).

oy > /am\/ > gl > pn—l > pn .
@ =2 ) = = e =€
n=0 n=1 n=1 n=0

Remark 6.37 (Taylor Series). We can define the Taylor series for f : K — K

00 (n
n=0

n!

e In general, this doesn’t hold true for all z, not even for f € C'.
e The convergence radius could be 0

e There are examples of convergent Taylor series that don’t converge to
the initial function, e.g.

f is infinitely continuously differentiable in 0, but the Taylor series
would converge to 0.

Definition 6.38. Let a,, € K (Multiindex notation) be coefficients V1 € Nd.

Then
§ Y
Clnilf
neNd

is said to be a (formal) power series with d variables.
A function f : U — K with U neighbourhood around 0 is said to be
analytic in 0, if and only if

Je > 0,a, € K: f(z)= Zanx" Va € Be(0)
neNg

Remark 6.39. (i) The convergence of the series to S(z) can be defined as
follows: Ve > 0 3A C N¢ finite such that VB D A finite we have

Zanx" —S(x)| <e

neB
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(i) If the series converges in (y1,- - ,yn), then it also absolutely converges
in the open cuboid

{x eRd‘ ;| < |y Vie{1,-- ,d}}

which means

D lagl(lzal, s Jzal)? < oo

d
neNg

(iii) If the power series converges on a neighbourhood U around 0, then it
is infinitely differentiable and

_ 0"f(0)
==

n
with
o= oo -l Nl =gt ng!
(iv) The formula above is only rarely useful to calculate the Taylor se-

ries. By inverting it we can calculate the derivative of a known series
representation. E.g.

CC2k+1

f(a:)—a;eIQ—a: i(xz)k—ik—Ooo Ve € K
= = = = n
1

' k!
k=0 -

f®)(0) = 0 is k is even, and it is something else if k is odd.
(v) C¥(U) is the space of all analytic functions.
CU)>CHU)>C*(U)D---2C*U) D --- > C®(U) > C¥U)

(vi) The analytic functions are closed among sums, products and concati-
nations. A power series is analytic within its converges radius.

Ezample 6.40. Consider the power series

D olay)t =Y (@) ay
n=0 neNZ

with

an:1if771:772
ap = 0 else
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This series converges on

{(z,9) | ey <1}

to 1_1xy.
i
o
By
[y
’ 1
24—
i/ \
/ \
/— \
. .’_-/./ \.\._ .
- — | 2 0 2 | _ L=
. ‘q.\.\ /;.— |
\ /
\ /|
V-2t
\ l
]
t
4

So the convergence area must not necessarily be a sphere. The limit
function is also defined outside of the convergence area.

6.4 The Banach Fixed-Point Theorem and the Im-
plicit Function Theorem

Theorem 6.41 (Banach Fixed-Point Theorem). Let (X,d) be a complete
metric space, and ¢ : X — X strictly contractive, i.e.

3C € (0,1): d(o(x),6(y)) < Cd(z,y) Vr,ye X

Then there exists exactly one fived point x of ¢, i.e. ¢(x) ==z

154
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Proof. First, ¢ is Lipschitz continuous, and thus continuous. Let xy € X,
and recursively define x,, 11 = ¢(x,). Then

d(wn—l-h xn) = d(¢($n), (b(xn—l)) S Cd(xna xn—l) (647)
and via induction
ATy Trpk—1) < de(wn,:cn_l) Vk,neN (6.48)

Especially,
d(xp, Tp_1) < C"Yd(zy, z0) (6.49)

Using the triangle inequality we can compute

d(xn—l-ka xn—l) < d(xn—o—lw xn—i—k—l) + d(mn+k—17 xn+k—2) 4+ d(:l,‘n7 xn—l)
< (CF 4Pt R g Dd(2n, w0 1)

1— Ck’-i—l
< ﬁ : d(l”n, fnfl)
1— Ck-i—l B
< ﬁcn ld(fvhxo)
< 7 o w0) T2 0
=1_ C X1, 0
(6.50)
This means
Ve >03dN e N: d(xpik,Tp—1) <€ Yn>NVkeN (6.51)

Which in turn means that (x,) is a Cauchy sequence, and thus convergent.
() converges to z € X

T = nh—>r20 Ty = nh_)n(r)lo (Tp—1) = ¢(nli_>rgo Tn—1) = ¢(x) (6.52)

To prove the uniqueness, let x,y both be fixed points. Then

d(z,y) = d(¢(x), ¢(y)) < Cd(z,y) (6.53)

Since C < 1, we have
dz,y) = x=y (6.54)

O
Remark 6.42. The Banach fixed-point theorem implies that every map that

is within the area it is mapping, will have a point on the map that lies
directly on top of the point in the real world that it maps.
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Ezxample 6.43. Consider the equation
r—1y>=0
with the solutions

y=vu y=—Vz

on (0,00). For a point (£,n) that solves the equation, there exists a neigh-
bourhood U and a function f such that all solutions of the equation on U
are of the form (z, f(z)).

Remark 6.44. Let F : R” x RY — R?, and consider z1,--- ,zp € R as
independent variables, and y1,---,y9 € R as dependent variables of the
equation system

F(x,y):o, x:(xlf" ,$P),y:(y1,---,yQ)

Let (£,7) be a solution. The question is wether a f : R — R? exists, such
that (z, f(x)) are solutions Vz € U, where U is a neighbourhood of .

z— F(z, f(x))

If F is differentiable, then let D, F(x,n) € R?*?Q denote the total derivative
of the function. Analogously this works for y as the variable. We approxi-
mately have

Fa,y) = F(z,n) + DyF(z,n)(y —n) =0

Theorem 6.45 (Implicit Function Theorem). Let U C RP,V C R% be
open, and
F:UxV —RY

continuously differentiable. Choose & € U,n € V such that F(§,n) = 0,
and DyF(&,n) invertible. Then there exists a neighbourhood U C U of &, a
neighbourhood V-.C V of n and a continuous function f: U — V such that

f(&) =n and

F(z,f(z))=0 Vz eU

Proof. Set D = D,F(&,n). Then consider

¢ : function — function

B (6.55)
¢(9)(x) — g(z) — D™ F(z,9(z))
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where g : R — R¥. Then we have
#9) =g = D7'F(z,9(z)) =0 < F(z,9(z)) =0 (6.56)

Since this is a fixed point problem, our goal is to apply the Banach fixed-
point theorem. Let I : R? — R® be the identity mapping. Then the
function

(z,y) — ||l = D7'DyF(z,y)| (6.57)

is continuous and vanishes in (£,7n). 3d,e > 0 such that Bs(¢) C U, and
Be(n) C V and

|1 = D7Dy F(ay)| <} VreBy&yeBn)  (658)
Because of the continuity of
x—> HDilF(a:,n)H (6.59)
we can choose a (possibly smaller) § > 0, such that
D F(z,n)| < i Va € Bs(§) = U (6.60)
Now let X denote the set of all continuous functions g : U — R@
9(&) =n (6.61a)
lga) =nll < 5 Ve el (6.61b)

Equation (6.61b) implies that g(x) € Be(n) C V. Furthermore X is a subset
of Cp(U,R%?), which is a complete set with the norm

9]l = sup {llg(@)]| | = € T} (6.62)

X is non-empty (for example, it contains g(§) = 7) and bounded, which
means X is also complete. Now, for a fixed z € U and V' C B.(n) consider
the mapping

d:V —RY
1 (6.63)
yr—y— D" F(z,y)
From the intermediate value theorem we can conclude
| (y) — ®(2)|| < sup ||[I — D' Dy F(z,y)]| ||y — 2
yeVv
De(z,y) (6.64)

< 2l -
—|ly— =
=5y



6.4. BANACH FIXED-POINT & IMPLICIT FUNCTIONS 158

Now, for g1,g2 € X and 2 € U we can see that

[¢(g1)(x) — d(x2) (@) || = [[@(91(x)) — (g2(2))]

1 (6.65)
< 5 lor@) — ga()]
and by choosing the supremum over all z € U we can see that
1
16(91) — d(92)ll 0 < 5llg1 — 921l (6.66)

=2

Thus ¢ is strictly contractive on x. It is only left to show that ¢(X) C X.
From the definition of ¢ we have Vg € X

$(9)(€) = 9(§) =n (6.67)

So ¢(g) is continuous, and finally

[6(6)() — 1l < 16(0) (@) ~ o) @] + () ) ~ 7
< 3 lgt@) =l +||D7 ()|

6.68
~ (6.68)
€
< —
-2
Thus, ¢ maps X to X, and the Banach fixed-point theorem tells us
AfeX: ¢f)=f < F(z,f(z))=0 Yo eU (6.69)
O

Remark 6.46 (About uniqueness). We know there is exactly one function f
in X such that B
F(x,f(z))=0 Vx €U

f(x) the only solution in V, for € U, because if F(z,y) =0fory € V,
then

ly = F@)] = [9) — (@) < 5y f()]
which implies y = f(x)

Theorem 6.47. There is a possibly smaller neighbourhood U around & on
which f € CY(U,V). The derivative is given by

Df(x) = —(DyF(x, f(x))) "' DaF(z, f(x))
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Proof. Without proof. O

Corollary 6.48 (Inverse Function Theorem). Let U C R™ and f : U — R™
continuously differentiable. If D f(§) is invertible for some & € U, then there
ezists a neighbourhood U around & and a neighbourhood V' around f(&) =:n
such that f bijectively maps U to V, and the inverse function

g:V—TU
y— [ y)
s continuously differentiable. Furthermore
Dyg(n) = (Df(&))""
Heuristic Proof. Use the implicit function theorem on the equation system
F(z,y) = f(z) —y=0 (6.70)
and solve that for x. O
Ezample 6.49 (Inverse function of the complex exponential function). Let
z — exp(z)
be a function R2 — R?, i.e. 2 =z + yi and
exp(z) = exp(z) exp(yi) = exp(x)(cosy + isiny)
Consider
¢é:R? — R?
(z,y) — (exp(x) - cosy,exp(x) - siny)

This mapping is continuously differentiable (analytic even) and D¢(x,y) is
invertible everywhere. Thus ¢ has a locally differentiable inverse function
on exp(C) (the logarithm).

One can show that exp(C) = C\ {0}. Typically, the main branch of the
complex logarithm is defined as

In:C\ {x e R|z <0}
= R X (—m,m)

One can choose from many other domains, however there is no continuous
logarithm on C \ {0}.



Chapter 7

Measures and Integrals
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7.1 Contents and Measures

Definition 7.1. A set M is said to be countable if there exists a surjective
mapping from N to M, i.e.

d(zp)CM: Vye M IneN: z,=y
A set M is said to be countably infinite if it is countable and unbounded.

Remark 7.2. (i) Countably infinite sets are the smallest kind of infinite
sets.

(ii) Subsets of countable sets are countable.

(iii) The union of two countable sets is countable. Let (z,,) C M, (y,) C K
by surjective sequences, then
($17 Y1,T2,Y2, )

is a surjective sequence for M C K. This argument can be used to
prove 7Z is countable.

(iv) The union of countably many countable sets is countable. Let M be a
countable set of countable sets, and (A,) C M a surjective sequence.
Then Vn € N exists a surjective mapping (zp, )ken C Ap

1 2 4
T1q X1, T1g

3 5
T2, .CU22) .1‘23

6
T3, T3, T34

This sequence is surjective on
U4
AeM
Especially, for countable M, K we have
Mx K =[] {(zy)|yeK}
xeM
Thus N x N, N, Z and Q are countable.
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(v) There exist uncountable sets, like [0, 1], R and P(R).
Definition 7.3. Let 2 be a set. A family of subsets
(Ai)ier € P(Q) (I denotes the index set)
is said to be pairwise disjoint is
ANAj =@ Yijel, itj
Remark 7.4. (i) Let A C P(R") be a family of sets. A mapping
p:A—10,00]

is said to be the content of A, if VA1, --- , A € A pairwise disjoint the
following holds:

k
AU UA, e A = ,u(AlLJ---UAk)ZZ,U(Al)
=1

The content is a generalization of the concept of length (R), area (R?),
volume (R3) etc.

(ii) In the context of contents, measures and integrals we define

c+o00o=00 VeeRU{oo}
c-00 =00 Vee (0,00]
0-c0=0

(iii) The goal is to choose the domain of the content as big as possible. Ideal
would be A = PR". This introduces the Banach-Tarski paradox:

e Let B1(0) C R? be the unit sphere

e One can show: There exists a disjoint decomposition
AjU---UApUBU---UBg = By(0)
and a set of translations and rotations
Di,---,Dp,---Th, -, To
such that

D1A1UDyAU---UDpAp = Bl(O)
Ti'BiUTyByU---U TQBQ =B (O)
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Definition 7.5. Let Q be a set, A a family of subsets of  (so A C P()).
A is sait to be a o-algebra, if

(i) oe A
(ii) Ac A = A=Q\AcA
(iii) For a countable subset {A1,---, A} C A follows
U Ai cA
i€EN
A mapping
p: A— 0,00

is said to be a measure, if

L (U Ai> = Z u(A;) (o-additivity)

€N €N

for pairwise disjoint (4;);eny C A and p(2) = 0. The pair (2, A) is called a
measureable space, and (2, 4, i) is called measure space.

Ezample 7.6. (i) Let ©Q be an arbitrary set, and let there be a disjoint
decomposition
AjU---UA,=Q

Then

n

il

Ic{y,--- ,n}}
is a o-algebra.
(ii) Let € be arbitrary and x € 2. Then

0z : P(Q) — [0, 0]

A 1, z€A
0, ¢ A

1S a measure.
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(iii) Let Q be arbitrary, then
Number of elements in A, A finite
A—>
0, A infinite
is the so called counting measure. It is useful for finite, countable sets.
(iv) Let © be countable and (aqy)wer C [0, 00]. Then
w:P(2) — [0, 00]

Ar— Zaw

weA

a measure.

(v) Let (2,.A, 1) be a measure space and A € A. Define the to A confined
o-algebra
Ala:={BNA|Bec A}

Then (A, Ala, i) is a measure space.
Remark 7.7. For countable subsets A = {A;, -+, Ay, -} C o-algebra we

have o
ﬂAi=<UAZ»C) cA

1€EN 1€EN
If A, Be A = A\ B € A then we can write
A\B=AnB"
A measure p is monotonic, which means if A, B € A and A C B, then
w(B) = n(B\ A) + u(A) = u(A)
Definition 7.8. A mapping p : P(Q2) — [0,00] is said to be an outer
measure, if ;(2&) = 0 and
Ac| A = uA) <D u(A)
i€EN ieN
Just like measures, outer measures are monotonic. Let Z be the family of
bounded intervals, i.e.

1= U {[m,y],[w,y),(x,y],(x,y)}

z,yER
<y
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We define
Wz, y)) = Uz, 9)) = U(z,y)) = U(z,y) =y — =
Theorem 7.9. The mapping

A: P(R) — [0, o0]

=1

AclJr, IieIViEN}
1€EN

defines an outer measure on the real numbers. Analogously one can create
outer measures on R?, R3.

Proof. We know
AN2) <U([0,¢)) =€ Ve>0 (7.1)

which implies A\(&) = 0. We have to show that
Ac A = MA) <D M) (7.2)
keN keN

If the right side is oo there is nothing to show. Solet »°, -y A(Ay) < co. Let
€ >0, then Yk € N 3(Iy,) C Z such that

€
A © Iy and 3 1(1) < (MAw) + 27) (7.3)
ieN ieN
Then -
AcJAvc U I (7.4)
k=1 i,keN
and

A< 37U < 3 (MAR) + 2%) — S MA) e (75)

kieN keN keN

Since this inequality holds Ve > 0

MA) < 37 M4 (7.6)

keN

must be true. The outer measure is not additive. O
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Theorem 7.10. Let u be an outer measure on (2, P(2)). Then the family
of measureable sets

A={ACQ|WE)>uENA) +uENAY) VEeP( )}
is a o-algebra, and pla a measure.
Theorem 7.11. Firstly, we always have
WE) < (BN A) + p(E N AS) (7.7)
which means A is measureable if and only if
wE) = w(ENA) + u(En A% VE € P(Q) (7.8)
1t’s easy to see that @ is measurable, and that
A measurable <= A® measurable (7.9)
We have

ENn(AuB)=(ENnA)U(ENB)

=(ENA)U(EnBNA%) (7-10)

Which means that YA, B measurable and VE € P(Q):

p(E) = p(E N A) + p(E N A%)
wWENA) +u(ENA°NB) + u(En A° N BY) (7.11)

WEN(AUB)) +u(EN(ANB)Y) > u(E)

v

So AU B is measurable and it follows for disjoint A, B

WENA) +u(ENA°NB) = uEN(AUB)) (7.12a)
= wENA)+puENB)=pwEN(AUB)) (7.12b)
= 1 is additive for measurable sets (7.12¢)

Then by using induction we can see that finite unions of measurable sets are
measurable and that for Ay, --- , A, measurable, pairwise disjoint sets

I (U Ai) = u(A) (7.13)
i=1 =1
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holds. Now let (A;)ien be pairwise disjoint measurable sets, and let

=J4 S:=|J A (7.14)
i=1 =1
Then VE € P(Q)
WENS) = uENA) (7.15)
=1

To check measurability, consider

p(E) > Sn) + w(ENS;)

n(E
i (ENA;) +pu(EnSY) (7.16)

Forn — oo:

E)>> wENA)+uEnNS°)
=1
>u (ENS) +u(ENS°) (7.17)
~——
U2, EnA;
> u(E)

Thus S is measurable
> WENA)=p (Eﬂ UAZ) (7.18)
i=1 i=1

For E = Q the o-additivity follows. It is left to show that for measurable

(but not necessarily disjoint) A;, that \J;2, A is also measurable. To do that
define

Bi=A4;\ | 4 (7.19)
Then the B; are disjoint and measurable. Thus

Usi=J4 (7.20)
=1 =1

18 measurable.
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Definition 7.12. Application of the previous theorem on the outer measure
from Theorem 7.9 gives us the o-algebra of Lebesgue-measurable sets and
the Lebesgue-measure .

Remark 7.13. A C R is said to be a null set if its outer measure is 0.
Obviously

A({0}) =0
For countable A we have
AA) = A(Upea{z}) < D> AM{z}) =0
z€A

So N, Z and Q are null sets. Null sets are measurable, because

VE€P[R): MENA)4NENAY) =AENAY) <A(E)
0

Theorem 7.14. Intervals are Lebesque measurable and
AM[a,b))=b—a

Proof. Let A be a bounded interval. Decompose R into the intervals
R=ILUAUIR (7.21)

For I € T we have INIy, INA, INIgr bounded (or empty) intervals. Now
let £ C P(R) and

Eclun (7.22)
€N
a covering. Then
EnAc|JLnA  EnA®c|J((ILinIy)u(LinIg) (7.23)
1€EN 1€EN
are coverings of countably many intervals, and we have

DUy = D> MILNA) + > (ULNIL) + (TN R))

€N i€Enatn €N (724)
> ANENA)+\ENAY)

A is the infimum of all possible coverings

ME) > MENA)+ MENAY) (7.25)
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And thus A is measurable. It is left to show that
A=la,b] = ANA)=b—a (7.26)

So let (I,,) C Z such that

1= (I)<b-a (7.27)

neN

First, let all I, be open. Choose

A, = A\ (O 1,.) (7.28)

=1

Those A, are non-empty, since A cannot be covered by finitely many in-
tervals of length < b — a. Choose a sequence x, € A, VYn € N. Since A
is a compact there exists a toward x € A convergent subsequence of x,.
The point z cannot be contained in any I,,, since because the I, are open,
infinitely many z,, would be contained in I,,, which would contradict the
construction of A,,.

= (I,,) do not cover A (7.29)

For arbitrary I, (so not necessarily open), let (x) be the sequence of the
(countably many) boundary points of the intervals.

627’)—2_%0 (7.30)
And thus
{IZ» ieN}U{(mk—Q%,xk+2%) ’VkeN} (7.31)

is a covering of A by countably many open intervals of total length

oo
2¢ b—a—-1 b—a-+l
§l+22—k:l+ ;= <b-a (7.32)
k=1
which is impossible due to our construction above. O

Theorem 7.15. Open and closed sets are Lebesque measurable.

Proof. Let O C R be open. It is to show that

0 = U (I,7r) = O Lebesgue measurable (7.33)

I,reQ
(L,r)co
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Let = € O, since O is open
Je>0: (x—ex+€)CO (7.34)
Since Q is dense in R
d,reQ: z—e<l<zandr<r<e+zx (7.35)

Soxz € (I,r) C O. If C is a closed set, then R\ C is open and thus Lebesgue
measurable.

— C =R\ (R\ C) Lebesgue measurable (7.36)

O]

Remark 7.16. The Lebesgue-o-algebra contains many more sets. All sets
that are ”created by normal means” are Lebesgue measurable.

Remark 7.17. For A C R and = € R we define
Atz ={y+z|ye A}
A measure on R is said to be invariant under translation, if
wlA)=u(A+z) YA€ A z€R

Since translations of intervals result in intervals, the (outer) Lebesgue mea-
sure is invariant under translation. One can show that the Lebesgue measure
is the only translational symmetric measure on R, with

A(0,1]) =1

Theorem 7.18. Let (2, A, 1) be a measure space. For a monotonically
increasing sequence (Ayp) C A (this means A, C Apt1 Vn € N), we have

ﬂ/(LJ<An> :7£g;M(An)::Supﬂ(An)

neN neN

For a monotonically decreasing sequence (By,) C A we have

f (ﬂ Bn) = lim u(B,) = inf pu(B,)

n—o00 neN
neN

if wW(By) < oo for N €N
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Proof. If 1(A,) = oo for some n € N there is nothing to show. So let
w(Ay) <oo VneN (7.37)

Set Ag = & and define
Cpi=A,\ Ap—1 (7.38)

These C), are pairwise disjoint, and thus

o (U An) =y (U Cn) = ilCn) =D (1(An) — p(An-1))
n=1

neN neN = n=1
Telescoping series (739)
= lim u(Ap) — p(Ao)
n—oo N——
=0
Now let u(By) < oo — u(By) < oo Vn > N. Set
D, =By \ B, ¥n>N (7.40)

(D,,) is monotonically increasing and thus

o0 o0 o0 C
| Dn=|J BynBY =Byn < N Bn) = ByNBY = By \ B (7.41)
n=N n=N n=N
N—_————
B
Which in turn implies
p(BN) = p(B) = u(By \ B) = lim p(By \ By)
n OO%,—/
(BN )=p(Bn) (7.42)
= p(By) = lim p(By)
O

Remark 7.19. p(By) < oo for some N € N is a necessarily requirement.

7.2 Integrals

Let (£2, A, 1) be a measure space. The most important example is on R with
the Lebesgue-o-algebra and the Lebesgue measure. We have one technical
requirement, and that is that (€, .4, 1) is a o-finite measure space, i.e.

J(E,) C A: UEn:Qand,u(En)<oo Vn € N
neN

On R this requirement is fulfilled by defining FE,, = [-n,n].
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Remark 7.20 (Notation). Let ®(z) be a statement depending on x € Q. We
write [®] for
{z € Q| ®(2)}

Example: y € C
[f=yl={zeQlf@)=y}=F"(
We write ”® holds” for ”®(z) holds Va € Q”. For example ” f > ¢” instead
of " f(z) > g(z) Yz e Q.
® is said to hold ”almost everywhere” (a.e.) if the set

{z[-Q(2)}

is a null set. For example, ” f > g almost everywhere” means p([f < g]) = 0.
The sequence (f,) converges pointwise a.e. towards f if

[lim fo# f] = {zeq|lm fu(2) # f@2)}
is a null set.
Definition 7.21. Let A € A, then
14:2—R
1, z€A
w —

0, else
is said to be the characteristic function of A. A is the support of 1,4. With
this we can define the space of simple functions

X = {iaiﬂ/}

=1

X notates the non-negative, simple functions.

Remark 7.22. (i) Let A,Be€ A

Ianp=14-1p
lavp=1a+1p—1anp=1a+1p—14lp

(ii) The set X is a vector space, and the product of characteristic functions
is another characteristic function, i.e.

f,geX = f-geX

Thus X is an algebra.
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(iii) If Ay,---, Ay is a decomposition of €2, which means they are disjoint
and
n
A =Q
i=1
then

n
(Li) = 1o = Z La,
i=1

(iv) The representation of simple functions as a linear combination is not
unique

(v) One can easily see that simple functions can only assume finitely many
values, and their support [f # 0] has a finite measure. The canonical

representation is
f= Z 9 Liy=y
y=f()

Definition 7.23 (Integrals of simple functions). Let f € X in canonical

representation
[e.e]
F=Y aily,
i=1

Then we define

/fdu = aip(Ay)
=1

Remark 7.24. This sum is always finite, the only A; with infinite measure
is that where a; =0
a; - Az =0-00=0

Let f = Z;”Zl bjlp, be another representation of f, so By,---,Bp, is a
decomposition. If 4; N B; # @ i.e.

Hl’GAiﬂBj: f(x):ai:bj
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Then
/fd,u:Zaiu(Ai) :Zaiu Aiﬂ UBj = Zai ,U,(AZ‘QBJ'>
i=1 i=1 J=1 i=1 J=1
U7Z, (AinB;)
= Z ZbJN(Az N B]) = Zb],u ((U A7,> N BJ>
i=1 j=1 J=1 i=1

= bju(B)
j=1

Theorem 7.25. Let f,g be simple functions, a € C. Then

/(f+ag)d#=/fdﬂ+a/gdﬂ

If f, g are real-valued and f < g a.e., then

[ran< [oau
/fduz/gdu

Finally, the triangle inequality holds

'/fdu‘é/!fldu

Proof. Let f, g be in canonical representation

And especially if f =g a.e.

f=> aily, (7.43a) g=>Y bjlp, (7.43b)
i=1 j=1



7.2. INTEGRALS 175

Then

f—i—Oég—Zaz]lA +O¢Zb 1p,

=1 j=1
:ZCLZI]-AZ Z]lB] —l—Oéij]lBJ (Z ]]'Az> (7.44)
i=1 7=1 7j=1 =1
Y 1
1
ZZ (lrL +Oéb )]].A mB
=1 j=1
A;NBjwithie {1,--- ,n},je{l,---,m} is a decomposition of 2
U 4 U n{UBi| =2 (7.45)
=1 =1 7j=1
Jj=1 —_——
Q
This means that
/f+ag dp = ZZ@H—OJ) (A; N Bj)
=1 j=1
:Zaiu AN UB]' +azbjﬂ<<UAi>mBj>
i=1 j=1 j=1 i=1

:/fd,u—l—a/gd,u

Now let f > 0 almsot everywhere, i.e. [f < 0] is a null set. If a; < 0,
then A; C [f < 0], and then p(A;) = 0 and thus the integral is a sum over
non-negative values, so it is non-negative itself. If f < g a.e., theng— f >0

o 0< /(g—f)du=/gdu—/fdu (7.46)

Finally to show the triangle inequality

\/ fdu\ Zazu <Z\azm )= [1flan @an

O]
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Remark 7.26. From linearity follows, that f can be in any representation

n
f= Z a;ly,
i1

and the integral will still be

[ ran=> an(a)
=1

Remark 7.27. Notice how the integrals so far did not have any integration
variables. The integrals map functions (not their values!) to numbers. If
the integration variable is of concern, we can write

[ H@ duto)

For Lebesgue integrals we define

[r@ae= [~ fw)as

Definition 7.28. f: ) — Q is said to be measurable, if there is a sequence
of simple functions (f,,) C X that converge pointwise towards f.

Remark 7.29. (i) For real-valued functions f

f measurable <= [f<yle A Vye A

(ii) Simple functions and characteristic functions are measurable.
(iii) Continuous functions are Lebesgue measurable.

(iv) Sums, products, quotients (if existant) of measurable sets are measur-
able.

(v) If (fn) is a sequence of measurable functions, then

sup fn lim sup fp, lim f,

neN n—o00 n—oo

are measurable if they exist.

All functions from now on will be considered measurable.
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Definition 7.30. Let f: Q — [0,00), then

/fdurzsup{/gdu'g€X+, g<f}

Remark 7.31. (i) This integral can be oo.

(i)

(iii)

(iv)

If f is a non-negative, simple function, then Vh that are non-negative,
simple functions with h < f

[rans< [ ran

The old integral (integral over simple functions) is identical to this
one.

Let f,g be non-negative and f < g a.e. Define A = [f < g]. Then for
all simple h < f we have
h-14<g

/hd,u:/h-ll,qdug/gd,u

[ ran=swp [nduz [gan
h

/fdu:/gdu if f=ga.e.

If [f > 0] is a null set, then f is the zero function a.e. and

/fdu—O

/fd/,L:Oandsz = f=0a.e.

and
Which implies

Especially

The inverse is also true

Let Ay, :=[f > 7] € A, then

1
sl <f VkeN
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Since [ fdp = 0, this implies

1 1
/kllAk dp = pu(Ar) =0
= u(Ax) =0 VkeN

The Aj are monotonically increasing, and thus due to the continuity
of the measure

0= lim ju(4y) = p (U f > ,11) — u([f = 0))

keN

The definition means 3 (f,) C X such that f, < f

[ fnd == [ rau

Define g, = max{fi, -+, fn}. These are also simple functions and
fn<gn < f VneN.

— [hans [guaus [1au
[ ndi— [ 1au
!

/gndu—>/fdu

The sequence g,, is monotonic.

And thus

Let (gn) be convergent to g : 2 — [0,00). Then

g<f = /gdug/fdu

Vn € N we have g, < g, and thus

n—o0

lim gndus/gdu

Vf > 0 there exists a monotonically increasing sequence of simple
function such that

/gndu—>/fdu

and thus g = f a.e.
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(vii)
Jenau=c [ s e

[rans [gaus [+9a

Theorem 7.32 (Monotone Convergence Theorem). Let f > 0 and (fy)
a monotonically increasing sequence of functions converging pointwise to f
a.e. Then

lim ﬁmuzjfmt
n—oo

Proof. First, let lim,, oo fr, = f everywhere. Since (f,) is monotonic, this
must also hold for [ f, dpu, so

lim hwé/ﬁu (7.48)
First, consider the special case (A,) C A monotonically increasing, with
UJ4n=0 (7.49)
neN
Then
li_)m /f]lAnd,u = /fdu (7.50)
For f = 113
nh_}n(r)lo 1pla, du = nh_}ngo uw(BNAy)
IBnan
=u(|J B4y (7.51)
neN
=u(B) = /Ileu

Since both sides are lienear in f (at least for simple functions), the equality
holds for arbitrary simple functions. Now let f > 0 be arbitrary and h € X,

such that for e > 0
/hdu > /fdu - g (7.52)

and thus h < f. From this it follows that

INeNVR>N: /h]lAnduz/hd,u; (7.53)
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And thus
Vn>N: /hﬂAnd,uz/fdu—e

180

(7.54)

which proves Equation (7.50) for arbitrary f > 0. Now let ¢ € (0,1), and

set

Since f, are monotonic, the A,, are as well, and

UAn:Q

neN
Then
/fndﬂ > /fnﬂAndu > /CfﬂAndMZC/fﬂAndH
Thus
o [ rradn = [ o

Which in turn implies

i [ fudp = [ g

n—oo
For ¢ — 1 we have

Jim [ frdp = / fdu
And if f,, — f only a.e.

A= [ lim f, = f]
n—0o0

then '\ A is a null set.

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)



7.2. INTEGRALS 181

Ezample 7.33. Calculate the integral of f(y) =yl 4 (z)

2" —1 1
fa=Y ko Lk e (1) )
k=0

is a monotonically increasing sequence which converges to f on R\ {z}.

271 " . 22 2n—1
[ =3 kg () =5 3
k=0 k=0
a2t an(2n —1)
T 92n 9.9n
_x2 2n —1
2 on

Hi
2

Ezample 7.34. Consider f,, = nl (0,1)- This sequence converges pointwise to

/fndu—n-

This is due to f, not being monotonic increasing.

Ezample 7.35. Let (a,) C C, and define

the zero function. But

—14#0

SRS

fTL = an]l[n,n—‘rl]
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This sequence converges pointwise to 0, but

/fnd)\ =a,

depends on (a,) and can converge to any value (or even diverge).

Definition 7.36. A function f: ) — C is said to be integrable if

[ 1f1dn <

A sequence of simple functions (f,,) is said to be an approximating sequence
of fif
/ |f = fuldp 2250

Corollary 7.37. Let f,g >0

/(f+g)du=/fdu+/gdﬂ

Proof. Let (fn),(gn) C X be monotone sequences with f, — f, gn — g
almost everywhere. Then (f, + g,) is monotonically increasing as well and
converge pointwise to (f + ¢g) almost everywhere.

[ lim f, # f} null set, [ lim g, # g] null set
n—oo n—o0

(7.63)
= [l fo 1] 0 | Jim g # 6] ol s
This implies
/(f +g)dp = lim /(fn +gn)dp = lim / fndp + Jgngo/gndu
(7.64)
= / fdp+ / gdp
O

Remark 7.38. (i) The set of integrable functions is a vector space, because
for f, g integrable and o € C

t/v+ammm;/uwwwme

= [ 171ds+ lal [ lglan < o0

However, f - g is not integrable in general!
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(ii) Let f > 0 be integrable, and (f,) C X such that f, — f pointwise
a.e.

lim [ fodp= /fd,u < 00
n—oo

Vn € N:
J17=sabdn= [~ = [ rau— [ fuan =50

(iii) Let f: Q2 — R be a function. Decompose the function into a positive
and a negative part:

fv =1 Tg=q fei==FTy<o
f+7f— > 07 and
f=r-r fl=f++ f-

(iv) |Re f] <|f], Im f] < |f|. If f is integrable, then Re(f) and Im(f) are
also integrable.

(v) Let f, g be arbitrary, and (f,), (g,) approximating sequences for f and
g. Then for a € C:

[15+ag=(fa+agidus [1f = fdura [lg- g
= [1£ = fdu+ lal [ 19 = gulan

n—o0

0

Thus f, + ag, is an approximating sequence for f + ag

(vi) Consider

f=(Ref)y —Ref)_)+i(Imf), —Imf)_)

If f is integrable, then all the terms are integrable as well and have
approximating sequences. Thus, f has an approximating sequence.

(vii) Now let (f,) be an approximating sequence for f. Let € > 0, then

€

dINeNVn>N: /f—fn]du<2
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VYn,m > N

‘/nw—/mw}{ﬂm+mm4

s/m—m@t
s/ﬂm—fwwf—nMdu

<€
Which means ([ f,du) is a Cauchy sequence, so it converges to I € C

(viii) Let (g,) be another approximating sequence for f

andu—/gndu‘ S/Ifn—gnldu
< [t =1l + [ 1 = guldn =0

So the integral is invariant to the choice of approximating sequence.

Definition 7.39. Let f be integrable, and define

[ o= Jim [ fud

for some approximating sequence (f,,) of f.

Remark 7.40. If f is a simple function, then (fy),cy is an approximating
sequence. The new integral definition is compatible with the integral for
simple functions. and with the integral for non-negative functions.

Theorem 7.41. Let f, g be integrable.
(1)
Va e C: /(f—l—oag)du:/fd,u—i-a/gdu

(i) If f < g a.e., then
[ fan< [ o

f=gae = /fd,u:/gd,u

and
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‘/fdu‘ < [ 171w

Proof. Let (fy), (9n) be approximating sequences for f and g. Then (f, +
agy) is an approximating sequence for (f + ag).

(iii)

/ (f+ag)dp = lim / (fotagn)dp = lim / fadp+ lim. / gndp (7.65)

[ fdu S gdp

To prove the second statement, let f < g a.e. Then (g — f)— =0 a.e.

- /(g—f) =0 (7.66)

And thus

/gdﬂ—/fduz/(g—f)du 767
=/(9—f)+du—/(g—f)—du20 |

The final statement is proven by applying the reverse triangle inequality

S =10l < [17 = gl =50 (7.68)

This means if (|f,|) is an approximating sequence for |f|, then
Jisian= i [ 1ot | [ g = | [ a0
O

Remark 7.42. For A C A we define

/gdﬂrz/gﬂAdﬂ
A

gl 4 can be integrable, even if g isn’t. The above integral doesn’t depend on
the behavior of g outside of A. We use [, gdp even if g isn’t defined outside
of A. Integrals are independent from the behavior on null sets, so

1
1
/ —dxr =0
1

is perfectly fine, even though the integrand is not defined for x = 0.
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Ezample 7.43. Let @ = N, A = P(Q) and p the counting measure. Let
f:N—[0,00), then

N
IN=flp. Ny = Zf(n)ﬂ{n}
n=1

is a sequence of monotonically increasing, simple functions that converge to
f pointwise.

N o)
[ ga= i [ = gim S (o = 3 500

Thus we can conclude

f N — C integrable < /|f]du=2]f(n)| < 0o

n=1

and

[ = S fn)

7.3 Integrals over the real numbers

Definition 7.44. Let a,b € R, a < b and f : [a,b] — C integrable. Then

set b
/a f(x)dz := /(a’b) fdd = /f “LgpdA

/b " fla)de = — /  fe)da

Remark 7.45. Let a,b € R, a < b, then every bounded function is integrable
over (a,b)

and

[ oafiaxs [ s (@l = Il [ Landd= [l (- a)
(a,b) (a,b) z€(a,b) (a,b)
—_—— —_——
€R A((a,d))
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If f is continuous on [a, b] then it is also bounded. Let a < ¢ < b
/ f d.l‘ = /f]l ab)d)\ /f ]l(a c) + ]l(c b))d)\
= /f . ﬂ(a,c)d)‘ + /f . ﬂ(c’b)dA
c b
= / f(z)dz + / f(z)dz

One can easily see that this formula holds for any ¢ € R.

Theorem 7.46 (Mean value theorem for integrals). Let a,b € R, a < b and
f,9:[a,b] = R continuous with g > 0. Then 3¢ € (a,b) such that

[t =19 [ g

FEspecially, 3n € (a,b) such that

/f ()b - a)

Proof. Let f be continuous, and [a, b] compact. Then define

°= .2 ) =)
Thus,
3xm, xm € [a7 b] : f($m) =6 f(xM) =C (770)
Define @ := min {2, z3s} and b := max {z,,, zps}. Then
g(x) < f(x)g(x) < Cy(x) (7.71)
If we define .
I= / g(x)dz (7.72)
then we have )
c-fg/ <C.1 (7.73)

Due to the mean value theorem, 3¢ € (a,b) C (a,b) such that

b
— 1 | f@gas (7.74)
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Definition 7.47. Let a,b € R, a < b and f : [a,b] — C. Then
F:la,b] - C

is said to be the antiderivative of f, if it is continuous, on [a, b] differentiable
and F' = f.

Remark 7.48. Let F,G be antiderivatives of f. Then on (a,b) we have
(F-G))=F -G =f-f=0

Thus F — G = ¢ for ¢ € C. Since F,G are continuous, F' — G = ¢ also holds
on [a,b].

Theorem 7.49 (Fundamental Theorem of Calculus). Let a,b € R, a < b
and f : [a,b] = C continuous. Then for arbitrary xo € |a,b] the function

m%—jéjf@kw

is an antiderivative of f. Let G be an antiderivative of f, then

b
/f@@=e@—e@

Proof. First, let f be real-vauled.

=1/$f@ﬁw (7.75)

For a fixed x € [a,b] and h such that z + h € [a, b] we have

F(x—i—h)—F(:r):/ y)dy — / fy

- (7.76)
:/‘ Fy)dy = £(€) - h

with &, € (z,x + h) from the mean value theorem. For h — 0, the &,
converges to z, and thus f(&,) — f(x)

= lim (F(x+h) — F(z)) =0 (7.77)
h—0
so F' is continuous. For z € (a,b) we have x + h € (a,b) for a small enough
h, and then

F(z+h) - F(2) _ %1_% f(&) = flz) = F'(2) (7.78)

h—0
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If G is another antiderivative then G = F 4+ ¢ with ¢ € R.

b x0 b
L/f@myz/‘f@myﬁ/f@ﬁyszrwwwzaw—Gm>W7w

For complex-valued f, simply decompose f into a real and imaginary part.
O

Remark 7.50. The antiderivative of f is often denoted as
/ f(z)dz indefinite integral

This notation is also used for

/ f(x)dz definite integral

Corollary 7.51 (Partial Integration). Let a,b € R, a <b and f,g: [a,c] —
C continuously differentiable. Then

/f@mmezﬂ@ﬂ@—/f@M@Mx

And the definite integral is

b b
/ fl(@)g(x)dz = f(b)g(b) — f(a)g(a) —/ f(z)g (z)dz

Proof. Let H : [a,b] — C be the antiderivative of fg’. Then fg — H is
continuously differentiable, and

(fg—H) =fg+fd—H =/fyg (7.80)

so fg— H is an antiderivative of f’g. From the fundamental theorem follows

b
/"fumqu=Up—me—uy—me
— FB)g(b) — f(a)gla) — (FH(b) — H(a))
—_—
ff f(x)g' (x)dz

(7.81)
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Corollary 7.52 (Substitution). Let a,b € R, a < b and g : [a,b] — R
continuously differentiable. Choose & = min g([a,b]) and n = max g([a,b]).
Let

fil§n —C

/ F(9(@)) (@)dz = / f(w)dy
for (y = g(x)), and

/ F(g(a))g(2)dz = /g (gj)ﬂy)dy

Proof. Let F be an antiderivative of f, then F' o g is continuously differen-
tiable, and due to the chain rule

(Fog)(x) =F(g(x))g'(x) = fl9(=))g (z) (7.82)

thus F o g is an antiderivative of (f o g)¢g’

be continuous. Then

/ F(g(2)d (@)dz = (F o g)(b) — (F o g)(a) = Fg(b)) — Flg(a))

g(b)

— / f(y)dy
g(a)

Ezample 7.53. Consider

sin x cos' z
tanx = = —
COS T COS T

We have to determine the antiderivative of f(y) = % with y = cosz

1
—/dy: —Iny
Yy

/tanxdx = —In |cos x|

After resubstituting we get
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The derivative of this function is identical to tan wherever it is defined. If
we want to calculate definite integrals like

b
/ tan xdx
a

there cannot be any incontinuities between a and b.
Ezample 7.54. Consider

F:(0,00) — R
o0 6—1‘
a »—>/ dx
o *+ta
Is this function continuous?

Corollary 7.55. Let (X,d) be a metric space, f: Q2 x X — C and a € X.
Let f(-,a) be integrable Va € X and let f(w,-) be continuous in a Yw € €.
Let U be a neighbourhood of a and g an integrable function (independent
from a) such that

[f(w,a)] < g(w) YweQVaelU
Then the function
F:X—C

ar— [ w0

1S continuous in a.

Proof. Let (an) C X be a sequence with a, — a. Set f, = f(-,an). For
sufficiently bit n, a, is in the neighbourhood U, and thus

|fn| = ‘f(aan)| <g (7'84)
Then Yw € Q)
i fu(w) = lim f(w,an) = f(w,8) (7.85)
And
lim Fay) = lim [ f(w)du(w)
= /nlggo f(w,an)dp (7.86)
- [ fo.a)ut)
= F(a)

The sequence criterion for continuity tells os that F' is continuous in a. [
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Ezample 7.56. Let a € (0,00). Then

e*ﬁ? e*I —x

Va € <a’ oo) Vz € ]0,00) : < — integrable
2 T+a g

Thus, F' is continuous in a@. Since @ was arbitrary, F is continuous.

Corollary 7.57. Let X C R" be open, f: Qx X - C anda € X, f(-,a)
integrable Ya € X. Let U be a neighbourhood of a, and f(w,-) differentiable
Yw € Q in every point of U. Let g be integrable (independent from a) such
that

[Daf(w,a)|| < g(w)
Then the function

F: X —C

s [ o))

1s differentiable in a and

DF(@ = [ Dafw.@)du(e)

Proof. Without proof. O

Example 7.58. The term

—T

T+ a
is differentiable in terms of a
d e™*
daz+a

e’ 4 a
— < — - —
(x+a)2*d2€ Va€<2,oo> Va € [0, 00)

Thus F' is differentiable and

F'(a) = /(xig;)zdx

Since a was arbitrary, F' is differentiable.
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7.4 Product measures and Fubini’s Theorem

Ezample 7.59. Let
f: [07 1] X [07 1] — [0,00)

Question: What is the volume (or the A? measure) under the graph of f,
ie.

{(z,y,2) e R*|0 < 2 < f(a,y)}

The possibilities are

0 0 JO

From now on we define (2, A, ) and (®, B,v) to be measure spaces.

Definition 7.60. The product o-algebra A® B is the smallest o-algebra on
Q) x ® that contains all sets of type A x B for A € A, B € B.
Examples for A x B are

A A

W
W
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NO examples for A x B are

A

W

~

A A
A measure 9 defined on A ® B is said to be a product measure of p, v if
WA X B)=uA)v(B) Ac A,BeB

Remark 7.61. Product measures always exist. For o-finite measure spaces
they are unique. Notation:

pev or pt=pepu

Example 7.62. R with Lebesgue measure A. A? is the product measure on
R2.
N*([a, 0] x [e,d]) = A, B])A([c, d))
=((b—a)(d-rc)

This means the product measure characterizes the area. Analogously this
can be extended for A3, \* etc.

Ezample 7.63. Consider
f:R? —R

[= Z (Tpns1)2 = Lt 1n42) < rint1))
n=0
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// f(z,y)dzdy =0 // f(z,y)dydz =1

But the integral [ fd\? doesn’t exist

/f|d)\2:i2:oo
n=0

Theorem 7.64 (Tonelli’s Theorem). Let f: Q2 x & — [0,00) be measurable
(in terms of A® B). Then the functions

wr— f(w, $)

are measurable for almost all ¢ € ®. Analogously

¢ r— f(w, )

is measurable for almost all w € €.

¢ —> /f(w,qﬁ)du(w) measurable
W /f(w,¢)du(¢) measurable

and
[ .0 dueo v @.0) = [[ few.6)dut)ane)
~ [[ Hw.opm@rante)

Furthermore, f is integrable in terms of u @ v is one of the above integrals
is finite.
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Proof. Without proof. O
Corollary 7.65 (Cavalieri’s Principle). Let A C A® B. Define
Aw:{¢€q>|(w7d)) GA}

Then
wr— v(Ay)

1s measurable and
(9 0)(4) = [ V(A du(4.)
Proof. 1t is easy to see
(w,0) € A <= ¢p€ A, (7.87)

Thus we can see
la(w,¢) = 1a,(¢) (7.88)
And then

(1 ® v)(A) = / 1(w, 6) d( © ) (w, 6)

:// 1a(w,¢)dv(¢)du (w) (7.89)
La, ()
:/V(Aw) dp (w)
]

Theorem 7.66 (Fubini’s Theorem). Let f: Q x ® — K be measurable with
measures [, v, which is integrable in terms of u @ v. Then the functions
w — f(w,d) are measurable and integrable for v-almost every ¢ € ®, and
the functions ¢ — f(w, @) are measurable and integrable for p-almost every
w € Q. The functions

s / f(w. 6) dv (9) b / f(@,6) dpi ()

are measurable and integrable, and
[ twsrdueon = [[ fw.0 0@
— [[ 1w 0 dn @ av @)
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Proof. Without proof. O
Corollary 7.67. Let a;,b; € R, a; <b; Vie{l,--- ,n}.
D = [al,bl] X [ag,bz] X oo X [an,bn]

Let f: D — R be continuous or bounded. Then

by bn,
D
a1 an

and the order of integration is irrelevant.

Proof. f is bounded by k € R (continuous with compact domain)

/]f|d)\”§/kd)\”:k-(bl—al)(bg—a2)~-(bn—an)<oo (7.90)
D D

f is A™-integrable. By applying Fubini’s theorem the desired statement
follows. o

Ezample 7.68. Calculate the center of mass of

A:{(m,y)GRQ}nyQ/\:L‘Sl}

The center of mass is defined by

/ @) dA? (@, y)

dA
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In component form this is
[ a2 @y = [oLaep) ¥ @)
A

_ / rLa(z,y) AN (2, y)
0,1]x[~1,1]

1 r1
:/0 /_lﬂ[—ﬁ,ﬁ](y) dy dx

! 4
—/ :c-2-\/§d:)::g

0

Meaning the center of mass is at (%, 0).

7.5 The Transformation Theorem

Definition 7.69. Let U,V C R"™ be open. A mapping T : U — V is said
to be a diffeomorphism if it is bijective and if T and T~ are continuously
differentiable. Analogously we define

C"-diffeomorphism if it is r-times differentiable

C*°°-diffeomorphism if it is infinitely differentiable

Remark 7.70. (i) In physics, f and foT are often denoted with the same
symbol

(ii) We can apply the chain rule to 7o T~! = idy
DT(T™(y)) - DT~ (y) = Iy

Since T~ is surjective, DT (z) is invertible Vo € U. According to
the theorem about inverse functions, the inverse T~! of a bijective
mapping is continuously differentiable if DT (x) is invertible

(iii) If T is a diffeomorphism, then T~! is one too.

Ezample 7.71. (i) Polar coordinates:

T :(0,00) x (0,27) — R%\ {[0, 00] x {0}}

(r,¢) — (rcos ¢, rsin )
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(ii) Another diffeomorphism would be

T : Bl(O) — R"
x

T ——
1= [||

(iii) An example for a mapping that is no diffeomorphism would be

T:-R— R

x»—>:1:3

The Jacobian "matrix” T"(z) = 322 is not invertible.
(iv) Another counter example would be
T:(0,00) x R — R?\ {0}
(ry @) — (rcos ¢, rsin @)
This function is not injective, so it’s not a diffeomorphism.

Theorem 7.72 (Transformation Theorem). Let U,V CR" and T : U — V
a diffeomorphism. Then f : V. — R is integrable over V if and only if
foT-|det DT| is integrable over U. In this case

/ddA":/foT-|detDT|d)\”
1% U

Proof. Without proof. O

Ezample 7.73 (Area of the unit circle). The area is defined as

N (K1 (0)) = / 1k, (0) dN?
R2
We transform into polar coordinates:

U = (0,00) x (0,2m)
V =R?\ ([0,00] x {0})
~——

A2 —nullset

We define the transformation

T :(r,¢) —> (rcos ¢, rsin¢)
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Which results in

det DT(r,¢) =r
L) o T(r,¢) = Lg,1(r)

So we can calculate

N2(F (0)) = / Loy (z,y) N2 (2, y)
B

— / Lo (r) -7 dX2 (r, )
U

o) 27
= / ]]_(0’1}7“ dqbd’l”
0 0

1
= 27r/ Lo,1)(r)dr = 277/ rdr
0 0

==

Remark 7.74. (i) Consider

T:R" — R"
z+— Az A e R™"

If 3JA™!, then T is a diffeomorphism with DT = A

— /fdA2:|detA|/fon)\2

(ii) Let A be an orthogonal matrix (so a rotation/mirroring).

det A=+1 = |det A| =1

Thus, rotations and mirrorings do not change the volume.

200

(iii) Let A = diag(a,a,---,a) a € (0,00) (this is a scaling matrix). Then

det A =a"

which means that continuous scaling of a factor a scales the A"-volume

by a”.

(iv) This is a ”generalization” of the substitution rule

/R F(g(2))g (@) da = /R f(y) dy
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Ezxample 7.75. We want to compute

K—/e_xzdx
R

Kz—/e_’”2 dav/e_y2 dy—/ e (@) dN?(z,y)
R R R2

By transforming f = e~ (@*+9*) into polar coordinates

Consider

K2:/foT|detDT|d>\2
U

:/ e - dA2(r, @)
1%

0 27 5
—/ re” " drde
o Jo
o0 2
= 27r/ re” " dr
0

1 1
= 27T hm (—2€_n2 —+ > =T

n—o0 2

Thus K = /7.
Ezample 7.76 (Integrability of radial functions). Let f : [0,00] — R be
measureable and set
F:R"—R
z— f(llzl)
||I-]| is the Euclidian norm. Under which conditions is F' A"-integrable? Let
D :=(0,00) x (0,7)"2 x (0,27). And define

Dy

T:D—R"\A

7 COS @1
7 8in ¢ Cos Pg

(r.6) s 7 8in ¢1 sin @2 cos @3
T?

7 Sin ¢1 - - - Sin ¢y o COS Pp—1
rsin ¢y - - - sin ¢, _o sin ¢,
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Then | T(r, ¢)|| = r and
|det DT(r, ¢)| = r™ L sin™ 2 ¢y sin 3 g - - - sin oo = r" 1 A,,(¢)

Thus

| IP@Iav @) = [ [FoT(.0)] et DT ()| 4" (. 0)

f(r)
_ / / Y £(1)| An () dr A (6)
Dy Jo

_ / T (@) ar / Au(@)] dX™ (9)

0 Dy

<o

So F' is A"-integrable if 771 f(x) is integrable over [0, c0).

7.6 Lebesgue-Stieltjes Integral

Definition 7.77. Let F : R — R be a monotonically increasing, continuous
function. Then we set

Ap(2):=0 Ar((a,b]) = F(b) — F(a), (a,b]eT
Theorem 7.78. Ar is a measure on H.

Proof. Without proof. O

/Afd/\F

is called the Lebesgue-Stieltjes integral on R and is denoted by

/A F@)dP(x) = /A Fdrp

If A = [a,b], then we write

Definition 7.79. The integral

[ rwarw



Chapter 8

Ordinary Differential
Equations
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8.1 Solution Methods

Definition 8.1. An ordinary differential equation (ODE) is an equation of
the form
F(xvyuylv"' ’y(n)) =0

with F : R"*2 — R. n is the order of the ODE. Let I be an open interval.
A function y : I — R is a solution of the ODE if y € C"™(R) and

F(z,y(@),y (@), - ,y™(z)=0 Ve el

Ezample 8.2.
T —;2 Gravitational field
y" = —siny Pendulum
Remark 8.3. (i) Often times F is only defined on subsets of R"*2

(ii) ODEs are not simple to solve

(iii) Even if we can’t calculate explicit solutions, we can inspect the follow-
ing properties
e Existence of solutions
e Uniqueness of solutions
e Dependency of solutions from initial conditions
Sability

Ezample 8.4. (i) Let I be an open interval and f : I — R continuous.
Then the solution of

Y = f(z)

is the antiderivative of f. Let g € I, then
x
y(z) :/ ft)ydt+c ceR
o

(ii) Consider the ODE
y =y
The functions x +— ce” are solutions Ve € R. Are those all the solutions
that exist? Let y : I — R be any solution, and consider

—T

u(z) = y(x)e
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Then

So u(z) = c.

Definition 8.5 (Initial Value Problem). Let yo, - ,yn—1 € R and also
F :R"2 — R. The system of equations

F<x7y7y/7"' ay(n)):O

is said to be an initial value problem (IVP).

Ezxample 8.6. Consider the problem

This describes the movement of a point mass in the gravitational field of the
earth along a straight line through the center of the earth with the initial
position yp and the initial velocity y;.

Ezample 8.7. Consider the problem

y = —y? y(0) =1

Assume y : I — R is a solution and y(xz) > 0 Vz € I. Then

1

By integrating we get

/x ! '(t)dt /y(m) ! d
Tr = — _— — — -
0 y(t)Qy T 1 y? Y

Substitution
1 y(x) 1
= =———1Vaxel

; 1 y(x)
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So a solution is )

1 +x
The biggest domain that makes sense is (—1,00). Analogously one can
approach equations with ”separated variables”, so of the form

y(z)

y' = f(y)g(z) y(@o) = yo
Theorem 8.8 (Separation of Variables). Let I,.J be open intervals, and let
f:I—R g:J —R

be continuous with 0 # f(I). Let xy € J, yo € I. Then there exists an open
terval Io C J and xg € Iy such that the IVP

Y = f(y)g(x) y(z0) = Yo

has exactly one solution on Is. Set

v o1
mmzéfww

Then y : Is — I is uniquely defined by

Proof. f does not have any roots, thus w.l.o.g. f > 0.

1
F'(y) = — >0 = F strictly monotonically increasing (8.1)

f()

Therefore there exists an inverse function H : F(I) — I. According to the
theorem about inverse functions, H is C' and

H'() Vz e F(I) (8.2)

1
= FHR)
F(I) is an open interval containing the 0. Then we have
y(@) = H(G@) z €l (8.3)

where
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Now choose I such that z¢ € Is and G(I2) C F(I). Then

Y (z) = H'(G(z)) - G'(x)

1 ,

~raEeE) ¢ (85)
1 ) '

= @) ¢V

= f(y(z))g(z)

So y solves the ODE. However, if § : I — R some solution of the IVP, then
Vo € Iy

_ [ _ ) M
G(z) = / gteyde = [ = / W= FE@) 69)

So y(x) = H(G(x)) H

Remark 8.9. I is obviously not unique. We can find the biggest possible
domain with

U I2 = I2,max

x€ls
I> open
G(I2)CF(I)

Theorem 8.10. Let f : R — R be a continuous function, a,b,c € R and 1
an open interval. Then y: I — R is a solution of the ODE

y' = f(ax + by + ¢)
if and only if u(x) := ax + by + ¢ is a solution of
u' =a+bf(u)
Heuristic Proof. Consider
u'(x) = a+ by (x)
0

Ezample 8.11 (Euler Homogeneous ODE). Let f : R — R be a function and
I an open interval not containing the 0. Then y : I — R is a solution of the
ODE
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if and only if

_ y(w)
u(z) = L
solves the ODE
/ f(u) —Uu
u =
x

Ezample 8.12. Let f : R — R be continuous and a1, as, b1, ba, c1, ca € R such
that

al b1
as b2

£0

Now let &, ¢ be the solutions of the equation system

aZ+bg+c1 =0
a2Z + by +c2 =0

Let I be an open interval not containing the 0. Then y : I — R is a solution

to
, a1x + by + c1
y=f (e
asx + boy + co

if and only if

u:l—-—2—R
rr—ylz+3)—g

o a1+byz>
“ _f<a2+bgz

Proof. Let y: I — R be a solution to the initial equation. Then

is a solution to

, , - al(a:+:i)+b1y(:z+5:)+cl>
=y (z+i) = - -
w(z)=y(z+2)=f <a2(a: +Z) + boy(xr +2) + c2
(mx + bju(x) + a1z + by + 01>
as + bou(x) + a2® + bay + c2

The other direction is left to the reader. O
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Definition 8.13 (Exact ODE). Let D C R? be open, and p,q : D — R
continuous. The ODE

p(x,y) +q(z,y)y’ =0

is said to be exact if there exists a C'-function H : D — R, such that
O1H =p 02H = q
Such a function is called a potential function.
Theorem 8.14. Let D C R? be open, and p,q: D — R continuous. Let
p(z,y) +a(z,y)y =0

be exact and H a potential function. Furthermore let I be an open interval
and y: I — R a C'-function such that

{(z,y(@)) |z eI} CD

Then y solves the ODE if and only if 3c € R such that

H(r,y(x)) = ¢
Proof.
L) = D y@) + RHE YW @)
=p(z,y) + a(z,y)y'(z)
O

Theorem 8.15. Let D C R? be open, and p,q : D — R continuously
differentiable. If

p(z,y) +a(z,y)y =0
is exact, then
O2p = O1q

Proof. Let H be a potential C?-function. Then

Oop = 0001 H = 910, H = Oyq (8.9)

Remark 8.16. The above condition is merely necessary! However, for ”"nice”
D it can be considered sufficient.
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Ezample 8.17. Consider

(2z 4 3?) +2zyy’ =0 y(1) =1
—_—— ——
p q
Then
Oap = 2y 019 =2y

So Oop = O14. If H is a potential function, then
OuH (2,y) = p(z,y) = 22 +
= H(z,y) = /p(w,y) de = 2® + y*z + G(y)
and

OoH (x,y) = q(x,y) = 2zy = 2zy + G'(y)
= G(y)=c

So the potential function is
H(z,y) = 2° + 3’
We can insert the initial condition
H(1,1) =2
So the solution has to fulfil
2?4 y(x)’r=2 Voel

and thus

2
—44/2 =
y(x) il

Only the positive sign fulfils the initial conditions, so the solution is

This function is defined on (—o0, —v/2] U (0, /2], however due to the initial
conditions (0, /2] is the only useful domain.
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Remark 8.18. If
p(z,y) +q(z,y)y’ =0

is not exact one can try and find an ”integrating factor”, i.e. h: D — R
such that

h(z, y)p(z,y) + h(z,y)a(z,y)y" =0
is exact. A necessary condition is
(O2h(z,y)) p(z,y) + h(z,y)02p(z, y) = (O1h(z,y)) ¢(z,y) + h(z,y)O1q(z, y)

This is a partial differential equation and won’t be discussed further in this
chapter.

Definition 8.19 (Ordinary Differential Equation System). An ordinary dif-
ferential equation system (ODES) is an equation of the form

F<$7y7y/7"' 7y(n)) =0

with
F:RxREXREx ... xR — R™

Ezample 8.20. (i) Let z = (21, 22, 23), then

"o z 1 =z
[&dl 1] 121
is the Kepler problem.
(ii) The equation
b = a1b — y1br
r’ = —qgr + yobr

is called the ” Lotka-Volterra-Equation” and it models the population
of prey and predators.

Remark 8.21. The ODES
Fz,y,yy" - y™) =0
is equivalent to the ODES of first order

vy =1y
F(z,y,y1,92, sYn—1) =0 v =Y}
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8.2 The Picard-Lindelof Theorem

Ezample 8.22. Consider the ODE

y' =2y

Possible solutions are

Another solution could be
—(x —a)?, x€(—00,a)
y(w) = {0, 7 € [,
(l’ - b)27 TE (b7 OO)
for a,b € R with a < b So the IVP y(0) = 0 has many solutions.

Definition 8.23. Let D C R x R™ be open, (zg,y0) € D and f: D — R™.
We say f fulfils a local Lipschitz-condition in the point (xg, yo) if there exists
a neighbourhood U of (xg,yo) such that

1f(z,y) — f(z,2)| < Llly — z[| ¥(z,y),(z,2) €U
Ezample 8.24. Consider
f:R—R
(z,y) — 2y’
Then
f(x,y) = f(a,2)] = |2 = 2)] = |2*(y — 2)(y + 2)]
= [a?(y +2)|ly — |
o(z,y,2)

The function a(z,y, z) is unbounded, so the global Lipschitz condition isn’t
satisfied. Now choose a fixed (xg,y0) € R x R, and set

R > max {|xo, [yo }
Then Y(z,y), (z,2) € (—R,R) x (=R, R)
a(z,y,z) < R?|y + 2| < R* (ly| + |2]) < 2R3

So f fulfils a local Lipschitz condition in (zg, yo).
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Definition 8.25. Let (2, A, 1) be a measure space, f :  — R"™ measurable

and f1,---, fn are the component functions of f. So
fw) = (fi(w), fo(w), -, fulw))
f is said to be integrable if f1,--- , f,, are integrable, and we define

[ rau= ( [ fan [ g [ fndu>

Theorem 8.26. Let (2, A, 1) be a measure space, define ||-|| to be the norm
on R™ and let f: Q@ — R™ be measurable. Then f is integrable if and only

if || f]| is integrable, and
|50 < [ ns1an

Proof. Without proof. O

Lemma 8.27. Let D C R x R", (zo,y0) € D and f: D — R"™ continuous.
Let I be an open interval and y : I — R™ be continuously differentiable, such
that (z,y(x)) € D Vxz € I. Then y is a solution of the IVP

y' = f(z,y) y(zo) = Yo
if and only if y satisfies the integral equation
va)=m+ [ ey
o

Proof. Let y fulfil the IVP. Then

o)~ = yla) ~(oo) = [ y(Odt= [ fit.gle) s
) )
If y fulfils the integral equation, then
y'(z) = f(z,y(2))
O

Theorem 8.28 (Picard-Lindeléf Theorem). Let D C R x R™ be open,
(x0,y0) € D and f : D — R™ continuous such that f fulfils a local Lip-
schitz condition in y. Then de > 0 such that the IVP

Y = f(z,y) y(z0) = Yo

has exactly one solution on (rg — €,x09 + €).
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Proof. Let U C D be a neighbourhood of (zg,yo), such that

1f(z,y) = f(, 2)| < Llly — 2|l ¥Y(z,y),(2,2) €U (8.10)

Choose a,r > 0 such that

D =[zg—a,x0+a] x K.(yo) CU (8.11)

D is compact and f is continuous, i.e. f is bounded on D by M € (0, 00).
If ()l < M ¥(z,y) € D (8.12)
Choose an € such that 0 < € < ¢ and such that
eM <r eL <1 (8.13)
Set I := (x9 — €,z + €), and
X ={y:I— K,(y0) |y continuous} C C(I) (8.14)

X is closed, and thus complete. Define T': X — X with

T(y)(x) = o + / " F(t () de (8.15)
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We want to show T'(y) C

1T (y) () = yoll =

/fty dtH /Hfty )l dt

SM/ dt<eM <r (816)
Now consider
7)) = @)@l = | [ Gevt0) - sie.a00) o
[ It - ste. g ae
< [z - st as Y
< /x:Luy—gum < Lly— gl e
By taking the supremum over all z € I we get
7 = T@ e < L ly (5.15)

<1

So T : X — X is strictly contractive. According to the Banach fixed point
theorem, there exists a unique fixed point of 7" in z, that means Jy € X
such that

x
w+ [ (ty0)dt=Tw)() =yla) Vo el (8.19)
o
Due to Lemma 8.27, there eixsts a unique solution to the ODE. ]

Remark 8.29. One can approximate a fixed point by repeatedly applying 7T'.
For example consider

o(z) = yo
and define

$o = ¢ i =T (di—1) = %o +/ f(t, di—1(t))dt

This process is called Picard iteration, and the ¢; converge uniformly to the
solution.
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Ezample 8.30. Consider

v =Vl

(2 y) = F 0 1
i (P )

Which means the local Lipschitz condition is not satisfied.

Then

y—0

Theorem 8.31. Let D C R x R™ be open, f : D — R" continuously
differentiable. Then f satisfies a local Lipschitz condition in terms of y.

Proof. Let (xg,y0) € D. Choose r > 0 such that K, (zg,y0) C D. The total
derivative D, f is continuous and thus bounded on K, (xq, yo).

AL>0: [[Dyf(z,y)l <L Y(z,y) € Kr(0,%0) (8.20)
Applying the generalized mean value theorem yields

1f (2, y) = fz, 2) < sup Dy f(z,y+t(z =)y — =l

te(0.1] (8.21)
< Llly — 2|
If n =1 we can specify
$9) = S,2)| =10, (2, €)(y — )] (322
O
Ezample 8.32. Consider
" _ ¥
lylI®

The function

f:RxR3\ {0} xR® — R3 x R?
D
_3
(z,y,2) — (Z, (U3 + 95 +3) 2 y)

is continuously differentiable. So the IVP for arbitrary initial points in D
has a locally unique solution.
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Definition 8.33. Let D C R x R" be open, (z9,3) € D. A solution
§: 1 — R of the IVP
y' = f(z,y) y(zo) = Yo

is said to be a (real) continuation of the solution y : I — R™ if I C I and
y(x) = g(x) Vx € I. A solution y is said to be a maximal solution if there
are no real continuations.

Theorem 8.34. Let D C R x R™ be open, (xo,y0) € D and f : D — R”
continuous and satisfying a local Lipschitz condition in terms of y. Then

the IVP

y' = f(z,) y(zo) = Yo
has a unique solution.

Proof. First, let y : I — R™ and g : I — R" be solutions of the IVP. Then
y=gonlINI=:(a,b). Let

c=sup{¢ € [x0,b) |y =7 on [z, ]} (8.23)

According to Picard-Lindelof, such ¢ exist. Then there exists a sequence
(cn) C (g, c) such that y = g on [xg,¢,) Vn € N and ¢, — ¢. If ¢ < b, then

y(c) = 7(c) (8.24)
because y(c,) = g(cn) Vn € N. The IVP
u' = f(z,u) u(c) = y(c) (8.25)

has a locally unique solution on (¢ —€,c+¢€) € > 0 according to Picard-
Lindelof. Since the y and g are both solutions to the IVP, they are identical
on (c —¢,c+ €). However, this contradicts the construction of ¢, so ¢ = b.

= y=4¢ on [z,b) (8.26)

Analogously, one can prove y = § on (a, zg]. Now let Iy, be the union of
all open intervals that are domains of the solution of the IVP. For x € I,ax
we can choose

Ymax () = y(x) (8.27)
for arbitrary solutions y : I — R with x € I. So

Ymax : dmax — R (8.28)

is a maximal solution that is unique. ]
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Ezample 8.35. (i) Consider
Yy =eY y(1)=0
The solution to this is

y:(0,00] — R
x — In(x)

and is maximal.

/ .Y 1
= —1— - - 1
/=-ik (a0

The solution to this is

(ii) Consider

(0,00) — C
r+—ex
and is maximal.

We define (X, d) to be a metric space, z € X and A C X. Then
d(z, A) = inf {d(z,y) |y € A}

Theorem 8.36. Let D C R x R™ be open, (xg,y0) C D and f : D — R”
continuous and satisfying the local Lipschitz condition in terms of y. Let
a,b € RU{—o00,00} such that

—o00 < a < xg < boooo
and let
y:(a,b) > R
a solution of the IVP
y' = f(z,9) y(x0) = yo
Then y is the maximal solution of the IVP if and only if one of these con-
ditions
(i) b= o0
(i) lim [y (2)[| = oo
x—b
(i) lim d((z y(x)), 9D) = 0
T—
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and one of these

(i) a=—00
(i) lim [ly(a)]| = oo
(i) lim d((z. y(x)), OD) = 0

18 fulfilled.

8.3 Linear Differential Equation Systems

Definition 8.37. Let I be an open interval, and A : I — R™"*™ b: [ — R"™.
Then the ODES
y' = A(@)y + b(=)

is said to be a linear differential equation system. If b is the zero function,
then the system is homogeneous (otherwise it’s inhomogeneous). If A(z) =
const ., then the system is said to have constant coefficients.

Remark 8.38. (i) By using substitution we can transform the equation
Y™ = a1 (2)y" Y + an_o(x)y ™D + -+ agy + b(x)
into the system

Y1 = an-1()Yn—2 + an—2()yn—3 + - - - + apy + b(z)

/

n=y
Y2 = y/1
/

Yn—1 = Yp—2

(ii) Let y, z be solutions of ¢y’ = A(z)y + b(x), then y — z is the solution of
the related homogeneous equation y’ = A(z)y. This follows from

(y — 2)(x) = A(x)y(z) + b(x) — (A(x)2(z) + b(x))
= A(z)(y — 2)()

Lemma 8.39 (Gronwall’s Lemma). Let I be an open interval, oy € I,
y: I —[0,00) continuous, a,b >0 and
X
/ y(t) dt‘
xo

y(x) <a+bd
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Then

blz—xo|

y(x) < ac

220

Proof. Here we only prove x > xg, but the proof for x < zy works analo-

gously. Let € > 0 be arbitrary and choose

T

z(x) ::a+e+b/ y(t)dt

zo

Then
2 (z) = by(z) < bz(z) Vxel
And since
Z2(t)>a+e>0
we get

t =In(z) —In(2)

&3\.‘
=) B
SEIRS
|
|

(oW

Due to the monotony of the exponential function
2(z) < 2(20)e?@720) = (g 4 €)b@0)

So
y(z) < 2(x) < (a+ €)% < qebl@=w0) yp e [

From now on I will always be an open interval, and

A: ] — R™"
b: I - R"

are continuous, zg € I and yg € R.

Corollary 8.40. The IVP

/

Y = A(z)y + b(z) y(zo) = Yo

has a unique maximal solution that is defined on all of I.

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)
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Proof.

FiIxR" — R"
.36
(e9) — Ala)y + b() (8:36)

We need to show that f fulfils a local Lipschitz condition in y. Let (z1,41) €
I x R™. Choose a compact I; such that ;7 € I C I. Then A(x) is bounded
on Iy, i.e.

AL >0: [|[A(@)| <L Vrel (8.37)

And then V(z,vy), (z,2) € ; x R"
1z, y) = f(x, 2)|| = [[A(z)(y — 2)|| < [[A@)[l[ly — =] < Llly — 2] (8:38)

So f fulfils a local Lipschitz condition, and thus there exists a unique max-
imal solution. Let a,b € R U {—o00,00} such that y : (a,b) — R" is the
maximal solution. Assume b € I (so y isn’t defined on all of I). Then there
exists M, K > 0 such that ||A(z)|| < M and ||b(z)| < K and [z, b] and

yo+/ y/(t)dtH =
zo

<ol + [ 1AWyl e+ [ o))

ly(z) =

Yo + / x A()y(t) + b(t) dtH

< lloll + Ko — )+ 01 [ (o)l a
' (8.39)

Applying Gronwall’s Lemma onto ||y(t)|| yields

(@)l < (lyoll + K (b = wo)) ™*=7! < (|lyo]| + K (b — o)) M=)
(8.40)
and thus y is bounded on [z¢,b). So none of the conditions from Theo-
rem 8.36 are satisfied, and therefore b ¢ I. This mean that y is defined up
to the right boundary of I. O

Remark 8.41. One can show that for linear systems, the Picard iteration
leads to a solution that converges on all of I. This would lead to an alter-
native proof.

Corollary 8.42. Let y,z: I — R"™ be solutions of the ODES
y' = A(@)y + b(=)

Then the following are equivalent
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(i) y(x) = z(z) Ve el
(it) y(zo) = z(z0)
(

(iii) y(x) = z(x) for somex €1

Proof. (i) = (i), (i) (731) is trivial. To prove (iii) = (i), let
x1 € I such that y; = y(x1) = z(x1). Then y, z are solutions to the IVP
y' = A(z)y + b(c) y(z1) = v (8.41)

Since this problem has unique solutions
y==z (8.42)
must hold. 0

Theorem 8.43. The solution set of the homogeneous ODES

S0

Vi={y: I > R"|y(z) = Alz)y(z) Yo el}

is an n-dimensional linear subspace of C1(I,R™).

Proof. Proving that V is a vector space is trivial. So let ej,---,e, be a
basis of R™ and let y; be the unique solutions of the initial value problem
y' = Az)y y(xo) =e; i€ {1, ,n}
Then yq,--- ,yn is a basis of V. To prove their linear independence, let
aig, - ,a, € R such that
a1y1 + -4 AnYn = 0 (843)
then
a1y1(zo) + -+ + anyn(wo) = arer + -+ + anen, =0 (8.44)
Since the eq, - - - , e, are linear independent
ap=ag=-=a, =0 (8.45)
To prove that the y;,--- ,y, span V, set z € V and choose a1,...,a, € R
such that

arer + ageg + - - + ane, = z(xp) (8.46)
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Then the z and ayy; + - - - + apy, are maximal solutions of the ODES that
are equal in xg. Thus
z2=a1y1 + -+ Quln (8.47)

O

Definition 8.44. A basis y1,- -, y, of V is said to be a fundamental system
of the ODES

y = Alx)y
Analogously, n linearly independent solutions of the equation
Y™ = ap_1(2)y" ) + an_a(z)y™ D 4+ -+ + agy
are said to be a fundamental system.

Ezample 8.45. Consider the inhomogeneous equation
y' = sin(x)y + sin(x) cos(x)

First, find the solutions to the homogeneous equation
/

Y .
= =sin(x)
Y

This can be done via integration

y/(t) = — COS(T C
] Ayt = —eoste) +

Iny+c=—cos(z)+c

Then the solution is
y=Ke cos(x)

The fundamental system in this case is e~ “**. We can use a technique

called ”variation of the constant” to find a solution of the inhomogeneous
equation. Define

y(x) = Cla)e =)

Deriving this gives
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Resubstituting this into the initial equation yields
C'(z)e~ 5@ +W—W+sm ) cos(x)
C'(x)e™ @) = sin(z) cos(z)

C'(x) = sin(x) cos(x)e

Cfa) = (1- cos(x))em(z)

COS
So the general solution to the ODE is
y(z) =1 — cos(z) + Ke™ @)

Theorem 8.46. Let y1, - ,y, be a fundamental system for vy = A(x)y.
Define an n X n-matriz

W(z) = (y1(2),y2(@), ..., yn(2))
Then W (x) is invertible Vx € I and
z: I —R"

x — W(x) /w W (t)" " b(t) dt

s a solution to the inhomogeneous system

y = A(x)y + b()

Proof. According to the prerequisites the yq,--- ,y, are linearly indepen-
dent, so the y;(z),...,yn(x) are also linearly independent in R™. Thus

det W(x) #0 = W(x) invertible (8.48)

Deriving this yields
W'(z) = A(x)W (x) (8.49)

which means the i-th column of this equation is y}(x) = A(z)y;(z). Deriving
z gives us

/ — W' (x ‘ -1 T 2) " h(x
2 (z) = W'(x) LOW<t> b(t) dt + W ()W ()™ b(x) (8.50)
)2(x) +b

= A(x)z(z (z)

To apply the fundamental theorem, W(¢)b(t) should be continuous. The
mapping A — A~! is continuous on Gl(n) (space of invertible matrices). [
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Example 8.47. Consider the system
u' = v+ sin(z) v = —u + cos(x)
The homogeneous system in this case is
!/
uy (0 1\ [u
v) \-1 0)\w

The fundamental system is

Then define

Deriving this yields

2 (@) = Cl()y1(z) + Coleyyi(@) + Col)ya(w) + Cola)yh(T)
= Cuz}AyT(T] + Cola)Ays(T) + b(z)
= b(x)

This can be explicitly solved

Leading to

Thus
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So the general solution of the homogeneous equation is
[ xsin(x)
=\ cos(x)

Our next goal is to find a solution of 3y’ = Ay with A € R™™*" constant. In
one dimension the solution would be

y = Cel”
Does this also hold for n > 1?7
Remark 8.48. Let A € R™**n
=1 =1
Az _ k_ k. k
k=0 k=0

We have .
— 1 — || .
£ ] < £ - o

Thus, e4* is defined YA € R"*", Vz € R. Deriving this yields

d 4 — 1 ok — 1 k=1, k—1 A
dz© kzlk! * kzl(k—l)! “ ¢

Theorem 8.49. Let A € R"™*". The IVP

y = Ay y(xo) = vo

1s solved exactly by
y(x) = 0y,

Proof. Without proof. O

Remark 8.50. (i) The problem of solving IVPs can be reduced to a prob-
lem of calculating a matrix exponential.

(ii) The following does NOT generall hold

d A@) _ a1 A®)
xr X
3¢ = Al(z)e

GA+B _ AB
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(iii) Let v be an eigenvector of A to the eigenvalue A. Then

Ezample 8.51. Consider the IVP

() -C o)) 0

This A is diagonalizable and has the eigenvalues
A =-—1 A =1

and the eigenvectors

) ()

So we can solve this ODES by calculating

1 1
eMyy = e 5(”1 +v2) = 5 (6’\1%1 + 6)‘2%2>
1
=3 (e‘rm +e” vg)
And thus
1 x —x 1 x —T
y(ac):i(e +e7") z(x)zi(e —e ")

Remark 8.52. Often the process above is formulated as follows: Start by
defining
y(x)=c-eMv c,AeKandv € R

Insert this into the ODE
exe™ = ce™ Av

So A is an eigenvalue of A to the eigenvector v.
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Theorem 8.53. Let A € R™" be diagonalizable, and vy,--- ,v, is a basis
of eigenvectors to the eigenvalues \1,--- , A,. Then the functions

yi(x) = Nty i e {1,---,n}

are a fundamental system to the ODES

y' = Ay
Proof. We have
eA%y; = Mty (8.51)
In z = 0 the
y1(0) = v1, y2(0) =v2, -+, yn(0) = vy, (8.52)
are linearly independent, so the y1, - - - , y, are also linearly independent. [

Remark 8.54. (i) There is a special case, where A € R™*" is not diago-
nalizable in the real number space, but in the complex number space.
Let A = A\, 4+ \; be the eigenvalue to the eigenvector v = v, +v;. Then

M (v, sin(\x) 4 v; cos( i)

e (v, cos(Nix) + v sin(\iz))
be linearly independent, real-valued solutions. To solve the IVP
y(x) = Ce* y(0) = yo

we want to transform it into an eigenvalue problem and find a solution
to that. Doing that gives us

y(z) = CreM%q + -+ 4+ Cre’®o,
By inserting the initial condition we can find
Chvy + Covg + -+ + Cpu, = 1o

Finding the C1,---,C), shows us that the solution is automatically
real.

(ii) If A is not diagonalizable one can try and bring A into Jordan normal
form.
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Ezample 8.55. Consider the IVP

(1) - (5 0 w= (o)

The eigenvalues and eigenvectors are

A =1 Ay = —1i

1+ (1
R S R

Thus we have the general solution
C1e™ vy + Coe ™oy
which expands to
(i+ 1)L + (1 —i)Cre” =1
(i — 1)C1L7 + (=1 — i) Cre” =0

and solves to

1 , 1 .
C]_Zz(].—’l) szi(1+l)

So the solution to the IVP is
y(x) = cos(x) z(x) = —sin(x)

Theorem 8.56. Let aj,--- ,ap—1 € C. Let \1,---, A\ be the roots of the
polynomial
ag + arA + -+ an XV AT

and vy, -+, v their multiples. Then the functions
z— zlet® e {l,--- k},le{0,--- ,Viy }

form a fundamental system for

apy + a1y’ + - + a1y 4 y™
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9.1 Line Integrals

Definition 9.1. Let I be an interval and n € N. A parametrized curve (or
path) in R™ is a continuous mapping

~v: I —R"

A parametrized curve is said to be regular if it is C* and /(t) # 0 Vt € I.
It is said to be piecewise regular if there is a disjoint decomposition

I=LULILuU---UlI,

into partial intervals such that v is regular on each partial interval.
A curve is a subset of R™ that is the image of a parametrized curve. If
C is a curve, then
~v: I —R"

is said to be the parametrization of C, if v(I) = C and if ~ is injective on I.
The curves in this chapter will always be regular.

Ezample 9.2. (i) a,k > 0:
v:R— R’
t — (cos(at),sin(at), kt)
This is the parametrization of a screw curve.

(ii) The unit circle
{(z,9) eR?|2® +y* =1}

is a curve with the parametrization

7 :[0,27] — R?
t — (cost,sint)

(iii) A square
{(x,y) € R? } max {|z1],|z2|} = 1}

is a piecewise regular curve.

Remark 9.3. Let v : I — R" be regular, f : ~v(I) — R be continuous and
a,b € I. A decomposition Z is given by the grid points

a=ty<ti1 <---<tp,=0b
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The fineness of Z is given by

Z) = tit1 — t;
A= oy 1)

We can represent [ in terms of Z via

n—1

I(Z) = Zf(’Y(ti))”V(tiH) — ()|l

=0

Or in integral representation

b=l Nl
12)= 3 e =20y a

par [tir1 — till

9z (1)
So let (Z;) be a sequence of decompositions with

j—oo

m(Z]) —0

Let t € [a,b] not be a grid point of any Z;. Then there exists a unique grid
poiont ¢;;. such that t € [t;; ;.. ] Then

lim ¢;;, = lim t; =t

1
j 00 j—o00 Jyii+1

And thus
lim gz, (t) = f(v(1)||¥ @)

j—)OO

Vt that are not grid points of Z;, this means tahat

9z, = 11|

almost everywhere. The dominated convergence theorem then tells us

b
I(Zj):/ g2, dtﬁ—“x/ Fo@)|A 0| de

Special case: For f =1 one gets the arc length.

Definition 9.4 (Line Integrals, Arc Length). Let I be an interval and -~ :
I — R" a parametrized curve. Define the functions

fiyI) —R E:y(I)—R"
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/fds —/f )|/ (®)]| at

is said to be a scalar line integral (line integral of first kind), and

/ (Elds) == /, (E((1)|y(8)) dt

is said to be a vector line integral (line integral of second kind). The function
f or the vector field E are integrable along - if the according integral exists.

The integral
/ ds
v

is the arc length of 7, and ~y is said to be rectifiable if this integral is finite.
If the curve « is closed, i.e. if I =[a,b] a,b € R and

(a) = (b)

Then the above integrals are often notated as

ﬁ ds 75 (E|ds)

to emphasize that the curve is closed. This changes nothing about the
formulas, it is merely visual. I will try to adhere to this style.

Then

Ezample 9.5 (Circumference of the unit circle). Define

7 : [0,27] — R?
t — (cos(t),sin(t))

and derive this function

v (t) = (—sin(t), cos(t)) = HV/(t)H -1

27
fd,s:/ dt = 27
ol 0

Remark 9.6. (i) If v is only piecewise regular then the integrands might
not be defined for all ¢.

Then the circumference is
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(ii) Line integrals don’t depend on the chosen parametrization. This
means if C is a curve and

v:1—=C p:J—C

are parametrizations, then

Lfds:/pfds
/Cfds

The same holds for vector integrals.

We also write

(iii) Both kinds of integrals depend on the scalar product.

(iv) Both kinds of integrals are special cases of integrals over so called
One-forms

Theorem 9.7. Let v : I — R™ be a parametrized curve, and 9 : J — I a
diffeomorphism (so ¥ € C' and ¥'(t) #0 VYt € J). Let f:~v(I) = R, then

/fds: fds
¥ o

Proof. We can assume I, .J to be open, since the endpoints of the integrals
are a null set and thus don’t matter. W.l.o.g. let v be regular. Then

fas= [ feron@lore vy ) a

you J
:;wawu»mvwa»wumdt
=Lﬂwwmwvw@WWmmt (9.1)

:ﬁf@@thﬂmr

—Afds
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Remark 9.8. (i) One can show that for a curve C and parametrizations
~v:I—=C p:J—=C
there exists a diffeomorphism 4 : J — I such that
p=yod

So the line integral of first degree doesn’t depend on the parametriza-
tion.

(ii) A line integral of second degree doesn’t depend on the parametrization
if the parametrizations run along the curve in the same direction. So
if ' > 0, ¥ is said to conserve orientation. If ¥ < 0 then the integral
switches sign.

Example 9.9. Let v : I — R3 be the trajectory of a point mass, and F :
R3 — R? a time-independent forcefield. The work done is then given by

W /7 (F|ds)

The fact that the parametrization can be chosen arbitrarily means that the
work done in a forcefield is independent from the velocity of the point mass.

Remark 9.10. (i) Line integrals are linear in f or F, meaning for

frg:v(I) =R, AXeR

/W(g—i-)\g)ds:/vfds—i-)\lgds

(ii) Parametrized curves over compact intervals can be reparametrized so
that I = [0, 1].

we have

(i) Let
v:[0,1] - R" p:[0,1] - R"
be curves with (1) = p(0). Define
71 0,1] — R vp:[0,1] — R™

2t £<0.5
P {'7( ), <

t— y(l—1t
v1-9) p(2t+1), t>05
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Then we have

ds+/pfds
| (Bias) =~ [ (Blas

Q\Q\J§\4Q\

Fl|ds) = Flds Fl|ds
(mas) L<|>+/p<|>

Definition 9.11. Let U C R” be open and f : U — R a C'-function.
Define

Vf=(01f,0Ff -, 0mf)

The vector field E : U — R" is said to be conservative if there is a function
g : U — R such that
E=Vg

g is the potential of E.

Remark 9.12. (i) In physics the sign is typically switched, so
E=-Vyg
(i) The IDE

p(x,y) +q(z,y)y’ =0

is exact if and only if the vector field (p, q) is conservative.
(iii) If E is conservative and C!, then
0;E; = 0;E;
This condition is not sufficient in general.
(iv) If g is a potential for F, then the functions
g+c ceR

are also potentials.
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(v) If E is conservative, g a potential and ~ : [a,b] — R™ a curve, then
b
/
[ tBlas) = [ Bl o)a
y a
b

— [ @t Oni O+ + g ) (0) e

ab
_ / (907) (1) dt = g(4(8)) — g(v(a))

The vector line integral over conservative fields is independent from
the chosen path (it only depends on the start and end points).

(vi) Let U be open, path-connected and E : U — R™ a conservative vector
field. Choose a fixed xg € U, and for z € U choose a parametrized
curve 7y, from zy to . Then

2 — / (E|ds)

is a potential, because if g is an arbitrary potential we have

[ (Blds) = g(@) - g(a0) Vo U

x

Ezample 9.13. (i) Let

E:R*\ {0} —R3
__r
[l

This field is conservative, with the potential

6:R3\ {0} — R
1
[l

(ii) Let

E:R*\ {0} — R?

Y X
€, — - )
) ( 2% +y? x2+y2>
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Then ) ) )
1 2x Y- —x
O Es = - = = 0oy
3]'2 + y2 (1'2 + y2) (.%'2 + y2)2

We can calculate the line integral of £ along the unit circle

v :[0,27] — R?
t — (cost,sint)

Then
E(3(t)) = (—sint,cost) = 7'(2)
The integral is then

2w
/<E|ds> :/ |(=sint,cost)||* dt = 2w # 0
o 0
In the chapter about differential equations we looked at an exact equa-
tion in Example 8.17:

(22 + %) + (2zy)y’ =0

We can now use curve integrals to calculate the potential function
more easily. For that let z9 = (0,0). Then for (£,7) we can define a
curve connecting o and (§,n) for ¢t € [0, 1]:

t— (&t,nt)
Consider the vector field
E(z,y) = (22 + 7, 2zy)
Then

1
(m) — / (E|ds) = /0 (Bt )| (6, m) dt

1
= / (262t 4 n2€t® 4 26n%t?) dt
0

=&+ 1%

Theorem 9.14. Let U C R"™ be an open subset. A continuous vector field
E : U — R™ is conservative if and only if for every closed curve~ : [0,1] — U
the following holds

ﬁ(E\ds) —0
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Proof. Line integrals over E are path independent. Let 7, p : [0,1] — U be
paths with

1is closed, so

Oz/w‘l (E\ds>:/7(E]ds>—/p(E]ds) (9.3)

Assume that U is path continuous. Choose a fixed xg € U and let g : U — R.
Then

Then vp~

@) = [ " (Elds) (9.4)

0

Performing a directional derivation in direction h € R" yields

x+ah T
gz + ah) — g(z) = / (E|ds) - / (Elds)

Z—l—ah "
_ / (E|ds) (9.5)
:/a (B + th)|h) dt

0

Here we have chosen a linear path of integration between zy and z, and
between z and = + ah. In other words, we’re integrating along

t— x+th (9.6)

Using the intermediate value theorem, we can find that 3¢, € (0,a) such
that

/Oa (E(z -+ th)|h) dt = (B(z + &h)|R) - a (9.7)

Then we have

Ohg(z) = lim LEF N Z9@) Bt en)h) = (B@)R) (9.8)

a—0 a a—0

So if h is a standard basis e;, then
dig(x) = Ei(x) (9.9)

Thus the partial derivative of g is continuous, and therefore g is continuously
differentiable, and thus a potential. O
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9.2 Surface Integrals

In this section we will exclusively look at surfaces in R>.

Definition 9.15. Let V C R? be open. A mapping ¢ : V — R? is said
to be a parametrized surface if it is C! and if 914(t), Da¢(t) are linearly
independent ¥Vt € V. A subset S C R3 is said to be a regular surface, if
there exist:

e open subsets Uy, -+ ,U, C R?
e open subsets Vi, --- v, C R?
e mappings ¢; : V; — U; NS

such that the ¢; are parametrized surfaces, bijective and have a continuous
¢~ L. These S are also said to be embedded, two-dimensional manifolds, and
the ¢; are then called maps. The collection of all maps ¢; are called atlas.

S C R3 is said to be a piecewise regular surface if there exist parametrized
surfaces ¢1,- -+, ¢n, parametrized paths 71, -+, and points Py, -, P
such that

S=g(Vi)U---Un(Va) Un(l)U---Ury(Ip) U{PL, -+, P}

Ezample 9.16. (i) Consider

¢ :(0,00) x R — R3
(s,t) — (scost, ssint,t)
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(ii) The set
S? = {(z,y,2) € R3‘$2+y2 +22 =1}

is a regular surface. A map describing this surface would be

¢ :(0,27) x (0,7) — R3
(s,t) — (cos(s) sin(t), sin(s), sin(t), cos(t))

(iii) The unit cube

{(2,y,2) € R [max{Jal, lyl, |=[}}

is a piecewise regular surface.

Remark 9.17. Our definition of regular curves is not equal to the definition of
one-dimensional embedded manifolds, because regular curves are not allowed
to intersect themselves.

Definition 9.18 (Cross Product). Define the vectors v = (v1,v2,v3) and
w = (w1, w2, ws) € R3. Then

VW3 — V3W2
VX W= | v3w; —U1wW3
1wz — V2wW1

is the cross product of v and w.
Remark 9.19. (i) The cross product is linear in v and w, with

VXW=wWX"V
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(ii) v x w is orthogonal to v and w.

(iii) The cross product is not associative, but it fulfils the Jacobi-identity:

ux (vXw)+ovx(wxu)+wx (uxv)=0

(iv) v and w are linearly dependent if and only if v x w =0

(v) The definition depends on the coordinates of v and w. So the choice
of a basis matters. In reality the cross product depends on the scalar
product.

(vi) Consider the space of anti-symmetric matrices
1
V={AeR™"| AT = -4} dim V' = Zn(n - 1)

The cross product is an outer product on V. V can be interpreted as an
anti-symmetric bilinear form, or as the space of infinitesimal rotations
(Lie-algebra to the Lie-group of rotations). This is not relevant.

Definition 9.20. Let V C R? be open and ¢ : V — R? a parametrized
surface. Then

oy(t) = 019(t) x D2o(t)

is said to be a vector surface element of ¢, and |lo4(t)| is the scalar surface
element at the point ¢(t).

Remark 9.21. The surface element can be defined for arbitrary C'-mappings.
¢ is a parametrized surface if and only if o4(t) # 0 or [joy(t)|| #0 Vt e V.

Ezample 9.22. (i) Consider the unit sphere

¢ :(0,27) x (0,7) — R3
(s,t) — (cos(s) sin(t), sin(s), sin(t), cos(t))

The derivatives of ¢ are

19(s,t) = (—sin(t) sin(s), sin(t) cos(s), cos(t))
Do(s,t) = (cos(t) cos(s), cos(t) sin(s), —sin(t))

Then the surface elements are

o4(s,t) = (—sin’(t) cos(s), — sin®(t) sin(s), — sin(t) cos(t))
log(s,t)|| = sin(?)
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(ii) Let U C R? be open, and f : U — R a continuously differentiable
function. Then

¢(s,t) = (s,1, f(s,1))

is a parametrization of the graph of f. The derivatives are
(s, t) = (1,0,01 f(s,1)) (s, t) = (0,1,02f(s,1))
And the surface elements are
og(s,t) = (=01 f(s,1),=02f(s,1),1)
log (s, )| = /(01 f(s5,1))% + (B2 f (s, 1))% + 1

Definition 9.23. Let V C R? be open, ¢ : V — R3 a parametrized surface
and f:¢(V) — R. Then

//(éfdff = //V F(@(t)llog ()] AN (2)

is said to be the scalar surface integral of f over ¢. The integral

//QSdU

Lemma 9.24. Let V, V C R? be open, ¢V = R3 a parametrized surface
andT :'V =V a diffeomorphismus. Set ¥ = ¢poT', then the surface element
18

is said to be the surface of ¢(V).

oy (1) = det(DT()) - o4(T (1))
Proof. Calculate

Di(t) = DS(T () DT (1) (9.10)
Or if we consider each column of the derivative separately
01 = T - 03¢ + 01T - Dop (9.11&)
Oot) = 0Ty - 019 + 02T - D19 (9.11b)
Then
Oy = 811/) X 82’¢ = (81T1)<82T2)81¢ X 82¢ + (81T2)(82T1)62¢ X 81¢ (9 12)
= (det DT')o '

O]
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Remark 9.25. Let there be the same notation as above, and f: ¢(V) = R

//ﬁw—/]f Dloa(t)]| (1)

= / _F(@oT(t)]|oy(T (1) det(DT (1)) dN*(t)

S RCOABIERE / fdo

In general we have to decompose a (piecewise) regular surface into disjoint
regular pieces and parametrize them. The surface integral — so the sum
of integrals over the pieces — is independent of the chosen decomposition
and parametrization. Structures of lower dimensions (curves, points) don’t
contribute to surface integrals.

Ezample 9.26. (i) We want to calculate the surface of the unit sphere.
Using the parametrization we established earlier, we can get

T 27
// do = // sin(t) dA?(s, t) :/ / sin(t) ds dt
@ (0,2m) % (0,m) 0o Jo

- / o7 sin(t) dt

0
=4

(ii) Let U C R? be open and

¢:U — R3
(s,1) — (s,1,0)

Then ||y = 1, and let f:R? x 0 — R:

//(ﬁde:/Uf(S’tO)d/\Q(S,t)

Definition 9.27. Let V C R? be open, ¢ : V — R3 a parametrized surface
and let E : ¢(V) — R3. Then

// (E|do) = // t))]os(t)) AN (t)

is said to be the vector surface integral of F over ¢.
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Remark 9.28. This integral is independent from the parametrization if the
determinant det DT is positive. Then T is said to conserve orientation.
Otherwise the integral is switching signs.

For general (piecewise) regular surfaces one has to watch out that the
parametrizations are consistent. There are surfaces (regular surfaces even)
where that isn’t possible (so called non-orientable surfaces). For these kinds
of surfaces the vector surface integral isn’t properly defined.

If a surface splilts R? into an "outside” and an ”inside”, then we typically
choose the parametrization where the surface elements point outwards.

Ezrample 9.29. We want to integrate

1
E(x,y,z):= <0, 0, m(m siny + y cos x))

over the surface of the unit cube. FE points in z-direction, so the integrals
over the sides disappear. So we can parametrize the ”1id”

(s,t) —> (s,t,1) s, te€[-1,1]

and calculate the integral

(E|do) = 1(s sint + t cos s) dA%(s, 1)
(-1,1)2 2

Doing this for the base yields the same result, just with a different sign. So
the surface integral over the cube is 0.
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