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Chapter 0

Preface

This document is a collection of everything I learned in my university math courses when I
was studying to get a BSc in physics at the University of Leipzig. It covers four semesters
worth of content from the modules 10-PHY-BPMAT1 through 4. As a result, the topics
presented here are taylored towards application in physics. This means that some “funda-
mental” mathematical concepts are missing (i.e. the definitions for algebraic structures like
rings, groups etc). However, the concepts in this document are still discussed with the same
mathematical rigorosity.

Due to the circumstances during the COVID-19 pandemic I did not complete my studies,
and instead switched my major from physics to computer science. The one thing I took away
from my 3 years studying physics is a deep interest in mathematics (instead of physics),
which is what lead me to digitalize my lecture notes. That, and also the utter lack of
comprehensive resources for some of the more outlandish topics in this document; my goal
is to help students of these topics, so they don’t have to struggle as much as I did.

An important disclaimer is that I am not a professor, doctorate, or anything like that
in mathematics. I am a guy on the internet who studied these topics for two years in
university, and for more years after that in my own time. However I am trying my hardest
to get rid of any errors in this text, as well as filling in any proofs we didn’t cover in class.
If you find mistakes, please feel free to either report them to me on the repository page of
this document (link in the title page), or open a pull request.

Huge thanks go to Dr. Konrad Zimmermann, my professor in mathematics for the first
three semesters, for introducing me to mathematics and providing excellent slides for his
lectures, which arguably inspired me to write this document. I also want to thank Dr Tobias
Ried and Dr Vitalii Konarovskyi for continuing the lectures in his place and introducing
me to some of the more outlandish mathematics.
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Fundamentals and Notation
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1.1 Logic

1.1 Definition (Statements). A statement is a sentence (mathematical or colloquial) which
can be either true or false.

1.2 Example. Statements are
e Tomorrow is Monday
e x > 1 where z is a natural number
e Green rabbits grow at full moon
No statements are
e What is a statement?
e x + 20y where z,y are natural numbers
e This sentence is false
1.3 Definition (Connectives). When &, U are statements, then
(i) =P (not ®)
(ii) @AY (P and V)
(iii) @V ¥ (P or V)
(iv) @ = ¥ (if ¢ then V)
(v) & <= V¥ (¢ if and only if (iff.) V)
are also statements. We can represent connectives with truth tables

| U2 |PAV[PVY [& = U |D < U

f t t t
f f
t f
t f

—+

- e

t
t
f
f

-

f f
t f
t t
1.4 Remark.

(i) V is inclusive

(ii) ® = VU, P <= VU, & <= VU are NOT the same

(ili)) & = U is always true if @ is false (ex falso quodlibet)

1.5 Definition (Hierarchy of logical operators). — binds stronger than A and V, which bind
stronger than — and <= .
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1.6 Example.
DAY = (-DP)AT
P = U = (~P)AV
PNV <= U = (PAVY) <= VU
—OVU = VAV = (=) V (V) = ((—¥)AWD)

We avoid writing statements like & A WV ©. A statement that is always true is called a
tautology. Some important equivalencies are

¢ equiv. =(—P))
® — U equiv. ¥V = =P
¢ < VUequiv. (¢ = V)A (T = D)
OV U equiv. (=P A -Y)

Logical operators are commutative, associative and distributive.

1.7 Definition (Quantifiers). Let ®(x) be a statement depending on x. Then Vz ®(z) and
dx ®(z) are also statements. The interpretation of these statements is

e YV ®(z): "For all z, &(x) holds.”
e Jz ®(z): "There is (at least one) = s.t. ®(z) holds.”
1.8 Remark.
(i) Va = > 1 is true for natural numbers, but not for integers. We must specify a domain.

(ii) If the domain is infinite the truth value of Vo ®(z) cannot be algorithmically deter-
mined.

(iii) Yz ®(z) and Yy ®(y) are equivalent.
(iv) Same operators can be exchanged, different ones cannot.

(v) Vx ®(z) is equivalent to =(Jz ~P(z)).

1.2 Sets and Functions

1.9 Definition. A set is an imaginary ”container” for mathematical objects. If A is a set we
write

o x € A for "z is an element of A”

e x ¢ Afor -(xe A
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There are some specific types of sets
(i) 0 is the empty set which contains no elements. Formally: 32Vy y ¢ x
(ii) Finite sets: {1,3,7,20}

(iii) Let ®(x) be a statement and A a set. Then {z € A|®(z)} is the set of all elements
from A such that ®(z) holds.

There are relation operators between sets. Let A, B be sets
(i) A C B means ” A is a subset of B”.
(i) A= B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering to these
elements. This means that {1,3,3,7} = {3,1,7}. There are also operators between sets

(i) AU B is the union of A and B.

r€AUB < zc AVz€B

(ii) AN B is the intersection of A and B.
r€ANDB <= x€c ANz €B

This can be expanded to more than two sets (AUBUC'). We can also use the following
notation. Let A be a set of sets. Then
UJc

CecA

is the union of all sets contained in A.
(iii) A\ B is the difference of A and B.

r€A\B <= zc ANz ¢ B

(iv) The power set of a set A is the set of all subsets of A. Example:
P({1,2}) = {0.{1},{2}.{1,2}}

1.10 Theorem. Let A, B,C be sets. Then

A\ (BUC) = (A\ B)N(4\C)
A\ (BNC) = (A\ B)U(A\C)
AU(BNC) = (AUB)N(AUC)
AN(BUC) = (ANB)U(ANC)
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Proof. Let A, B, C be sets. Then the first statement follows from

r€A\(BUC) <= z€ AN—-(ze€ BUCQC)
<~ € AN-(xeBVzxel)
< z€AN(z¢€BANx¢C)
— (e ANz éEB)AN(zec ANz & C)
< z€A\BAz e A\C
< z€(A\B)N(4A\ )

The second statement follows a similar structure, with the logical operators swapped

r€eA\(BNC) <= z€ AN—-(xe€ BUCQC)
r€AN-(zreBAzeC)
r€AN(x g BV gC)
(reANxgB)V(re ANz g C)
re€A\BVzeA\C
xe(A\B)U(A\ Q)

(1.2)

rreuy

The third statement follows from

xre AU (BNCQC) reAVzeBNC

r€AV(xe BhNze(C)

(reAvezeB)AN(x e AV e () (1.3)
re AUBANz € AUC

z€(AUB)N(AUC)

1reny

The final statement is also similar to the third with the operators swapped

re AN(BUC) <= z€ ANz e BUC
< zcAN(zeBVvzel)
— (r€eANzeB)V(zxe Anze () (1.4)
— reANBVvVxe ANnC
<— z€(ANB)U(ANC)

O

1.11 Definition. Let A, B be sets. For z € A and y € B we call (z,y) the ordered pair of x,y.
The Cartesian product is defined as

Ax B=A{(z,y)|x € ANy € B}
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1.12 Remark.

(i) (z,y) is NOT equivalent to {z,y}. The former is an ordered pair, the latter a set. It
is important to note that

(z,y) = (a,b) <= z=aAy=0>

(ii) This can be extended to triplets, quadruplets, ...
AxBxC={(z,y,2)|lr€e ANye BAze C}

We use the notation 4 x A = A2

(iii) For R? (R are the real numbers) we can view (z,y) as coordinates of a point in the
plane.

1.13 Definition. Let A, B be sets. A mapping f from A to B assigns each x € A exactly one
element f(z) € B. A is called the domain and B the codomain.

Figure 1.1: A mapping f: A —> B

As shown in figure 1.1, every element from A is assigned exactly one element from B,
but not every element from B must be assigned to an element from A, and elements from
B can be assigned more than one element from A. The notation for such mappings is

f:A— B
A mapping that has numbers (N, R, ---) as the codomain is called a function.
1.14 Example.
()
f*N—N

n——2n+1
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(i)
fTR—R

0 x rational
T —
1 =z irrational

(iii) Addition on N
f:NxN-—N

Instead of f(x,y) we typically write x 4+ y for addition.
(iv) The identity mapping is defined as
id A A— A
T
1.15 Remark (Mappings as sets).

(i) A mapping f: A — B corresponds to a subset of F' = A x B, such that

Vee AVy,ze B: (v,y) e FA(z,2) e F = y==z
Vee Adye B: (z,y) € F

(ii) Simply writing ”Let the function f(z) = x2...”

(iii)

f is a mapping from A to B <= f(z) is a value in B

(iv)

fig: A — B are the same mapping < Ve € A: f(z) = g(x)
1.16 Definition. We call f: A - B
e injective if Ve, 2 € A:  f(z)=f(T) = z=17
e surjectiveif Vye B3z € A:  f(x)=y

e bijective if f is injective and surjective

1.17 Example.
(i)
f*N—N

nl—>n2

is not surjective (e.g. in € N: n? = 3), but injective.

is NOT mathematically rigorous.

10
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A B

(b) Surjective mapping. There is at least one

(a) Injective mapping. There is at most one
arrow per point in B

arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

f:Z—N
n—s n?
is neither surjective nor injective.
(iii)
f:N—N
5 n even
n— 1

5= nodd

is surjective but not injective.
1.18 Definition (Function compositing). Let A, B, C be sets, and let f: A - B, g: B — C.
Then the composition of f and g is the mapping
gof:A—C
z— g(f(x))

1.19 Remark. Compositing is associative (why?), but not commutative. For example let

f*N—N g:N—N
nr— 2n n—n+3

Then
(fog)(n)=2(n+3)=2n+6
(go f)(n)=2n+3
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1.20 Theorem. Let f : A — B be a bijective mapping. Then there exists another mapping
f~':B — A such that fo f~' =idg and f~' o f =id4. f~! is called the inverse function
of f.

Proof. Let y € B and f bijective. That means 3z € A such that f(z) =y. Due to f being
injective, this x must be unique, since if 3z € A s.t. f(z) = f(z) = y, then x = . We
define f(x) =y and f~!(y) = z, therefore

fof ) =f(f"'w) =fl2)=y=idply) = fof ' =idp (1.5)

and equivalently
flof(z)=ida(z) = flof=ida (1.6)
O

1.3 Numbers
1.21 Definition. The real numbers are a set R with the following structure
(i) Addition

+:RxR—R

(ii) Multiplication
RxR—R
Instead of +(x,y) and -(z,y) we write x + y and z - y.

(iii) Order relations

< is a relation on R, i.e. z < y is a statement.
1.22 Definition (Axioms of Addition).

Al: Associativity
Va,b,ceR: (a+b)+c=a+(b+c)

A2: Existence of a neutral element

VDeRVzeR: z2+0=2x

A3: Existence of an inverse element

VeeRI(—x)eR: x+(—2)=0

A4: Commutativity
Ve,yeR: x4+y=y+x
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1.23 Theorem. Let x,y € R. Then

(i) The neutral element is unique

(ii) Vx € R the inverse is unique
(iii) —(—x) ==z
() =(z+y) = (=2) + (-y)
Proof.
(i) Assume a,b € R are both neutral elements, i.e.
VieR:x+ta=2=x+b
This also implies that a + b =a and b+ a = 0.
— b=b+aPa+b=a
Therefore a = b.
(ii) Assume ¢,d € R are both inverse elements of = € R, i.e.
r+c=0=z+d

c=0+c=z+dtcXrtcet+d=04+d=d
Therefore ¢ = d.

(iii) By definition, we know

Thus follows

(iv)
z+y+((—2) +(-y) =z +y+ (-2) + (=)

Yot (o) tyt(-y) =0

13

(1.7)

(1.8)

(1.11)
(1.12)

(1.13)

(1.14)

Therefore (—z) + (—y) is the inverse element of (x + ), i.e. —(z+y) = (=) + (—y).

O
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1.24 Definition (Axioms of Multiplication).

M1: Associativity
Ve,y,z e R:  (xy)z = z(yz)

M2: Existence of a neutral element

JdleRVzeR: zl==x

M3: Existence of an inverse element
Ve e R\ {0} 3zt eR: zz'=1
M4: Commutativity
Ve,y e R: zy=vyx
1.25 Definition (Compatibility of Addition and Multiplication).

R1: Distributivity
Ve,y,z€R: z-(y+z2)=(x-y)+(x-2)

R1: Uniqueness of the neutral elements

01
1.26 Theorem. z,y € R
(i) 2-0=0
(i) —(x-y)=x-(—y)=(-2)y
(iii) (—z)-(—y) ==
(iv) (—x)"' = —(x71) (only for x #0)
(v) 2zy=0 = z2=0Vy=0

-y

Proof.

(i) z€R
z-0=2-(0+0)=2-04+2-0 (1.15)

= 0==z-0 (1.16)

(i) z,y € R
wy+ (—(2y) 202z 0=2(y+ (—y) = oy + 2(~y) (1.17)
=2 —@y) =z () (1.18)



1.3. NUMBERS 15

(iii) Consider the expression zy + (—x)y + (—z)(—y). By using distributivity we can see

A3

zy + (—2)y + (—2)(—y) = 2y + (—2)(y + (=y)) = 2y (1.19)
vy + (—0)y + (—2)(—y) = (1 + (—0)y + (—2)(~y) Z (~2)(-y) (1.20)

Thus follows the desired statement.

(iv) z e R

r ()N ) Y ) () BT (121
M ()= B () = @Y (1.22)

(v) z,y € R and y # 0. Then Jy~! € R:
xyzO:>$yy_11\é3:):'11\£2x:0:0-y_1 (1.23)

O

1.27 Remark. A structure that fulfils all the previous axioms is called a field. We introduce the
following notation for z,y € R, y # 0

:J;y

<8

1.28 Definition (Order relations).

O1: Reflexivity
VeeR: z<z

02: Transitivity
Ve,y,z€ R: x<yAy<z = x<z

03: Anti-Symmetry
Ve,y e R: z<yAy<z = x=y

04: Totality
Ve,ye R: z<yvVy<zx

O5:
Ve,y,z€R: o<y = x+2<y+z2

06:
Ve,yeR: 0<zA0<y = 0<z -y

We write x <y forx <yAz#y
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1.29 Theorem. z,y € R

(i) z<y = —y<—z
(ii) < 0Ny <0 = 0<uzay
(iii) 0 < 1

(iv) 0 <z = 0< a7}

(W) 0<zx<y = y <z}
Proof.

(i)

z<y 2 24 (-
— -y <

)+ (—y) <y + (—2) + (~y)

(il) With y <0 é 0<-—yandxz<0 % 0 < —z follows from O6:

0 < (=2)(~y) = 2y
(iii) Assume 0 <1 is not true. From O4 we know that
(i)
1<0 = 0<1-1=1

(iv) Assume that 0 < 27! is not true. Then

We can then conclude

06 1

_ M3
0<r = 0<ax 1

which would contradict M3.
v)
0§:1:_1/\()§y_1 % ng_ly_l
From z <y follows 0 <y — x

28 <(y-— :L')x_ly_l £ yr lyt — gty !
) -1

5 —
=yl <a!

=T

! = 0<a! = 0=02"

_]__

16

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)
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1.30 Remark. A structure that fulfils all the previous axioms is called an ordered field.
1.31 Definition. Let A C R, z € R.

(i) x is an upper bound of AifVy € A: y<=zx

(ii) x is a maximum of A if z is an upper bound of A and z € A

(iii) x is the supremum of A if z is an upper bound of A and if for every other upper bound
y € R the statement x < y holds. In other words, z is the smallest upper bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists a lower
bound, a minimum and an infimum. We introduce the notation sup A for the supremum
and inf A for the infimum.

1.32 Definition. Let a,b € R, a < b. We define
e (a,b) :={xeR|la<zAz<b}
e [a,b ={xeRla<zAz<b}
e (a,00):={reR|a<z}

1.383 Example. (—o0,1) is bounded above (1, 2, 1000, - - - are upper bounds), but has no maxi-
mum. 1 is the supremum.

1.34 Definition (Completeness of the real numbers). Every non-empty subset of R with an
upper bound has a supremum.

1.35 Definition. A set A C R is called inductive if 1 € A and
r€eEA —= x+1ecA

1.36 Lemma. Let I be an index set, and let A; be inductive sets for every i € I. Then (\;c; Ai
1$ also inductive.

Proof. Since A; is inductive Vi € I, we know that 1 € A;. Therefore

1e()A (1.32)

i€l
Now let = € (;c; Ai, this means that z € A; Vi€ I.
= w+led Viel = z+1c( A (1.33)
i€l
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1.37 Definition. The natural numbers are the smallest inductive subset of R. I.e.

ﬂ A=N

A inductive

1.38 Theorem (The principle of induction). Let ®(z) be a statement with a free variable x. If
®(1) is true, and if ®(r) = P(xz + 1), then ®(x) holds for all x € N.

Proof. Define A = {z € R|®(z)}. According to the assumptions, A is inductive and
therefore N C A. This means that Vn € N:  ®(n). O

1.39 Corollary. Let m,n € N
(i) m+neN
(i) mn € N
(iii)) Yn e N:  1<n
Proof.

(i) Let n € N. Define A ={m € N|m +n € N}. Then 1 € A, since N is inductive. Now
let m € A, therefore n +m € N.

= n+m+1eN (1.34)
= m+lcA (1.35)

Hence A is inductive, so N C A. From A C N follows that N = A.

(ii) Let n € N. Define A = {m € N|mn € N}. Then 1 € A because of M2. Now let
m € A, therefore nm € N

= (m+1)n=mn+neN (1.36)
= m+1lecAd (1.37)

Hence A is inductive, so N C A. From A C N follows that N = A.

(iii) Define A ={n € N|1 <n}. Then 1 € A since 1 < 1. Now let n € A.
0<1 = n<n+l = 1<n+1 < n+leA (1.38)

Hence A is inductive, so N C A. But since A C N it must follow that N = A.

1.40 Theorem. Let n € N. There are no natural numbers between n and n + 1.
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1.42
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Proof. Let v € NN (1,2), and define A =N\ {z} = {n € N|n # z}. Obviously, 1 € A and
2€ A. Let n € A, then

1<n = 2<n+1 (1.39)

—n+leA (1.40)

Thus A is inductive. Since A C N we have A = N, so there are no natural numbers between
1 and 2. Now assume NN (n,n+ 1) =0, and consider x € NN (n+ 1,n 4+ 2). We will take

another look at A with this new x. Obviously 1 € A. Let m € A, we want to show that
m —+ 1 € A. To do this, assume that m+ 1 € A, i.e.

m+1eNN(n+1,n+2) = meNN(n,n+1) (1.41)
However since NN (n,n + 1) = () this m can’t exist, so m+ 1 € A. So A is still inductive,
and A = N still holds. O
Theorem (Archimedian property).

VeeRIneN: z<n
Proof. If x < 1 there is nothing to prove, so let > 1. Define the set
A={neN|n <z} (1.42)

A is bounded above by definition. There exists the supremum s = sup A. By definition,
s — 1 is not an upper bound of A, i.e. 3m € A: s—1 < m. Therefore s <m + 1.

meACN = m+1eN (1.43)
Since s is an upper bound of A, this implies that m + 1 ¢ A, so therefore m +1 > 2. [

Corollary. FEvery non-empty subset of N has a minimum, and every non-empty subset of
N that is bounded above has a mazximum.

Proof. Let A C N. Propose that A has no minimum. Define the set
A:={neN|V¥mecA: n<m} (1.44)

1 is a lower bound of A, but according to the proposition A has no minimum, so therefore
1 ¢ A. This implies that 1 € A.

neAd = n<mVmeA (1.45)

But since there exists no natural number between n and n+ 1, this means that n+1 is also
a lower bound of A, and therefore

n+l<mVmeAd = n+lecAd (1.46)

So A is an inductive set, hence A = N. Therefore A = (). The proof that a bounded above
A has a maximum works in the same way. O
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1.43 Definition. We define the following new sets:
Z:={xeR|xeNyV (—z) € Ny}

Q:= {S\p,quAq#O}

Z are called integers, and Q are called the rational numbers. Ny are the natural numbers

with the 0 (Ng = NU{0}).
1.44 Remark.

T, yel = x+y,x-y,(—x) €L
r1ye€Q = z+y,x-y,(—z)€eQandz ' € Qif x #0

The second statement implies that Q is a field.

1.45 Corollary (Density of the rationals). =,y € R, x <y. Then
IreQ: z<r<y

Proof. This proof relies on the Archimedian property.

JgeN:

<q(<:>j]<y—x> (1.47)

y—x

Let p € Z be the greatest integer that is smaller than y - g. The existence of p is ensured by

Corollary 1.42. Then g <y and

1
pt1>y.q= y<Py<Pyiw—_u (1.48)
q q q
D
—= < =<y (1.49)
q
0

1.46 Definition (Absolute values). We define the following function
|-]: R —[0,00)

T ,x >0
T —>
-z ,x<0

1.47 Theorem.
z,y € R = |zy| = [z|[y]
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Proof. Let z,y € R. If x and y are both positive or both negative, their product is positive
and the statement is trivial:

|zyl = zy = |z(|y| (1.50)
So let w.l.o.g. 0 <z and y < 0. Then

|zlly| = x(-y) = —(zy) (1.51)

Since xy is negative, the absolute value is
[zy| = —(2y) = [x[]y] (1.52)
O

1.48 Definition (Complex numbers). Complex numbers are defined as the set C = R?. Addition
and multiplication are defined as mappings C x C — C. Let (z,y), (z,7) € C.

C is a field. Let z = (z,y) € C. We define

3

(z2) = Re(z) =« the real part
$(z) =Im(z) =y the imaginary part
1.49 Remark.

(i) We will not prove that C fulfils the field axioms here, this can be left as an exercise
to the reader. However, we will note the following statements

e Additive neutral element: (0,0)
e Additive inverse of (z,y): (—z,—y)

e Multiplicative neutral element: (1,0)
e Multiplicative inverse of (x,y) # (0,0): (%ﬂﬂ, —1,271?/2)
(ii) Numbers with y = 0 are called real.
(iii) The imaginary unit is defined as i = (0, 1)
0,1) - (z,9) = (~y,2)

Especially
7;2 = (07 1)2 = (_170) = _(170) =-1

We also introduce the following notation

(z,y) = (2,0) + - (y,0) = x + iy
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1.50 Theorem (Fundamental theorem of algebra). Every non-constant, complex polynomial has
a complex root. Le. forn € N, ag,--- ,an € C, a, # 0 there is some x € C such that

n
§ ' =ap+ oz 4+ awr® + -+ apz” =0
=0

Proof. Not here. It is proven in Theorem 10.22. O
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2.1 Elementary Inequalities

2.1 Example.
ezeR — 22>0
e 22 2y +12=(r—9)?>0 Vo,ycR
o 22+ 9y? > 21y
2.2 Theorem (Absolute inequalities). Let x € R, ¢ € [0,00). Then
(i) —|z] <2 <|x]
(ii) |[z| <c¢ <= —c<z<c
(iti) |z| > ¢ <= < —-cVc<z
(iv) |z] =0 <= =0
2.3 Theorem (Triangle inequality). Let x,y € R. Then
|z +y| <[]+ y]
Proof. From Theorem 2.2 follows z < |z| and y < |y|.
= 2 +y < |z + ]yl (2.1)

However, from the same theorem follows —|z| < z and —|y| < y.

= —lz|-|yl=z+y
= |z +y| <|z[+ |yl

2.4 Corollary. n € N, z1,--- ,x, € R. Then

n
D ai
i=1

Proof. Proof by induction. Let n = 1:

n
<D lail
=1

21| < (2.4)
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This statement is trivially true. Now assume the corollary holds for n € N. Then

n+1 n n
sz‘ = Zﬂﬁrf—%m-l < an + |Zpq1]
i=1 i=1 i=1
n
< il + |2nal (2.5)
i=1
n+1

=2_l=il
i=1

O
2.5 Theorem (Bernoulli inequality). Let z € [—1,00) and n € N. Then
1+2z)">1+nz
Proof. Proof by induction. Let n = 1:
l+2>141-x (2.6)
This is trivial. Now assume the theorem holds for n € N. Then
1+z)" =10 +2)"(1+2)> 1 +nz)(1+2)
=1+ (n+ 1z + na? (2.7)
>1+(n+ 1)z
O

2.2 Sequences and Limits

2.6 Definition. Let M be a set (usually M is R or C). A sequence in M is a mapping from N
to M. The notation is (zp)peny C M or (z,) C M. xy, is called element of the sequence at
n.
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2.7 Example. Some real sequences are

.l'n:E (17%7%7%7”')

o xp=>, 1k (1,3,6,10,15,---)
e 1, = "smallest prime factor of n”  (%,2,3,2,5,2,7,2,3,2,---)
2.8 Definition (Convergence). Let (x,) C R be a sequence, and = € R. Then
(zp,) converges tox <= Ve >03INeN: |z, —x|<e Vn>N

A complex sequence (z,) C C converges to z € C if the real and imaginary parts of (z,)
converge to the real and imaginary parts of z. = (or z) is called the limit of the sequence.
Common notation:

n—oo ] —
Ty — T Ty —— @ nh_)ngo In =

If a sequence converges to 0 it is called a null sequence.

2.9 Example.

(i) z € R, z, = x (constant sequence). This sequence converges to x. To show this, let
€ > 0. Then for N = 1:
|z, —z| =z —2|=0<c¢

(ii)) x, = % is a null sequence. Let € > 0. By the Archimedean property:

1

Then for n > N: .
< —
_N<€

SERS

|Tr, — 0] = |xn| =

(iii) The sequence

1 , M even
Ty =
—1 ,nodd

does not converge.

2.10 Remark. A property holds for almost every (a.e.) n € N if it doesn’t hold for only finitely
many n. (e.g. n < 10 is true for a.e. n € N)

2.11 Theorem. A sequence (x,) C R (or C) has at most one limit.

Proof. Propose that x,Z are different limits of (z,). Without loss of generality (w.l.o.g.)
we can write z < #. Now define ¢ = 1(Z — z) > 0.

Ty — & <= INp: a:ne(x—a,x—%a):(x—s,x;m) (2.8)
~ - - T+T
Ty — & <= INy: xne(x—e,x+5):< 5 ,x+5> (2.9)

Since these intervals are disjoint, the proposition led to a contradiction. O
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2.12 Theorem. Let (z,) C R (or C) be sequence with limit x € R. Then for m € N
Ja i = 2
Proof. Left as an exercise for the reader. O

2.13 Definition. The sequence (z,) C R is bounded above if {x,, | n € N} is bounded above. A
number K € R is an upper bound if Vn e N: z, < K.

2.14 Theorem. Fvery convergent sequence ts bounded.

Proof. Let (x,,) C R converge to x € R. For ¢ =1 we trivially know that

ANeNVR>N: |z,—z|<e=1 (2.10)
Let
K = max{zy,x9, - ,zn, || + 1} (2.11)
Then
|z, <K VneN (2.12)

This is trivial for n < N. For n > N we can use the triangle inequality:
0| = |(zn — 2) + 2] < [on — 2+ [z < [z[+1 (2.13)
O

2.15 Theorem. If (z,) C R bounded and (y,) C R null sequence, then (z,) - (yn) is also a null
sequence.

Proof. 1f (x,,) is bounded, this means that 3K € (0, c0) such that
|zn| < K VneN (2.14)
Since (yy,) is a null sequence we know that
Ve>03dINeNVn>N: |y, <e (2.15)

Now let € > 0, then AN € N such that

€
Yn>N: |y, < i7d (2.16)
€

Therefore (z,)(yn) is a null sequence. O
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2.16 Theorem (Squeeze theorem). Let (xy,), (yn), (zn) C R be sequences such that

Tn < Yn < Zn
for a.e. n € N, and let v, —> x, z, = x. Then
lim y, =«
n—00
Proof. Let € > 0. Then dN7, No, N3 € N such that

Vn>Ni: xp <yn <z,
Vn>Ny: |z, —x|<e
Vn>Nsg: |z,—x|<e

Choose N = max{Ny, N, N3}. Then
Vn>N: —e<axp—z<y,—zx<z,—x<E€
Therefore |y, — x| < e

2.17 Example. Vn € N: n < n? (why?).

1 1 1
— 0< =< - = lim —5=0
nZ —n n—oo n?2

2.18 Theorem. Let (z,), (yn) C R and x, — z, y, —y. Then x < y.
Proof. Left as an exercise for the reader.
2.19 Remark. If x, <y, Vn € N, then x = y can still be true.

2.20 Lemma. Let (z,,) € R and x € R.
() — ¢ <= (|zn — z|) is null sequence

Especially:
(xn) null sequence <= |x,| null sequence

Proof.
lzn — 2| = 0] = |zn — 2|

28

(2.18)
(2.19)
(2.20)

(2.21)

(2.22)
0

2.21 Theorem. Let (xy,),(zn) C R (or C) with xp, — z, yn — y (v,y € R). Then all of the

following are true:

(1)

Jig on v =24y = L 2o+ Jim un



2.2. SEQUENCES AND LIMITS 29

(i)

(iii)

Proof.

i et = oy =l an- lim
Ify # 0: '
. Tn x limy, o0 2p
lim — =~=_——"">""
=00 Yn Yy limy, 00 Yn

(i) Let € > 0. Then 3Ny, N2 € N such that

Vn >Ny |z, —x| < = (2.23)

Vn>No: |y, —y|l <= (2.24)

Now choose N = max{Ny, No}. Then Vn > N:

(iii)

[Zn + yn — (2 +Y)| = [(Tn — @) + (Yn — y)|

< |zn — 2 + |yn — ¥l (2.25)
<SiE.
2 2

= Tn+Yn —T+Yy (2.26)

0<L |xnyn - xy| = ’(xnyn - $ny) + (xny - -Ty)‘
< |zn(yn — y)| + (20 — 2)y| (2.27)
= |zallyn — yl + |20 — 2|ly[ — 0

Therefore |z,y, — xy| is a null sequence and

TnYn —> TY (2.28)

Now we need to show that if y # 0 then yin — i We know that |y| > 0. So 3N € N
such that

Vn>N: |y, —y| < ]y2| (2.29)
This implies that
Vn>N: 0< |‘g < |yn| (2.30)

From this we now know that yin is defined and bounded

1

Yn

9
- (2.31)
lynl ~ |yl
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So finally
1 1 1 1 1 1
_‘:(1_%)‘: 1—yn‘—>0 (2.32)
Yn Y Yn Yy Yn Yy
And therefore
Yn — Y — Yn — 1
Y
Thm. 21511 Yn is a null sequence (2.33)
Yy
Lem. 2.20 1 1
— _ s —
Yn Yy
O
2.22 Corollary. Let k € N, ag, -+ ,ar,bo, -+ ,bp € R and by, #0. Then
i ap + ain + a2n2 +---+ ak_lnk_l + aknk ay
im _ 2k
n=o00 by + bin + bon2 + -+ bp_nk~L +bpnk by
Proof. Multiply the numerator and the denominator with -
n
e e R R e
R TR (2.34)
B i e == SRR S = N L
O

2.23 Example. Let x € (—=1,1). Then lim, _,c 2" =0

Proof. For x = 0 this is trivial. For 2 # 0 it follows that |z| € (0,1) and % € (1,00).

||

Choose s = ﬁ — 1 > 0 and apply the Bernoulli inequality (Theorem 2.5).

(I+s)">14n-s (2.35)
1 " 1 1 14+n-0 999
< fal <1+S> (I+s)» " 14n-s 1+n-s (2:36)
The squeeze theorem now tells us that |z"| = |z|* — 0 and therefore z™ — 0. O

2.24 Definition. A sequence (z,) C R is called monotonic increasing (decreasing) if z,4+1 > x5,
(xnt1 < xp) Vn € N,

2.25 Theorem (Monotone convergence theorem). Let (x,) C R be a monotonic increasing (or
decreasing) sequence that is bounded above (or below). Then (x,) converges.
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Proof. Let (z,,) be monotonic increasing and bounded above. Define
x = sup {x, |n € N} (2.37)
A

Now let € > 0, then x — ¢ is not an upper bound of A, this means AN € N such that
xn > x — e. The monotony of (z,) implies that

Yn>N: x,>x—¢ (2.38)
So therefore
r—e<z,<r+e = |r,—x|<e¢ (2.39)
O
2.26 Remark.
. .. . Tn+1
() is monotonic increasing <= >1 VneN
Tn
() is monotonic decreasing <= Tntl <1 VneN
In
2.27 Example. Consider the following sequence
Ir = 1
1 a
Tyl = = (xn—i—) , a€[0,00)
2 n

Notice that 0 < x,, Vn € N. For n € N one can show that

1 a? 1 a?
x%+1:4<$i+2a+x?> :4<x%—2a+$2)+a

n n

2
1 a
:<a:n—> +a>a
4 T,

So x,% >a Vn > 2, and therefore ﬁ < x,. Finally

1 a 1
$n+1=2(wn+xn> Si(:r:n—l—xn):mn Vn > 2

This proves that (x,) is monotonic decreasing and bounded below.

2.28 Theorem (Square root). This theorem doubles as the definition of the square root. Let
a € [0,00). Then 3z € [0,00) such that x> = a. Such an z is called the square root of a,
and is notated as x = \/a.
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Proof. First we want to prove the uniqueness of such an z. Assume that 22 = y? = a with
2,y €[0,00). Then 0 = 22 —y? = (z — y)(z + y).

= 24+y=0 = z=y=0 (2.40)
— rx—y=0 = z=y (2.41)

Now to prove the existence, review the previous example.
xn, — x for some x € [0, 00) (2.42)

By using the recursive definition we can write

2y Tnp1 =22 4+a — 22 +a (2.43)
— 2% =2+a = 2°=a (2.44)
O

2.29 Remark. Analogously Jlz € [0,00) Va € [0,00) such that 2 = a. (Notation: {/a or
T = a%). We will also introduce the power rules for rational exponents. Let x,y € R,
u,v € Q.
(x . y)u — a:uyu xu . x’l} — $u+v (:CU)U — xU/U

2.30 Theorem. Let z,y € R, n € N. Then

0<z<y = Vo< Yy

Letnym e N, n<m, z € (1,00), y € (0,1). Then
Vo> ¥ Yy < %y
Proof. Left as an exercise for the reader. O

2.31 Theorem. Let a € (0,00). Then
lim {/n=1 lim {Ya=1

n—oo n—oo

Proof. Let € > 0. Then

n n—00
27000 2.45
(n+e)" ( )
This means that n
INeNVn>N: —— <1 (2.46)
(n+e)"

Therefore

n<(l+e)" = 1-e<1<{Yn<l+e = [VYn-1|<e (2.47)
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This proves the first statement. The second statement is trivially true for a = 1, so let
a > 1. Then dn € N such that a < n:

= 1< VYa< ¥n——1 (2.48)
Squeeze \/» n—00 (2.49)
Now let a < 1. Then % <1
1
lim ¥a = lim LmE (2.50)

n—o00 n—o00 \/7 1

O
2.32 Definition. Let z € C, z,y € R such that z = x + iy.
|2 :=Vz2zZ = Va2 + y?
2.33 Theorem. Let u,v € C. Then
1 1
u-v| = Jul[v] —| =1 u o] < fuf + |v]
ul uf
Proof.
luv| = Vuv - uw = Vui - vo = Vui - Voo = |ul|v] (2.51)
1 1 1 1
u

For the final statement, remember that complex numbers can be represented as z = = + 1y,
and then

Re(z) < | Re(2)] < |2 (2.53)
Im(2) < | Im(2)] < |4 (2.54)
So therefore
u+ 0> = (u+wv) - (@+0)

= uu + vu + uv + Vv
= |u]2 + 2Re(uv) + |U\2
< Jul® + 2|av| + |v]?
= Jul? + 2u|[v] + |v]?
= (Jul + |v])?

(2.55)
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2.34 Lemma. Let (z,) CC, z € C.
(zn) —— 2z <= (|zn — z|) null sequence

Proof. Let x, = Re(z,) and y, = Im(z,). Then x = Re(z) and y = Im(z). First we prove
the 7 <=7 direction. Let (|2, — z|) be a null sequence.

0 < |zn|—|z| = |Re(zn — 2)| < |2 — 2] —— 0 (2.56)

Analogously, this holds for y,, and y. We know that (|, —z|) is a null sequence if z,, —— =
(same for y,, and y), therefore
= 2z —— 2 (2.57)

To prove the ” =7 direction we use the triangle inequality:

0<|2n—2| = (0 —2) +i(yn — )|

< |zn — 2|+ |i(yn —y)| —— 0 (2.58)
———
lyn—yl
By the squeeze theorem, |z, — z| is a null sequence. O

2.35 Remark. Lemma 2.34 allows us to generalize Theorem 2.21 and Corollary 2.22 for complex
sequences.

2.36 Definition (Cauchy sequence). A sequence (x,) C R (or C) is called Cauchy sequence if
Ve >0dINeNVn,m>N: |z,—zp|<c¢e

2.37 Theorem (Cauchy convergence test). A sequence (x,) C R (or C) converges if and only
if it is a Cauchy sequence.

Proof. Firstly, let (x,) converge to z, and let € > 0. Then

INeNVR> N : |xn—ﬂs|<% (2.59)
So therefore Vn,m > N:
[Ty, — | = |20 — 2+ 2 — 2| <|zp—z|+ |z —2n] <e (2.60)

This proves the ” =" direction of the theorem. To prove the inverse let (z,,) be a Cauchy

sequence. That means
ANeNVYn,m>N: |z,—z, <1 (2.61)

= |2n| = |20 — 2N +2n] < |zp — 2N] + |2N|

(2.62)
<l|zn|+1 Vn>N
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We will now introduce the two auxiliary sequences

yn = sup{zy |k > n} zn, = inf{zy |k > n} (2.63)
(yn) and (z,) are bounded, and for n < n
{zg |k >n} D {zg|k>n} (2.64)
=y, = sup{xilk > n} <sup{xklk > n} =yx (2.65)
= (x,) monotonic decreasing and therefore converging to y (2.66)

Analogously, this holds true for (z,) as well. Trivially,

If y = z, then (x,) converges according to the squeeze theorem. Assume z < y. Choose
e > %2 > 0. If N is big enough, then

sup{zp |k > N} =yn >y —¢ (2.68)
inf{zy |k >N} =2y <z+¢ (2.69)
So for every N € N, we know that
Jd>N: zp>y—2 (2.70)
A>N: z<z+2 (2.71)
For these elements the following holds
\l’k—xl|Z€=y;Z (2.72)
This is a contradiction to our assumption that (z,) is a Cauchy sequence, so y = z and
therefore (x,,) converges. O

2.38 Remark.
(i) xn = (—1)™. For this sequence the following holds

VneN: |z, — xpy1| =2
So this sequence isn’t a Cauchy sequence-

(ii) It is NOT enough to show that |z, — zn41]| tends to 0! Example: (x,) = v/n

_ B n\/er\/ﬁ
Vitl-vi=(/n+l \F)\/n—l-l—f—\/ﬁ

 oatl-w
Vi1t n
1

:\/n+1+\/ﬁ

n—o0

0

However (y/n) doesn’t converge.
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(iii) We introduce the following

Limes superior limsup z,, = lim sup{zy |k > n}
n—00 n—oo

Limes inferior liminf z, = lim inf{zy |k > n}
n—oo n—oo

limsup,,_, . Tn > liminf,_, 2, always holds, and if (x,) converges then

n—0o0 . . .
Ty, —— ¢ <= limsupz, = liminf z,,
n—o00 n—00

2.39 Definition. A sequence (z,) C R is said to be properly divergent to oo if
Vk € (0,00) AN eNVR>N: =z, >k

We notate this as

lim x, =
n—oo

2.40 Theorem. Let (z,) C R be a sequence that diverges properly to co. Then

1
lim — =0
n—00 Ty,

Conversely, if (yn) C (0,00) is a null sequence, then

o1
lim — = o0
n—0 Y,
Proof. Let € > 0. By condition
1 1
ANeNVYR>N: |z, > - <<:><5> (2.73)
€ |Zn|
Therefore é is a null sequence. The second part of the proof is left as an exercise for the
reader. O

2.41 Remark (Rules for computing). In this remark we will introduce some basic "rules” for
working with infinities. These rules are exclusive to this topic, and are in no way universal!
This should become obvious with our first two rules:

1 1
_— = 0 — =00
+oo 0
Obviously, division by 0 is still a taboo, however it works in this case since we are working
with limits, and not with absolutes. Let a € R, b € (0,00), ¢ € (1,00), d € (0,1). The
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remaining rules are:

37

@+ 00 = 00 a— 00 =—00
00 + 00 = 00 —00 — 00 = —00
b-o0o=00 b-(—00) = —00
00 - 00 = 00 00 - (—0) = =00
¢ =00 c =0
There are no general rules for the following:
00 — 00 > 0- 00 1
00

2.42 Theorem. Let (x,) C R be a sequence converging to x, and let (k,) C N be a sequence
such that

lim &, = oo
n—oo

Then

lim xx, ==
n—oo

Proof. Let € > 0. Then

ANeNVR>N: |z,—z|<e¢ (2.74)
Furthermore ~ R
ANeNVn>N: k,>N (2.75)
Therefore ~
Vn>N: |zg, —z| <e (2.76)
O

2.43 Example. Consider the following sequence

nQn + onn

n3n —_nn

Ty =

This can be rewritten as
n* +2n"  (n")? +2(n")

nd3n —npn (nn)?) _ (nn)

Introduce the subsequence k, = n™:

2n Inm
0 — lim =" _g

n—yoo M3 — pn

lim 7k2+2k =
k—o0 ]63—k N
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2.3 Convergence of Series

2.44 Definition. Let (x,) C R (or C). Then the series
o0
>
k=1
is the sequence of partial sums (sp):
n
W= m
k=1

If the series converges, then > 77, denotes the limit.

2.45 Theorem. Let (z,) CR (or C). Then

o0
an converges = (x,) null sequence

n=1
Proof. Let s, = > >, . This is a Cauchy series. Let € > 0. Then

AN eNVR>N: |spi1— Sp| = |zny1| <e (2.77)

2.46 Ezample (Geometric series). Let x € R (or C). Then
D>t
k=1

converges if |z| < 1. (Why?)

2.47 Ezample (Harmonic series). This is a good example of why the inverse of Theorem 2.45
does not hold. Consider

Ty = —
n

This is a null sequence, but > 72, % does not converge. (Why?)

2.48 Lemma. Let (z,) CR (or C). Then

o0 oo
E Ty converges <= g Ty, converges for some N € N
k=1 k=N

Proof. Left as an exercise for the reader. O
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2.49 Theorem (Alternating series test). Let (z,,) C [0,00) be a monotonic decreasing null se-

quence. Then
[o¢]
> (=Dfay

k=1

converges, and

o] N

D (=DFae =Y (=DFa| <anvn

k=1 k=1
Proof. Let s, = Zzzl(—l)kxn, and define the sub sequences a,, = so,,, b, = Sop+1. Then

An+1 = Son — (Ton41 — Tony2) < Sop = ap (2.78)
>0

Hence, (ay) is monotonic decreasing. By the same argument, (b,,) is monotonic decreasing.
Let m,n € N such that m < n. Then

b < bp = an — Topy1 < an < am (279)

Therefore (ay,), (by) are bounded. By Theorem 2.25, these sequence converge

(an) =% a (bp) =0 (2.80)

Furthermore
by — Gy = —Topi] —20 = a=b (2.81)

From eq. (2.79) we know that

bm <b=a<apn (2.82)

So therefore
|son, — al = ap —a < ap — by = Topt1 (2.83)
’32n+1 - CL‘ =b—by < ams1 — bp = Topy2 (284)
O

2.50 Ezample (Alternating harmonic series).

B jo1 1 1 1 1
S—k:1(—1) E_l 5"‘5_*"‘*_
— 1_1>_1 (1_1)_1+<1_1>_1+
2 4 3 6 8 5 10 12
7 1 1 1 1 1
“27176 8T 12"
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But s € [%, 1] , this is an example on why rearranging infinite sums can lead to weird results.
2.51 Remark.
(i) The convergence behaviour does not change if we rearrange finitely many terms.

(ii) Associativity holds without restrictions

oo oo
S ap = (o + 281
k=1 k=1
(iii) Let I be a set, and define
I —R
1 a

Consider the sum

S

el
If I is finite, there are no problems. However if [ is infinite then the solution of that
sum can depend on the order of summation!

2.52 Definition. Let (z,,) C R (or C). The series > ;- x) is said to converge absolutely if
22021 \xk\ converges.

2.58 Remark. Let (z,,) C [0,00). Then the sequence
n
W= u
k=1

is monotonic increasing. If (s,) is bounded it converges, if it is unbounded it diverges
properly. The notation for absolute convergence is

oo

Z’l’k’ < 00

k=1
2.54 Lemma. Let Y, xy be a series. Then the following are all equivalent
()

oo
ka converges absolutely
k=1

(ii)
{Z ||

kel

ICN ﬁnite} s bounded
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(iii)
Ve >0 31 CN finite VJ C N finite : Z |zk| < e
keJ\I

Proof. To prove the equivalence of all of these statements, we will show that (i) = (ii)
= (ili) == (i). This is sufficient. First we prove (i) = (ii). Let

> Jan| =k € [0,00) (2.85)
n=1

Let I C N be a finite set, and let N = max . Then

N [e)
> lanl <l % >l (2.86)
n=1 n=1

nel
Monotony of the partial sums

Now to prove (ii) = (iii), set

K = {Z |z | I C N ﬁnite} (2.87)
kel
Let € > 0. Then by definition of sup
31 CNfinite: Y |ax| >k —¢ (2.88)
kel
Let J C N finite. Then
k—e<> Japl < ) |l <K (2.89)
kel keluJ
Hence
Doolwel= D lml =) fawl <e (2.90)
keJ\I keluJ kel

Finally we show that (iii) = (i). Choose I C N finite such that

VJ CN finite: > |ayl <1 (2.91)
keJ\I

Then VJ C N finite

Dolakl < Y lwal+ Y fanl < fanl + 1 (2.92)

keJ keJ\I kel kel

Therefore Y, |zx| is bounded and monotonic increasing, and hence it is converging. So
o
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Theorem. Fvery absolutely convergent series converges and the limit does not depend on
the order of summation.

Proof. Let Y32, @), be absolutely convergent and let € > 0. Choose I C N finite such that
VICN: > |akl<e (2.93)
kel

Choose N = max I. Define the series

n
Sp = Zxk (2.94)
k=1

Then for n <m < N

n

lsn—sml < Y lmel < ). Jml <e (2.95)

k=m-+1 ke{l, ,n}\I

Hence s,, is a Cauchy sequence, so it converges. Let ¢ : N — N be a bijective mapping.
According to Lemma 2.54 the series > ;- T4(n) converges absolutely. Let € > 0. According
to the same Lemma

31 C N finite V.J C N finite: Y || < % (2.96)
keJ\I

Choose N € N such that
Ic{l, ,N}n{¢(1),6(2), - ,0(n)} (2.97)

Then for n > N

Sa-Yaw =l X m- Y ow
k=1 k=1

Fe(l NN ke{8(1), g (2.98)

< D> ml+ > 2| < €

ke{l,- ,NI\I ke{(1),,p(n) NI

Therefore

lim (Z Ty — Zx¢(k)> =0 (2.99)
k=1 k=1

2.56 Theorem. Let Y 2, x) be a converging series. Then

00
>
k=1

o0
<Dl
P
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Proof. Left as an exercise for the reader. O

2.57 Theorem (Direct comparison test). Let Y o, ) be a series. If a converging series Y peq Yk
exists with |xg| < yg for all sufficiently large k, then y ;2| xy converges absolutely. If a
series Y ooy 2k, diverges with 0 < zy, < xy, for all sufficiently large k, then Y- | xy diverges.

Proof. n n n 00
Z |z | < Zyk = Zxk bounded "2 Z |z | < 00 (2.100)
k=1 k=1 k=1 k=1
n n o
sz < Zxk == Zxk unbounded (2.101)
k=1 k=1 k=1
O

2.58 Corollary (Ratio test). Let (zy,) be a sequence. If 3q € (0,1) such that

Tn+1
In

<q

for a.e. n € N, then > ;2| x), converges absolutely. If

Tn+1
Tn

>1

then the series diverges.

Proof. Let ¢ € (0,1) and choose N € N such that

Vn>N: |2 <y (2.102)
Tn
Then
[zns1] < glanl, [enge] < qlzvia] < Planl], - (2.103)

This means that
00 N 00
Dolael <Dl + Y ¢V fan] < oo (2.104)
k=1 k=1 k=N+1

Hence, >"77 | x converges absolutely. Now choose N € N such that

V>N IS (2.105)
Tn
However this means that
|Znt1] > |zn| YR > N (2.106)

So (xy) is monotonic increasing and therefore not a null sequence. Hence Y7 | xj, diverges.
O
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2.59 Corollary (Root test). Let (x,) be a sequence. If 3q € (0,1) such that
Vel < q
for a.e. n € N, then Y ;2| x), converges absolutely. If
VIS
for alln € N then Y 7 | x), diverges.
Proof. Left as an exercise for the reader.

2.60 Remark. The previous tests can be summed up by the formulas

| | <1 g, Vien| <1
. ‘T’I’L-i-l . n
o |7 oy, Vil >1

44

for convergence and divergence respectively. If any of these limits is equal to 1 then the test

is inconclusive.

2.61 Example. Let z € C. Then
k

2z
exp(z) := Z o
k=0

converges. To prove this, apply the ratio test:

Ay A 0
(E+DzlF  k+1

The function exp : C — C is called the exponential function.

2.62 Remark (Binomial coefficient). The binomial coefficient is defined as

(73) =1 (kil):(Z)Zlf

and represents the number of ways one can choose k objects from a set of n objects. Some

rules are

<Z>_o it h>n
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(iif)

(iv)

Ve,ye C: (x+y)" = <n> akyn =k
k=

—_

2.63 Theorem.
Vu,v € C: exp(u+v) = exp(u) - exp(v)

Proof.

exp(u) - exp(v) = (Z Z,) ' (Z_:O Zﬂ) - Z_: 2 1:1!:7)1!

n=0

2.64 Remark. We define Euler’s number as
e :=exp(l)

We will also take note of the following rules Va € C,n € N

1
exp(7)

exp(0) = exp(x)exp(—z) =1 = exp(—z) =
exp(nz) =exp(z+x+x+ -+ ) = exp(z)”
1 x
exp(z)n = exp(g>
Alternatively we can write

z

exp(z) =e
2.65 Theorem. Let z,y € R.
()

xr <y = exp(z) < exp(y)

45

(2.107)
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(i)
exp(z) >0 Vzr eR
(iii)
exp(z) >1+x VxR
(iv)
d
lim =0 VdeN
P ()
Proof.
(i) Left as an exercise for the reader.
(ii) For x > 0 this is trivial. For z <0
(1) = ——— >0
exp(z) = ————
P exp(—1)

(iii) For > 0 this is trivial. For x < 0

2

46

(2.108)

(2.109)

is an alternating series, and therefore the statement follows from Theorem 2.49.

(iv) Let d € N. Then Vn € N

2.66 Definition. Define
sin,cos : R — R

as

sin(x) := Im(exp(ix))
cos(z) := Re(exp(ix))

2.67 Remark.

(i) Euler’s formula
exp(iz) = cos(x) + isin(z)

(2.110)
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(ii) V2 € C: exp(z) = exp(2)

|exp(iz)|* = exp(iz) - exp(iz) = exp(iz) - exp(—iz) = 1

Also:
1 = cos?(z) + sin?(x)

On the symmetry of cos and sin:

cos(—x) + isin(—x) = exp(—ix) = exp(ix) = cos(x) — isin(x)

(iii) From
o~ (i2)"
exp(iz) = ) o (" =1,i' =i,i? = -1, = —i,it =1,--+)
k=0
follow the following series
o0 k 2k+1 o0 (71)kx2k
sin(z kzo 2k: Y cos(zx) = kzo Rl

(iv) For x € R

exp(i2z) = cos(2z) + isin(2x)
= (cos(x) +isin(z))?
= cos?(z) — sin?(x) + 2isin(x) cos(z)

By comparing the real and imaginary parts we get the following identities

cos(2x) = cos?(z) — sin’(x)
sin(2z) = 2sin(z) cos(x)

(v) Later we will show that cos as exactly one root in the interval [0,2]. We define 7 as
the number in the interval [0, 4] such that cos(3) = 0.

— sin(g> — 41

cos and sin are 27-periodic.

2.68 Theorem. Vz € C

Jm (14 0) = i (1= 0) 7 = ()

Proof. Without proof. O
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3.1. VECTOR SPACES

3.1 Vector Spaces

49

We introduce the new field F which will stand for any field. It can be either R, C or any

other set that fulfils the field axioms.

3.1 Definition. A vector space is a set V with the operations

Addition Scalar Multiplication
+: VXV —V S FxV —V
(z,y) —x+y (a,y) — ax

We require the following conditions for these operations
(i) 0eVVeeV: z4+0=z

(i) VeeVI(—x)eV: z+(—x)=0

(iii) Ve,y e V: z4+y=y+=x

(iv) Vo,y,2€V: (z+y)+z=x+(y+2)

)
)
)
)
(V) Va €FVz,y eV: alz+y) =az+ay
(vi) Vo, B € FVz eV : (a+ )z =azx+ Bz
(vil) Va, B e FVz € Vi (af)z = a(fz)
(viii) Vz e V: 1.-z=ux

Elements from V' are called vectors, elements from F are called scalars.

3.2 Remark. We now have two different addition operations that are denoted the same way:

i) +:VxV =V
(i) +:FxF—>TF
Analogously there are two neutral elements and two multiplication operations.
3.8 Example.

(i) F is already a vector space

(i) V = F2. In the case that F = R this vector space is the two-dimensional Euclidean
space. The neutral element is (0,0), and the inverse is (x1,x2) — (—x1, —x2). This

can be extended to F".

(iii) F-valued sequences:
V= {(X")nGN‘X €F VneN}
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(iv) Let M be a set. Then the set of all F-valued functions on M is a vector space

V={f|f:M—F}

3.4 Definition. Let V be a vector space, let z,x1, -+ ,z, € V and let M C V.

(i) x is said to be a linear combination of x1,--- ,x, if Jaq, -, a, € F such that
n
T = Z AT}
k=1

(ii) The set of all linear combinations of elements from M is called the span, or the linear
hull of M

n
span M := {Z QLTE

neN, a,---,a, €F, $1,---,xn€V}

k=1
(iii) M (or the elements of M) are said to be linearly independent if Vai,- -,y €
F, x1,--- ,xzp, €V
n
Zakxk:O = a1 =y =---=aq, =0
k=1

(iv) M is said to be a generator (of V) if
span M =V
(v) M is said to be a basis of V' if it is a generator and linearly independent.

(vi) V is said to be finite-dimensional if there is a finite generator.

3.5 Example.

(i) For V = R? consider the vectors z = (1,0), y = (1,1). These vectors are linearly
independent, since

ar + fy =a(1,0)+ [(1,1) =(0,0) = a+F=0AF=0
So therefore a = 8 = 0. We can show that span{z,y} = R? because

(a, 8) = (a =Bz + By

So {x,y} is a generator, hence R? is finite-dimensional.
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(ii) For V = R3 consider = = (1,—1,2), y = (2,—1,0), z = (4,—3,3). These vectors are
linearly dependent because
20 +y—2=1(0,0,0)

(iii) Let V.={f|f:R — R}. Consider the vectors

fm:R—R
x— "
The fo, f1,-, fn, - are linearly independent, because

00 e
0= Zk‘ = O"akfk = Zk = Onakl'k
=1 =1

implies ag = a1 = -+ = a,, = 0. The span of the fj is the set of all polynomials of
(< n)-th degree. The function z + (2 — 1)3 is a linear combination of fo,--- , f3:

(z—1P3 =232 +3z -1

3.6 Remark. Let V be a vector space, y € V a linear combination of yi,--- ,y,, and each of
those a linear combination of x1,--- ,x,. Le.

n
dag, - ,an, €F: y:Zakyk
k=1

and
n
By eF: yp = Z/Bk,zm’z
=1
Then
n n n n n
Y= k=Y ok Brwi =Y ( Oékﬁk,l) 7]
k=1 k=1 I1=1 =1 \k=1
—_——
€F
So therefore
span(span(M)) = span(M)
3.7 Theorem. Let V be a finite-dimensional vector space, and let x1,--- ,x, € V. Then the
following are equivalent
(i) x1, -,y s a basis.
(ii) x1,- - ,zy is a minimal generator (Minimal means that no subset is a generator).
(iii) x1,--- ,xy is a mazimal linearly independent system (Maximal means that x1,- -+ ,Zpn,y

is not linearly independent).
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(iv) Yx € V there exists a unique ay,--+ 0 €F

n
T = E AT}
k=1

Proof. First we prove ”(i) = (ii)”. Let z1,---,z, be a basis of V. By definition
r1, -, Ty i a generator. Assume that xo,-- -, x, is still a generator, then
n
dasg, -+ ,a, € F: :Ulzz:akxk (3.1)
k=1

However this contradicts the linear independence of the basis. Next, to prove ”(ii) =
(iii)” let x1,--- ,x, be a minimal generator. Let aq,--- , a, € F such that

0="> (3.2)
k=1

Assume that one coefficient is # 0 (w.l.o.g. a; =0). Then

x = Z —%xk (3.3)

h— M
T1,- -+, Ty is a generator, i.e. forx € V
n n a
k
361, ,Bp €F: l’ZZﬂkxk:Z(ﬁk—)l‘k (3.4)
a1
k=1 k=2
But this implies that zs,---,z, is a generator. That contradicts the assumption that
1, , Ty was minimal.
— ai=ay=--=a, =0 (3.5)
Now let y € V. Then
n
I m €F Y= ean (3.6)
k=1
So x1,- -+ , &,y is linearly dependent, and therefore x1,- - , z, is maximal. To prove ”(iii)
= (iv)” let x1,--- ,x, be a maximal linearly independent system. If y € V, then
n
Jag, - ag, fEF: Zakxk+/8y20 (3.7)
k=1

Assume 8 = 0, then consequently

1, -+, Ty linearly independent =— a1 =as=---=a, =0 (3.8)
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This is a contradiction, so therefore 5 # 0:

y=> g (3.9)

k=1

n

The uniqueness of these coefficients are left as an exercise for the reader. Finally, to finish
the proof we need to show ”(iv) = (i)”. By definition

V =span{zy, - ,z,} (3.10)

Hence, {z1, -+ ,z,} is a generator. In case

n
0="> (3.11)
k=1

holds, then a; = - -+ = «a;, = 0 follows from the uniqueness. O

3.8 Corollary. FEvery finite-dimensional vector space has a basis.

Proof. By condition, there is a generator x1, - - - , x,. Either this generator is minimal (then
it would be a basis), or we remove elements until it is minimal. O
3.9 Lemma. LetV be a vector space and x1,--- ,xx € V a linearly independent set of elements.

Let y € V, then
X1, , X,y linearly independent <= y ¢ span{xy,- -, xx}

Proof. To prove ” <= 7, assume y # span{z1,--- ,z;}. Therefore xi, - ,xg,y must be
linearly independent. To see this, consider

n
O:Zakxk—&—ﬁy oy, 0, €F (3.12)
k=1

Then 8 = 0, otherwise we could solve the above for y, and that would contradict our

assumption. The argument works in the other direction as well. O

3.10 Theorem (Steinitz exchange lemma). Let V' be a finite-dimensional vector space. Ifxy,--- , Tm
is a generator and yi,--- ,Yn a linear independent set of vectors, then n < m. In case
T1, ,Tm and Y1, -+ ,Yn are both bases, then n = m.

Heuristic Proof. Let K € {0,--- ,min{m,n} — 1} and let

Ty, 3 TKYYK+1, " s Yn (313)

be linearly independent. Assume that

TK+1, " ,Tm € Span {$17 Xk, YK 42,0 7yn} (314)
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Then
YK+1 € span {xh T 7xm} C span {xla UL TKS YK 42, 7ym} (315)
This contradicts with the linear independence of x1, -+ , K, Yx+2, - - Yn. Furthermore,
El.’Ei GV Z; ¢Span{$17"' Yy TKyYK+2, " )yn} (316)
W.lo.g x:%1=2axgs41. By Lemma 3.9, 1, -+ ,x41,YK+2, - Yn is linearly independent.
We can now sequentially replace y; with x; without losing the linear independence. Assume
n > m, then this process leads to a linear independent system z1,- -+ , Zm, Ym+1, - , Yn. But
since x1,--- , %y, IS a generator, y,+1 is a linear combination of zy, -+, &y If 21, -+ 2
and y1,- -,y are both bases, then we cannot change the roles and therefore m = n. O

3.11 Definition. The amount of elements in a basis is said to be the dimension of V, and is
denoted as dim V' .

3.12 Example.
(i) Let V =R" (or C™). Define

ek:(oaoa”' )0)%)07"' 70)

k-th position
Then ey, -+ , e, is a basis, in fact, it is the standard basis of R (C").

(ii) Let V' be the vector space of polynomials

Vz{f:R—)]R

n
neN, ap, - ,a, €R, f(x):Zak:ck V:CE]R}
k=1

This space has the basis
{z — 2" |n e Ny}

3.13 Corollary. In an n-dimensional vector space, every generator has at least n elements, and
every linearly independent system has at most n elements.

Proof. Let M C span{z1,---,x,}. Then

V =spanM C spanzi, - ,Tp (3.17)

Hence, z1,--- ,x, is a generator. On the other hand, assume
Jy € M\ span{xy, -+, zp} (3.18)
Then z1,--- ,x,,y is linearly independent (Lemma 3.9), and we can sequentially add ele-

ments from M until x1, -, Zpn, Ynt1," * , Yntm IS & generator. O
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3.14 Definition (Vector subspace). Let V' be a vector space. A non-empty set W C V' is called
a vector subspace if
Ve,ye WVaeF: z+ayeW

3.15 Example. Consider
W ={(x,x) e R*| x € R}

This is a subspace, because
(6 x) +aln,n) = (x +an, x +an)
However,
A={(x,n eR*|x*+n* =1}
is not a subspace, because (1,0),(0,1) € A4, but (1,1) ¢ A.
3.16 Remark.
(i) Every subspace W C V contains the 0 and the inverse elements.
(ii) Let W C V be a subspace. Then
n
Vei,---,xn € W, aq, - ,an €F: Zakxk ew
k=1
Furthermore, M C W = span M C W.
(ili) M C V is a subspace if and only of span M = M.
(iv) Let I be an index set, and W; C V subspaces. Then
Wi
i€l
is also a subspace
(v) The previous doesn’t hold for unions.

(vi) Let M C V:
span M = ﬂ w
W DM subspace of V/
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3.2 DMatrices and Gaussian elimination

3.17 Definition. Let a;; € F, with ¢ € {1,--- ,n}, j € {1,--- ,m}. Then

ai;p a2 - A1m
21 az2 - a2m
anl Ap2 - (apm

is called an n x m-matrix. (n,m) is said to be the dimension of the matrix. An alternative

notation is
A= (aij) c Frxm

F™*™ is the space of all n X m-matrices. The following operations are defined for A, B €

anm C c mel:
(i) Addition
air +bir o arm + b
A+ B = :
n1 +bn1 o Gpm + bum
(ii) Scalar multiplication
Qal]p - QGim
a-A=
Qlnpl -+ OApm
(iii) Matrix multiplication
ajici1 +a12c21 + -+ AimCm1 -0 Q11C1 + A12C2 + -+ A1mCmi
A-C= : :
Ap1Cl1 + ap2C21 + +++ + ApmCm1 -+ ApiCl + Ap2Coy + -+ + ApmCmi

or in shorthand notation

m
(AC)ij =) aikcr
k=1

(iv) Transposition
The transposed matrix A7 € F*" is created by writing the rows of A as the columns
of AT (and vice versa).

(v) Conjugate transposition

A= (@)

3.18 Remark.
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(ii

(iii) F™*1 and F'*" can be

)
)
)
)

(i) F»*™ (for n,m € N) is a vector space.

trivially identified with F™.

o7

A - B is only defined if A has as many columns as B has rows.

(iv) Let A, B,C, D, E matrices of fitting dimensions and « € F. Then

(A+ B)C = AC + BC

A(B+C) = AB + AC
A(CE) = (AC)E
a(AC) =

(A+B)T = AT + BT

(@A)” = a(A)”
(AC)T =T AT

Proof of associativity. Let A € F»*™ C e Fmxl

{17...’7}},]’6{1’...7])}_

!
(AC)E),;; = Z(AC ik = Z

k=1

(@A)C = A(aC)

(A+ B)=A+B
(aA) = AA
(AC) = CA
E € F™P. Furthermore let i €

Z A5 Crk

ik " Cik " Ckj
k=1j=1
=3 g (Yoo
k=1 k=1
- Z a;r (CE)I;:]'
k=1
= (A CE))Z‘J
— A(CE) = A(CE) (3.20)
O

(v) Matrix multiplication is NOT commutative.
defined when A € F*»*™ and B € F™*". Example:

(0 0) (1 0)=(0

)7 (o) o

First off, AB and BA are only well

)=( 1)
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(vi) Let n,m € N. There exists exactly one neutral additive element in F"*™  which is
the zero matrix. Multiplication with the zero matrix yields a zero matrix.

1, 1=
Sii —
“ {0 else

The respective matrix I = (J;;) € F**™ is called the identity matrix.

(vii) We define

(viii) A # 0 and B # 0 can still result in AB = 0:

0 1\*> /(0 0
0 0/ \0 O
3.19 Example (Linear equation system). Consider the following linear equation system

1121 + a19x9 + -+ + ATy = by

a1 %1 + a2 + - - - + A2m Ty = ba
Ap1T1 + p2T2 + - -+ + AT = by

This can be rewritten using matrices
aix - i x1 by
A = E S . E xTr = : b =

Gpl  °°  Qpm Tm bn

Which results in
Az =B, AeF™" zecF™! pe ™!

Such an equation system is called homogeneous if b = 0.

3.20 Theorem. Let A € F"*™ b € F™. The solution set of the homogeneous equation system
Az =0, (that means {x € F™ | Ax = 0} C F™) is a linear subspace. If x and & are solutions
of the inhomogeneous system Ax = b, then x — T solves the corresponding homogeneous
problem.

Proof. A -0 = 0 shows that Az = 0 has a solution. Let z,y be solutions, i.e. Ax = 0 and
Ay = 0. Then Vo € F:

Az + ay) = Az + A(ay) = <1/ﬂ£/+0[( Ay ) =0 (3.21)
o

= zr+ay e {zeclF"| Az =0} (3.22)
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Next, let z, Z be solutions of Az = b, i.e.

Ax=0b, AT=5b (3.23)

Then
Alx —2)=Az—Az=b—-0=0 (3.24)
Therefore,  — Z is the solution of the homogeneous equation system O

3.21 Remark (Finding all solutions). First find a basis ej,--- , e of
{z e ™| Az = 0}

Next find some xg € F™ such that Azg = b. Then every solution of Az = b can be written
as

T =220+ are; + - + age

3.22 Fxample. Let

1200 1 1 3
0010 0 2 9
A=10 001 -1 b=134 =11
0000 0 4 0

Then Az = b has no solution, since the fourth row would state 0 = 4. However, Az = ¢ has
the particular solution

3
0
=12
1
0
If we consider the homogeneous problem Ay = 0, we can come up with the solution
-2
1 O
y=1 0 2+ | O
0 1
0 1

and in turn find the set of solutions

{y € F°| Ay = 0} = span {(-2,1,0,0,0)",(~1,0,0,1,1)"}
{z eF°| Az =c} = {(3,0,2,1,0)" + a(—2,1,0,0,0)" + 5(~1,0,0,1,1)"}
3.23 Definition (Row Echelon Form). A zero row is a row in a matrix containing only zeros.

The first element of a row that isn’t zero is called the pivot.
A matrix in row echelon form must meet the following conditions
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(i) Every zero row is at the bottom
(ii) The pivot of a row is always strictly to the right of the pivot of the row above it
A matrix in reduced row echelon form must additionally meet the following conditions
(i) All pivots are 1
(ii) The pivot is the only non-zero element of its column

3.2/ Remark. Let A € F"*™ and b € F". If A is in reduced row echelon form, then Ax = b can
be solved through trivial rearranging.

3.25 Definition (Matrix row operations). Let A be a matrix. Then the following are row
operations

(i) Swapping of rows i and j
(ii) Addition of row i to row j
(iii) Multiplication of a row by A # 0
(iv) Addition of row ¢ multiplied by lambda to row j

3.26 Theorem (Gaussian Elimination). Every matriz can be converted into reduced row echelon
form in finitely many row operations.

Heuristic Proof. If A is a zero matrix the proof is trivial. But if it isn’t:

e Find the first column containing a non-zero element.
— Swap rows such that this element is in the first row

e Multiply every other row with multiples of the first row, such that all other entries in
that column disappear.

e Repeat, but ignore the first row this time

At the end of this the matrix will be in reduced row echelon form. O
3.27 Definition. A € F™*" is called invertible if there exists a multiplicative inverse. I.e.
dBeF"™": AB=BA=1
We denote the multiplicative inverse as A"
3.28 Remark. We have seen matrices A # 0 such that A? = 0. Such a matrix is not invertible.

3.29 Theorem. Let A, B,C € F"*", B invertible and A = BC. Then
A invertible <= C invertible

Especially, the product of invertible matrices is invertible.
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Proof. Without proof. O

3.30 Remark. Matrix multiplication with A from the left doesn’t "mix” the columns of matrix
B

3.31 Theorem. Let A be a matriz, and let A be the result of row operations applied to A. Then
3T invertible: A=TA

We say: The left multiplication with T applies the row operations.

Heuristic proof. You can find invertible matrices 17, - - ,T;, that each apply one row oper-
ation. Then we can see that 3
A=T,T,1---T1 A (3.25)
T
Since T is the product of invertible matrices, it must itself be invertible. O

3.32 Corollary. Let A€ F"™*™ b e F", T € F**™, Then Az = b and T Ax = Tb have the same
solution sets.

Proof. If Ax = b it is trivial that

Ar=b = TAx =Tb (3.26)

If TAx = Tb, then
Az =T 'TAz =T"'Tbh=5b (3.27)
O

3.33 Lemma. Let A € field™™™ be in row echelon form. Then
A invertible <= The last row is not a zero row

and
A invertible <= All diagonal entries are non-zero

Proof. Let A be invertible with a zero-row as its last row. Then
0,---,0,1)- A= (0,---,0,0) (3.28)

Multiplying with A~! from the right would result in a contradiction. Therefore the last row
of A can’t be a zero row.

Now let the diagonal entries of A be non-zero. This means we can use row operations
to transform A into the identity matrix, i.e.

3T invertible: TA=1 — A=T""1 (3.29)

O
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3.34 Corollary. Let A € F**™. Then

A invertible <= FEvery row echelon form has non-zero diagonal entries

and
A invertible <= The reduced row echelon form is the identity matrix

Proof. Every row echelon form of A has the form T'A with T" an invertible matrix. Especially,
1S invertible such that SA is in reduced row echelon form. Then

T A invertible <= A invertible (3.30)
O

3.85 Remark. Let A € F™*™ be invertible, B € F"*™. Our goal is to compute A~'B. First,
write (A|B). Now apply row operations until we reach the form (I|B). Let S be the
matrix realising these operations, i.e. SA =1I. Then B = SB = A~'B. If B = I this can
be used to compute A~

3.36 Example. Let

Rewrite this as

Turn this into

1 1 0|1 0 -1
01 0|0 1 -1
00 1{]0 0 1
And finally
1 0 0|1 -1 O
01 00 1 -1
0 0 1]0 O 1
The right part of the above matrix is A~
3.37 Definition. Let A € F™*™ and let 21, - - , 2z, € FI*™ be the rows of A. The row space of
A is defined as
span{z1,- -+, zn}

The dimension of the row space is the row rank of the matrix. Analogously this works for
the column space and the column rank. Later we will be able to show that row rank and
column rank are always equal. They’re therefore simply called rank of the matrix.
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3.38 Theorem. The row operations don’t effect the row space.

Proof. 1t is obvious that multiplication with A and swapping of rows don’t change the row
space. Furthermore it is clear that every linear combination of z; + 29,22, , 2, is also a
linear combination of z1, 29, - - - , 2., and vice versa. O

3.39 Theorem. Let A be in row echelon form. Then the non-zero rows of the matriz are a basis
of the row space of the matriz.

Proof. Let z1,--- , z; € F**™ be the non-zero rows of A. They create the space span {z1, - , 2z, },
since zg, - - - 2, are only zero rows. Analogously,

o121 +oozg + - oz =0 (3.31)
Let j be the index of the column of the pivot of z;. Then zo, - - - , zx have zero entries in the
j-th column. Therefore
a1 2 = 0 = a1 =0 (3.32)
—~—
#0
By inductivity, this holds for every row. O

3.40 Remark. (i) To compute the rank of A, bring A into row echelon form and count the
NON-ZEro rows.

(ii) Let vy,- -+, vy € F™. To find a basis for
span {v1, - Up}

write vy, - - , Uy, as rows of a matrix and bring it into row echelon form.

3.3 The Determinant

In this section we always define A € F"*™ and z1,--- , z, the row vectors of A. We declare
the mapping
det : F™*" — F

and define
det(A) := det(z1, 22, ..., 2n)

3.41 Definition. There exists exactly one mapping det such that

(i) It is linear in the first row, i.e.

det(z1 + 21, 22, -+, 2n) = det(z1, 22, -+, 2p) + Adet (21, 22, -+, 2p)
(ii) If A is obtained from A by swapping two rows

det(A) = —det (fl)
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(iii) det(I) = 1

This mapping is called the determinant, and we write

ailr - Glin
det A =
anl  +°°  Onp
3.42 Example.
ail aiz| _
= a11G22 — a21012
a1 ag2

a1l aiz2 ais
a1 Q22 @23 =a11022aG33 + @12a23a31 + 13021032
a31 asz2 ass

— (31422013 — A32023011 — (33021012
3.483 Remark. (i) Every determinant is linear in every row
(ii) If two rows are equal then det(A) =0

(iii) If one row (w.l.o.g. z1) is a linear combination of the others, so

Z1 =2y +a3z3+ -+ Qpzn, a1, 0, €T
then
det(z1, 29, , 2n) =g det(z2, 29, 23, , 2n) +
0
as det(23,22,23,-~ ,Zn)+
0
oy, det(zp, 22, 23, -+, 2n)
0
=0

(iv) Adding a multiple of a row to another doesn’t change the determinant
(v) Define
T;; swaps rows ¢ and j

A) multiplies row ¢ with A #£ 0

i(A) adds A-times row j to row ¢

64
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Then

det(T;;A) = — det(A)
det(L;;(A)A) = det(A)
det(M;(A)A) = Adet(A)

3.44 Lemma. Let det be the determinent, and A, B € F™"*". Let A be in row echelon form, then
det(AB) =ai1-a2 - Qpp * det(B)

Proof. First consider the case of A not being invertible. This means that the last row of A
is a zero row, which in turn means that det(A) = 0. This also means that the last row of
AB is a zero row and therefore det(AB) = 0.

Now let A be invertible. This means that all the diagonal entries are non-zero. It is
possible to bring A into diagonal form without changing the diagonal entries themselves.
So, w.l.o.g. let A be in diagonal form:

A= M,(an,) - Ms(az)Mi(a11)l (3.33)
and thus
det(AB) = det(M,(any) - -+ - M>s(az2)Mi(a11)B) (3.34)
— Gy - ass - a1y det(B)
O
3.45 Remark. For B = I this results in
det(A) = ajja - - anp
3.46 Theorem. Let A, B € F"*". Then
det AB =det A - det B
Proof. Let i,j € {1,--- ,n} and A # 0. Then
det(T;;AB) = — det(AB) (3.35a)
det(L;j(A)AB) = det(AB) (3.35b)
Bring A with T;; and L;;(\) operations into row echelon form. Then
det(AB) = a11a22 - - - Gpy, - det(B) (3.36)
and therefore
det(AB) =det A-det B (3.37)
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3.47 Corollary.
A € F™" invertible <= det A #0

Proof. Row operations don’t effect the invertibility or the determinant (except for the sign)
of a matrix. Therefore we can limit ourselves to matrices in row echelon form (w.l.o.g.).
Let A be in row echelon form, then

detA;éO < anagg---am#O
— (111#0,(122#0,"‘,04””,#0 (338)

<= A invertible since diagonal entries are non-zero

O
3.48 Theorem.
det A = det AT
Proof. First consider the explicit representation of row operations:
7 7
1
i 0 1
T = 1 (3.39a)
j 1 0
1
J
1
i 1 A
Lij(\) = 1 (3.39b)
1
1
Thus we can see
det(T};) = det(T}5) = -1 (3.40a)
det(L;j(\) = det(Li;(N)') =1 (3.40b)
Let T be one of those matrices. Then
det((TA)T) = det (AT - TT)
= det AT - det 7T (3.41)

=det AT - det T

and
detTA=detA- -detT (3.42)
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And therefore
det((TA)T) = det(T4) < det AT =det 4 (3.43)

Now w.l.o.g. let A be in row echelon form. Let A be non-invertible, i.e. the last row is
a zero row. Thus det A = 0. This implies that AT has a zero column. Row operations
that bring AT into row echelon form (w.l.o.g.) perserve this zero column. Therefore the
resulting matrix must also have a zero column, and thus det (AT) = 0.

Now assume A is invertible, and use row operations to bring A into a diagonalised form
(w.lo.g.). For diagonalised matrices we know that

A=AT — det A =det AT (3.44)
O

3.49 Remark. Let A;; be the matrix you get by removing the i-th row and the j-th column from
A.

det A= (=1)"" - aj; - det(Aj;), je€{1,--- ,n}
=1

3.50 Remark (Leibniz formula). Let n € N, and let there be a bijective mapping
o:{l,---,n} —{1,--- ,n}

o is a permutation. The set of all permutations is labeled S,,, and it contains n! elements.
Then

n

det A= sgn(0) [ [ aio0)

oESH i=1

A permutation that swaps exactly two elements is called elementary permutation. Every
permutation can be written as a number of consecutively executed elementary permutations.

sgn(o) = (—1)*

where o is the permutation in question and k is the number of elementary permutations it
consists of.

3.4 Scalar Product

In this section V' will always denote a vector space and I a field (either R or C).

3.51 Definition. A scalar product is a mapping

() : VXV —TF
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that fulfils the following conditions: Yvy,vs, w1, ws €V, AETF
Linearity v1|wy + Awa) = (wr|wy) + A (v1|ws)

viw) = (wivr)

(
Conjugated symmetry (
Positivity (v1|v1) >0

(
(

Definedness vilvg) =0 = v1 =0

Conjugated linearity v1 + Avg|wy) = (vi|wy) + A (va|w)

The mapping

I : V—F

v —> / (v|v)

3.52 Example. On R" the following is a scalar product
<<9€17ﬂ?27 e 7$n)T‘(y17y2, T ,yn>T> = kayk
k=1

The norm is then equivalent to the Pythagorean theorem

HUH:\/W: \/x%+x%+...+m%

Analogously for C"

n
(Curyuz, - un) |(vr, 02, o)) = 3 w0
k=1

3.58 Remark. e The length of v € V' is ||v]]
e The distance between elements v,w € V is ||[v — w||

e The angle ¢ between v,w € V is cos ¢ = ||1§ﬁ!’|l|121||

3.54 Theorem. Let v,w € V. Then

Cauchy-Schwarz-Inequality | (vjw) | < |Jv|[|lwl]]
Triangle Inequality lv 4wl < |v] + |Jwl|

Proof. For A € F we know that
0 < (v—Awlv —Aw) = (v—Awlv) — A (v — Aw|w)

= (v[v) = AMwlv) = A{vlw) + A\ (w]w) (3.45)
BE
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Let \ = mﬁg Then

R . O R (L /T

0 < HUH2 - 2 - 2
[Jwl] [Jw]] Jlw]*

:Uz_|<wrv [ (wlort” | | (ot 546
Il /KH /Kn (3:40)

|<WIU>|
lw]®

Through the monotony of the square root this implies that

| (wlv) | < Jvfl[Jw]| (3.47)
To prove the triangle inequality, consider

v+ wl[[* = (v + wv + w)
= (v[v) + (v|w) + (wlv) + (wlw)
—_ ——

N ——
Jlv]l? (v]w) [lw]|®
2 2 (348)
< [ol]* + 2 - Re (v]w) + [|lw]|
2 2
< loll” + 2[fol[lwl]l + llwll
= ([l + flwl)?
Using the same argument as above, this implies
[v 4wl < [[o]] + [Jw]| (3.49)
O
3.55 Definition. v,w € V are called orthogonal if
(vjlw) =0
The elements vy, -+ , v, € V are called an orthogonal set if they are non-zero and they are
pairwise orthogonal. I.e.
Vi, j € {1, m}: (vilv;) =0
If |jv;]| = 1, then the v; are called an orthonormal set. If their span is V' they are an

orthonormal basis.
3.56 Theorem. Ifwvy,--- ,v, are an orthonormal set, they are linearly independent.

Proof. Let ay,--- ,ap € F, such that

0 =a1v; +agva + - - + v, (3.50)
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Then

0 = (v]0) = (vilarvy + agva + - - 4 ApUy)
= aq (vi|v1) + ag (vilva) + - - - + ay, (Vi|vy) (3.51)
= a; (vilv;) i€{l,---,n}

Since v; is not a zero vector, (v;|v;) # 0, and thus o; = 0. Since i is arbitrary, the v; are
linearly independent. O

3.57 Example. (i) The canonical basis in R™ is an orthonormal basis regarding the canonical
scalar product.
(ii) Let ¢ € R. Then
v1 = (cos ¢, sin )T vy = (—sing,cos @)
are an orthonormal basis for R?

3.58 Theorem. Let vy, ,v, be an orthonormal basis of V.. Then forv e V:

n
v = Z (vilv) v;
i=1
Proof. Since vy, --- ,v, is a basis,
n
Jag, -+ oy, € F: v:Zaivi (3.52)
i=1

And therefore, for j € {1,--- ,n}

n

(vjlv) = ; i (vjlvi) = aj (vjlvj) (3.53)
[lvjl°=1
0

3.59 Theorem. Let A € F™*™ and (-|-) the canonical scalar product on F™. Then
(v|Aw) = <AHv‘w>

Proof. First consider

(Aw)i = Z Aijwi (3.54&) (AHw)j = Z Aﬁvi (3.54b)
7=1 =1
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Now we can compute

n n n

<U|Aw> = ZE(AZU)Z = v - Z Aijwj = Z Z Aijvﬁwj
j=1

i=1 j=1

=1 =

- zn: (zn: Az’jw) w; = Zn: <Zn:z4]v> wj (3.55)

j=1 \i=1

—_

3.60 Definition. A matrix A € R"*" is called orthogonal if

ATA=AAT = T

or

AT — g1
The set of all orthogonal matrices
O(n) :={AeRnxn|ATA=1}
is called the orthogonal group.
SO(n)={A=Rnxn|ATA=TAdetA=1} C O(n)

is called the special orthogonal group.6

__ [(cos¢ —sing
A_<sin¢ cosd))

3.62 Remark. (i) Let A, B € F™*" then

3.61 Example. Let ¢ € [0, 27], then

is orthogonal.

AB=1 = BA=1

(ii)
1=det I =det ATA = det AT - det A = det?A
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(iii) The i-j-component of AT A is equal to the canonical scalar product of the i-th row of
AT and the j-th column of A. Since the rows of AT are the columns of A, we can
conclude that

A orthogonal <= (ri|rj) = d;;

where the r; are the columns of A. In this case, the r; are an orthonormal basis on
R™. This works analogously for the rows.

(iv) Let A be orthogonal, and z,y € R"
(Az|Ay) = (AT Azly) = (z]y)
1Az]| = /(Az|Az) = /(z]z) = |||

A perserves scalar products, lengths, distances and angles. These kinds of operations
are called mirroring and rotation.

(v) Let A, B € O(n)
(AB)T . (AB) =BTATAB=BTIB=1

This implies (AB) € O(n). It also implies I € O(n). Now consider A € O(n). Then
(Afl)TAflz(AT)T'AT:AAT:I

This implies A~! € O(T). Such a structure (a set with a multiplication operation,
neutral element and multiplicative inverse) is called a group.

3.68 Example. O(n), SO(n), R\ {0}, C\ {0}, Gl(n) (set of invertible matrices) and S,, are all
groups.

3.64 Definition. A matrix U € C™*" is called unitary if
UHU =1=U0U0"

We also introduce
{UGCnxn|UHU:I}

the unitary group, and
{UeCnxn|UTU=TInNdetU =1}

the special unitary group.
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3.5 Eigenvalue problems
3.65 Definition. Let A € F™*". Then A € F is called an eigenvalue of A, if
e, v£0: Av=X\v
Such a vector v is called eigenvector. We call
{v e F"| Av = v} =: E)\
eigenspace belonging to .

3.66 FExample. Let

2 1 -1
A=10 1 0
0 0 1
Then
1 2 1
A-10]=(0]=2-1]0
0 0 0
1 1 1
A-|-1])=|-1]=1-|-1
0 0
1 1 1
A-10]=(0]=1-1]0
1 1 1
The eigenspaces are
1
Ey=<k-1|0 k€ER
0
1 1 1 1
Fi=<¢k-|-1]+p-10]|K,peR ) =span -11,10
0 1 0 1

3.67 Remark. The eigenspace to an eigenvalue A is a linear subspace.

3.68 Remark. We want to find X\ € F, v € F" such that

Av=X v <= (A-X)v=0
F
ETLX"I

If (A— AI) is invertible, then v = 0. So the interesting case is when (A — A\I) not invertible.

(A — AI) not invertible <= det(4A — ) =0
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This determinant is called the characteristic polynomial. This polynomial has degree n,
and the eigenvalues are the roots of that polynomial. So let A be an eigenvalue of A, then

(A= X)v=0

is a linear equation system for the components of v.

3.69 FExample. Let

_ 0 1 2%2
A= <_1 0> eC

The characteristic polynomial is

-2 1

det(A —\I) = ‘_1 )y

‘ =\ +1
Its roots are
A =1 Ay = —1

To find the eigenvector belonging to A1, we declare v; = (x,3) € C? and solve the linear
equation system

(A—/\lf)vl =0 —z+1y=20
—lz—iy =0

It has the solutions x = —¢ and y = 1, so
o — —1
T
o — i
>~ 1

It is to be noted that the eigenvectors aren’t unique (multiples of eigenvectors are also
eigenvectors).

Doing the same for vy yields

3.70 Example. Let D be a diagonal matrix, with the diagonal entries A\;. Then

A1 —A
A2 — A
det(D — \I) =
Ap — A

The roots (eigenvalues) are A1, Ao, -+, Ay, and the eigenvectors are De; = \e;.
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Definition. A € F™"*" is called diagonalizable if there exists a basis of F” that consists of
eigenvectors.

Theorem. A matrizc A € F**" is diagonalizable, if and only if there exists a diagonal

matriz D and a invertible matriz T such that
D =T71AT

Proof. Let e1, e, -- , e, be the canonical basis of F”. Define TDT ! = A, and let A, --- , A\,
be the diagonal entries of D. Then we know that

De; = N\je;, Vi€ {1, s n} (3.56)

Since T is invertible, the Teq, - - - Te, form a basis.

A(Te;) = T(T 'AT)e; = TDe; = Thie; = \i(Te;) (3.57)
Therefore Te; is an eigenvector of A to the eigenvalue A\;. Now let vy, --- , v, be a basis of
F™ and

AUiZ/\iUZ', ALy oy Ap e F" (3.58)

Write write vy, - -+, v, as the columns of a matrix, therefore
T = (017027“' avn) (359&)

A
D= : (3.59b)
An

So Te; = v;, and thus
A(Te;) = Av; = \jv; = N\i(Te;) = Thie; = TDe; (3.60)
This means that (AT —TD)e; =0, Vi€ {1,--- ,n}.
= AT =TD (3.61)
T is invertible (left as an exercise for the reader), and thus

— T 'AT =D (3.62)

3.78 Example. (i) Let

=50

The eigenvalues and eigenvectors are
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Therefore

which has the inverse

_1
2

()
T G T B RN (O

This is a diagonal matrix, therefore A is diagonalizable.

6 o)

is not diagonalizable since its only eigenvector is (1,0)7.

Finally,

(ii) The matrix

3.74 Remark. For diagonal matrices the following is true

A oY

o v
A3 PV
If T7YAT = D (where D is a diagonal matrix), then

DF = (TYATY =T AT - T7YAT ... = T 1 AT

k times

— Ak = TpkFp1

3.75 Theorem. Let A € R™ " be a symmetric matriz, i.e. A = AT. (Or if A € C™" a self-

adjoint matriz A = A" ). Then A has an orthonormal basis consisting of eigenvectors and

1s diagonalizable.

Proof. Let A € C be an eigenvalue of A € F"*" with eigenvector v € F” and A = A", Then

A (v|v) = (v| ) = (v|Av) = <AHU‘ ) = (Avlv) = (Av|v) = X (v|v) (3.63)
Therefore _
(A=A) (v|v) =0 (3.64)
—~—

0
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= A-A)=0= A=) = MeR (3.65)

Now let A, p € R be eigenvalues to the eigenvectors v, w, and require A # p. Then

p (vw) = (v]Aw) = (Av|w) = X (v|w) = X (v|w) (3.66)
And thus
(p—A)(vjw)y=0 = v Lw (3.67)
S——
#0 =0

O
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4.1 Limits and Functions

In this chapter we will introduce the notation
B.(z) =(zr —e,x +¢)
4.1 Definition. Let D C R and « € R. z is called a boundary point of D if
Ve>0: DNB(z)#0
The set of all boundary points of D is called closure and is denoted as D.
4.2 Example. (i) x € D is always a boundary point of D, because
x € DN B(x)

(ii) Boundary points don’t have to be elements of D. If D = (0,1), then 0 and 1 are
boundary points, because

% € (0,1) N B.(0) = (—&,¢) Ve >0
(iii) Let D = Q. Every x € R is a boundary point, because Ve > 0, B.(x) contains at least
one rational number. I.e. Q = R.

4.8 Remark. If x is a boundary point, then

Ve>03dyeD: |[x—y|<e
If = is not a boundary point, then

Je>0VyeD: |z—yl>e¢

4.4 Theorem.

x € R is a boundary point of D C R <= J(x,) C D such that z, — x

Proof. Let x be a boundary point of D. Then

1 1
VnENEIxneDﬂ<x—,x+> (4.1)
n n
The resulting sequence (x,) is in D, and
1
|z — x| < - (4.2)

holds. Therefore, x;,, converges to z. Now let (z,,) C D, with x,, — x. This means
Ve>03INeN: |z—zpy|<e (4.3)

Then
xn € DN Be(x) (4.4)

Since ¢ is arbitrary, = is a boundary point of D. O
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4.5 Definition. Let D C R and f : D — R. Let x¢ be a boundary point of D. We say that f
converges to y € R for x — x¢ and write

lim f(z) =y

T—T0
if
Ve>030>0: |x—z9|<d = |f(x)— fly)|<e

4.6 Remark. This definition only makes sense for boundary points xy of D. The most imoprtant
case is
D = (zo—a,xzo+a)\{zo}

4.7 Ezample. (i) Let a € R

f*R—R
T — ax

Consider a # 0: Let € > 0. We want that
!
[f(z) = 0] = laf|z] < e

Choose § = £;. Then we have

lal

€
[ = [z -0 <6 = |f(z) = 0] = |al|z| < a[d = Wm =e
Therefore
lim f(z) =0
z—0
(ii) Consider
fiR—R
1, x>0
T —
-1, <0

f doesn’t converge for x — 0. Assume y € R is the limit of  at 0. This means that
there is a 6 > 0 such that

|f(z) —yl <1lif|z|=|z—0]<d
Then, for any = € (0,) we have

2=f(x) = f(=0)| < |[f(@) —yl+ |y — f(—=)| <2

<1 <1

which is a contradiction.
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4.8 Theorem. Let f: D — R, xg a boundary point of D and y € R. Then

lim f(z) =y <= V(x,) C D with x, — o : li_)m f(xn) = o

T—TQ

Proof. Assume that lim,_,;, f(x) and that there is (z,,) C D converging to z. Let ¢ > 0,
then
>0 |z—xo|<d = |f(x)—y|<e (4.5)

Since x, — xg, we know that
ANeNVYR>N: |z, —x0| <96 (4.6)
For such n, the epsilon criterion |f(z,) — y| < € also holds, and thus
Fln) "2y (4.7)
Now to prove the ” <=7 direction, assume that lim,_,,, f(z) # v, i.e.
Je>0Vi>03xeD: |z—xo| <IN|f(x)—y|>¢€ (4.8)

Choose Vz € N one x, such that
1
|zn, — 0] < - but |f(xn) —y| > ¢ (4.9)

Then z,, — xo, but |f(zn) —y| > e Vn € N, so

lim f(z,) #y (4.10)

n—oo

This indirectly proves ” <= ". O

4.9 Example. Consider D =R C {0}, we want to prove

1
lim =1
=01 —2x

So let (x,,) C D with z,, — 0. Then

]- n—oo
—

1—x,

1

— lim =1

z—=01—x

However, the limit lim,_.,; doesn’t exist. Let z,, = % + 1 with x,, — 1. Then

1 n—00

—— =N —— —0
1—(L+1)

This doesn’t converge, thus there is no limit.
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4.10 Corollary. Let f,g: D — R, xg a boundary point and y, z € R such that

4.11

Jim f(z) =y Jim g(z) = 2
Then
Jim (f(z) +g(e)) =y + 2
A (f(z)-g(z) =y =
If 2 # 0, then
lim @) _¥
A g(e) 2

Proof. Here we will only prove the last statement. Let lim,_,;, = 2 # 0. Then
36 > 0V € Bs(zo) = |g(x) — 2| < |7] (4.11)

g doesn’t have any roots on Bs(xg). Let (z,) C D N Bs(xg) converge to zg. According to
prerequisites, we have

ILm flzn) =y (4.12a) le g(xn) =2#0 (4.12b)
Thus
T A ) O N A CO R (4.13)
n—oo g(zn) % z=wo g(z) 2
O]
Corollary (Squeeze Theorem). Let f,g,h : D — R and x a boundary point of D. If for

y€R
lim f(z) =y = lim h(z)

a0 T—0
and
f(x) < g(x) < h(z) Vre B(xo)
then
Aim g(z) =y

4.12 Example. Consider exp(x). We already know that

1+z<exp(zr) VzeR

This also implies that

1
1 -z <exp(—z) = p— Ve e R
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So
1+ 2z <exp(z) < !
= exp =1_2
The limits of these terms are
) . 1
lim(l+2x)=1 hm< >:1
z—0 z—=0\1—2x

And using the squeeze theorem this results in

lim exp(0) =1
z—0
4.13 Definition. Let f : D — R and x¢ a boundary point of D. We say f diverges to infinity
for £ — x¢ and write

23, S () = 0

if
VK € (0,00) 30 >0: |z —x0|<d = f(x) > K
4.14 Definition. Let D C R be unbounded above. We say f converges for x — oo to y € R and

write
lim f(z) =y
if
Ve > 03K € (0,00) Vo > K : |f(z)—y|<e

4.15 Remark. Let f: D — C and zg a boundary point of D. Then

lim f(zr)=yeC

= lim Re(f(x)) = Re(y) A lim Tm(f(x)) = Tm(y)

— lim [f(@)—y| =0

T—T0
4.16 Definition. Let D C K, f: D — K and g € D. f is called continuous in xg if
Ve>030>0: |x—mo| <d = |f(x)— f(zo)| <e

If f is continuous in every point of D, we call f continuous.
f is called Lipschitz continuous if

3L € (0,00) Va,y € D= [f(z) — f(y)| < L]z -y
L is called Lipschitz constant
4.17 Remark. Let f: D — TF

f is continuous in zp € D <= lim f(z) = f(=o)
T—T0
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4.18 Example. We want to show that

f:R—R

x»—>$2

is continuous. To do that, let g € R, ¢ > 0. We want

!
f(x) = f(xo)| = |2 — 2f| = |& — mollz + z0| < &
So we choose

€
d=min<1l,—— > >0
{ 2’$0\+1}

Then for every = with |z — zg| < 9

[f(x) = f(@o)| = & = wollx + x| < d(|2[ + [wo]) < d(|zo| + & + |zol)

§5(2|:L’0‘+1) < 1(2|$0‘+1) =c

€
2|zo| +
4.19 Theorem. FEvery Lipschitz continuous function is continuous

Proof. Let f: D — F be a Lipschitz continuous function with Lipschitz constant L > 0.

ILe.
Ve,y e D [f(x) = f(y)| < Llz -y (4.14)
Let o € R and € > 0. Choose 0 = £. Then |z — z¢| < ¢ implies
[f(z) = fwo)| < Llz —wo| < L-d=¢ (4.15)
0

4.20 Example. (i) Consider the constant function =z — ¢, ¢ € F.
[f(@) = fy)l =le—cf=0<T1-[z -y
(ii) Consider the linear function x +— cz, ¢ € F.
[f(@) = f()] = lex — eyl = |el|z -y
These two functions are Lipschitz continuous, and therefore continuous.

(iii) Consider x — Re(x). Then
[Re(z) — Re(y)| = [Re(z — y)| < |z -y

Analogously this works for Im(z). Both of those are Lipschitz continuous.
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(iv) Lipschitz continuity depends on D. E.g.
f:00,1] — R
T — z?
is Lipschitz continuous:
f(@) = fy)l=lz—yllz+yl <2z -y
However,
g:R— R
z—

is NOT Lipschitz continuous, because

1) —
lg(n+1) —g(m)| _ o\ noeo
(n+1)—n

4.21 Remark. Let f: D — TF.

f is continuous in xy € D
<~
YV (z,) C D with 2, = z¢: lim f(z,) = f(z0)
n—oo

If f, g are continuous in xg, then f + g and f - g are also continuous in xg, and if g(zg) # 0
then f/g is also continuous in xy. Notably, polynomials are continuous. A rational function
(the quotient of two polynomials) is continuous in all points that are not roots of the
denominator.

4.22 Theorem. Let D C F, and let

f: D —TF continuous in o € D (4.16a)
g: f(D) — F continuous in f(xo) (4.16b)

Then g o f is also continuous in xg.

Proof. Let £ > 0. Since g is continuous in f(xo),
301 >0: |y — flzo)l <o = lg(y) — 9(f(z0))| <e (4.17)
Since f is continuous in o,
365> 0: |o—mo| <8y = |f(z) — flxo)] < 6 (4.18)
For such  the following holds
(g0 f)(z) = (g0 f)(@o)| = |g(f(x)) — g(f(z0))| <e (4.19)

which implies that g o f is continuous in x. O
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4.28 Example. Consider the following mappings

fR— R, z+— |z

11—y

‘R—R\{-1}, y— —Z

g \{-1}, ¥ Ty
]__
h:R—R, z+— 2]
1+ |z

It is clear that h = g o f. Since f, g are continuous, h must also be continuous.

4.24 Ezxample. The functions exp, sin and cos are continuous. We know that

lim exp(k) — 1
h—0 h

=1

From this follows that
lim exp(k) = exp(0) =0
h—0
Thus, exp is continuous in 0. Let zg € R, then
lim exp(x) = lim exp(zg + h) = lim exp(xg) exp(h)
h—0 h—0

T—T0

= exp(2o) — lim exp(h) = exp{zo}

Now, consider the function z — exp(iz). For zp € R

| exp(i(zo + h)) — exp(iho)| = | exp(izo)| | exp(ih) — 1]
| S \ﬁl,_/

o
(ih)*
!

exp(izo)exp(ih)

E%g

k=1

p”qg

B
Il

1

For h — 0, the absolute function converges |h| — 0, and therefore
lim h0| exp(i(zo + h)) — exp(iz)| =0
due to the squeeze theorem. l.e., x — exp(ix) is also continuous. Thus
cosx = Re(exp(ix)) sinx = Im(exp(ix))

are also continuous due to the concatination of continuous functions.

|h| h|*
L Z' - 1= exp(jhl) -

86
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Lemma. Let a,b € R with a < b, and let
fila,b) — R
be a continuous function. Furthermore, let y € R. Now if the set

{z €la,b]| f(x) = y}

1s non-empty, it has a smallest element.

Proof. Let M be non-empty. Set z¢p = inf {M}. Then it is to be shown that z¢o € M, or
that f(xzp) > y. There exists a sequence (x,,) C M such that z,, — zp. Because of the
continuity of f,

flxo) = f(lim zn) = Tim f(zn) >y (4.20)
holds, thus zg € M. O

Theorem (Extreme value theorem). Let a,b € R with a < b, and let f : [a,b] - R
continuous. Then the function f attains a mazimum, i.e.

dzg € [a,b] Vx € [a,b] : f(x) < f(zo)
Proof. First we show that f is bounded. Assume f is unbounded above, i.e.
{z € [a,b]| f(x) >n}=M,, neN (4.21)

According to the last lemma, every M,, has a smallest element x,. The sequence (Z,)neN
is monotonically increasing (M,,1+1 C M,) and bounded above by b. Thus, z,, converges to
some xg € [a,b]. Now consider the sequence (f(z))nen. By definition
lim f(z,)> lim n=o00 (4.22)
n—oo n—o0
And since f is continuous, lim,, o f(z5) = f(2zp) must hold. This contradicts the assump-
tion, so f is bounded.
Now set

y = sup {f(x) |« € [a,b]} (4.23)
In case f is equal to y everywhere, there is nothing to show. So assume that there are values
for which f # y. According to the definition of the supremum, the sets

{m € la,b] | f(x) >y - 1} (4.24)

n
are non-empty for all n € N, and thus they have a smallest element z,. The sequence
(Zn)nen is monotonically increasing and bounded, i.e. it converges to xg € [a,b]. Therefore

y> f(eo) = lim fla,) > lm y—+ =y (4.25)

n—00 n
From this follows
f(xzo) =y = f(z0) upper bound of {f(x)|z € [a,b]} (4.26)
O
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4.27 Theorem (Intermediate value theorem). Let a,b € R with a < b, and f : [a,b] - R a
continuous function with f(a) < f(b).

y € (f(a), f(b)) = 3Fxo € (a,b): f(zo) =y
Proof. Without proof. O

4.28 Example. cos has in [0, 2] exactly one root. Consider the definition

0 (_1>kx2k
(2k)!

COST =
k=0

We know that cos0 = 1. Furthermore we can show that

22 22 2¢
—-1= 1—5 §cos(2)§1—§+ﬂ<0
——
2nd partial sum 3rd partial sum

The intermediate value theorem tells us that there exists a root in [0,2]. Now we need to
show that cos is strictly monotonically decreasing on [0,2]. Choose z € [0,2]. Then
: 2
z<sinz<z— —

3!
The addition theorem tells us that

cos(z) — cos(y) = —2sin <:r—;—y> sin (w;y) <0

for z,y € (0,2] and x > y. Thus cos is strictly monotonically decreasing on |0, 2].
4.29 Corollary. Let I be an interval and f : I — R continuous. Then f(I) is also an interval.
Proof. Left as an exercise for the reader. O

4.30 Theorem. Let I be an interval, f : I — R continuous. If f is strictly monotonically
increasing, then the inverse function f=': f(I) — I exists and is continuous.

Heuristic Proof. f(I) is an interval, and f is injective. This is because if f(z) = f(Z), then
x = Z or else f wouldn’t be strictly monotonic. This means

Jg: fI) —R: fl@)=y < gly) == (4.27)

Let yo € f(I) and € > 0. We require that zo is not a boundary point of I. Then choose
0 < € < e such that (xg — &, xo + epsilon) € I. Choose

6 =minq f(zo+€) —vo,y0 — f(zo—€) p >0 (4.28)

>0 >0
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If y € f(I) with |y — yo| < ¢ then
fxo — epsilon) < xo— 0 <y <yo+ 0 < f(xo + &) (4.29)
From the strict monotony of g we can conclude
xo — epsilon < g(y) < zo + & (4.30)

19(y) — 9(yo)| = 9(y) —z0l <E<e (4.31)

Thus, g is continuous in yo. Since yo € f(I) was chose arbitrarily, all of g is continuous. To
prove the monotony of g, assume y < g and g(y) > g(y) for y,y € f(I). From the monotony
of f we know that

y>g (4.32)

which is a contradiction, so g is strictly monotonic. O

4.31 Example. (i) Let n € N and consider

f:]0,00) — R
z— "

f is continuous and strictly monotonically increasing. Thus the inverse function
Y/-:]0,00) — RT
is also continuous.
(ii) Consider exp : R — R. It’s clear that exp(R) = (0, 00), so the mapping
In:(0,00) > R
is continuous and strictly monotonically increasing.

(iii) Equal arguments can be made for the trigonometric functions.

4.2 Differential Calculus

4.32 Definition. Let I be an open interval ((a,b), a < b, a,b = 0o possible). Let f: I — F and
xz € 1. fis called differentiable in x if

Fe) — fim L)~ @)

h—0 h

Difference quotient

exists. f/(x) is called the differential quotient, or derivative of f in . f is called differen-
tiable if it is differentiable in every x.
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4.33 Example. (i) Let f(x) = ¢ with ¢ € F be a constant function

C—CZO

/ T
fla) = Jim =

(ii) For n € N consider f : R =R z+— 2"

. +h) =2 N\, o1 ke _
/ :1 (.’1: :1 k:lk‘lz n—1
e e N

(iii) Consider the exponential function

eXp(Z)_l = exp(z)

oy o eXp(@ +h) —exp(z)
fiz) = lim . = lim exp(z)
4.34 Theorem. Let f: I — F be differentiable in x. Then f is also continuous in x.

Proof. Let f be continuous in x. Then

lim (f(2 + h) = f(2)) =0 (4.33)

Assume f to be uncontinuous in x. This means that
J>0Vi>03he(=4,0): |[f(x+h)—f(z)>c¢ (4.34)
In particular, for every n there exists an h,, € (_71, %) C {0}, such that

[f(@ 4+ hn) = f(2)] = € (4.35)

h,, is a null sequence and

f(Hh;ZZ_f(x) 2%:n-6—>00 (4.36)

So the above term doesn’t converge, thus
flat h})L —J@) (4.37)
Therefore, f isn’t differentiable in . O

4.35 Remark. The inverse is not true.

4.36 Theorem. Let I be an open interval and f,qg : I — F differentiable in x € I. Then f+ g
and f - g are differentiable too, and if g(x) # 0 then f/g is also differentiable.

(f +9)(z) = f'(z) + g'(x)
(f-9)(x) = f(z)g(x) + f(x)g'(z)

(5) @=357
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Proof. Left as an exercise for the reader.

4.37 Theorem (Chain rule). Let I,.J be open intervals, and let

g:J —1 f:i—F

91

g and f are to be differentiable in x and f(x) respectively. Then f o g is differentiable in x

and
(fog) =d(x) fl9(x))
Proof. Consider the following function
flg(x)+8)—f(g(=))
Halel - flala) ¢ 2
2 J F = 3
v o) {f’<g<x>>, £=0

£ is continuous, since f is continuous and

lim (&) = f'(g(x)) = ¢(0)

£—0

V¢ € J the following holds

With this we can now show that

flgz+h)) = flg(x) _ flg(x) + (9(x + h) — g(x))) — f(g())
h

f(x) < f(zg) Vel
zo € I is called a local maximum if
Je>0: f(z) < f(zo) Vr € (xg—e,20+¢)

An extremum is either maximum or minimum.

(4.38)

(4.39)

(4.40)

(4.41)

4.38 Definition. Let I be an interval and f: I — R. zg € [ is called a global maximum if
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4.39 Ezample. (i) Let f:[-1,1] = R, f(x) = 2%

e 29 =0 is a local and global minimum

e 1o = *1 is a local and global maximum
(ii) Consider

f:R—R

x
x»—>cosx+§

f has infinitely many local extrema, but no global ones!

(iii) Consider
f:R— R

1, x rational
T +— . .
0, « irrational

e 1o rational is a global maximum
e 1 irrational is a global minimum
4.40 Theorem. Let I be an open interval, and f : IRR a function with a local extremum at

xg € I. Then
f differentiable in g = f'(x0) =0



4.2. DIFFERENTIAL CALCULUS 93

Proof. Assume f’(zg) # 0 (w.l.o.g. f'(zo) > 0, otherwise consider —f). Then

f(zo+h)— f(z)

36 :
>0 .

— fl(x0)| < f'(x0) Vh € (=6,0) (4.42)

Especially

f(zo+h) = f(x0)
h

0< Vh € (=5,0) (4.43)

For h > 0 this means f(zo+h) > f(xo). And for h < 0 this means that f(xo+h) < f(zo).
Thus z¢ is not an extremum. O

4.41 Remark. Let f: I — R be differentiable. To find the extrema of f, calculate f’ and find its
roots. However, the roots are to be insepcted more closely, as f’(x¢) = 0 is not a sufficient

criterion (The function could have inflection points or behave badly at the boundaries of
I).

4.42 Theorem (Mean value theorem). Let a,b € R with a < b, and let f,g : [a,b] — R be
differentiable. Then 3¢ € (a,b) such that

a ¢ b
Proof. Consider all
h(z) = (f(b) — f(a))g(x) — f(2)(9(b) — f(a)) (4.44)
h is differentiable, which means & is continuous on [a, b]:
h(a) = f(b)g(a) — f(a)g(b) = h(b) (4.45)

We need to show that A’ has a root in [a,b]. If h is constant, this is trivial. So we assume
dz € (a,b) such that h(xz) > h(a). Since h is continuous on (a,b) there exists a global
maximum xg € [a,b] with zg # a and x¢ # b. This implies that h'(z¢) = 0. If h(xz) < h(a)
the same argument can be made. O
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4.48 Remark. This theorem is often written as

And if g(x) = ,
FOZIO _ ey
4.44 Corollary. Let I be an open interval and f : I — R differentiable. Then
(i) f'(I) C [0,00) <= monotonically increasing
(i) f'(I) C (0,00) = strictly monotonically increasing
(iii) f'(I) C (—00,0] <= monotonically decreasing
(iv) f'(I) C (—00,0) = striuctly monotonically decreasing

Proof. We will only show the ” = 7 direction for (i). Assume f isn’t monotonically
increasing, then Jz,y € I such that z < y but f(z) > f(y). The mean value theorem thus
states, 3¢ € (x,y) such that

y—x
All other statements are proven in the same fashion. O

4.45 Exzample. f strictly monotonically increasing does NOT imply that f'(I) C (0,00). Con-
sider f(z) = 3.

4.46 Corollary (L’Hopital’s rule). Let a,b,xo € R, with a < o < b and let f,g: (a,b) = R be
a differentiable function. We require f(xo) = g(xo) =0. If ¢'(z) # 0 Vo € I\ {zo} and if

f'(x)
s /()

exists, then
@) @)

v g(z) ~ wov0 g (@)

Proof. Between two roots of g there must be at least one root of ¢’. Le. g(z) #0 Vz €
I'\ {zo}. This means, that

Vz € (a,20) 3 - = _ I C)

g(x)  glx) —g(xo)  g(&) A (4.47)

Since &, € (z, o)
& T 1 (4.48)
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For the limit from the left, this implies

TIAC RN ) (4.49)

v g(z)  avmo ¢(2)

This argument can be made for the limit from the right as well. O

4.47 Remark. (i) For the computation of the limit it is enough to consider f and g on (g —
5, xo +9) with § > 0.

(ii) L’Hépital’s rule also works for one-sided limits
(iii) Let f,g: (a,b) \ {zo} — R be differentiable. Then it is enough to require

lim f(z) = lim g(z) =0

T—T0

(iv) L’Hopital’s rule doesn’t generally apply to complex valued functions.

(v) By substituring f(z) = f (1) and g(z) = g (1) we can also use

= lim J'(z)

rso g(z) i f(2)

(vi) The inverse

/
L= tim 1®) o i L@
o g(@) el ()
is NOT true.
4.48 Example. Consider

] SU2 “»

lim — = —

z—01 —coszx 0
The functions here are

f(z) = 2 g(x) =1—cosx
with the derivatives
f(z) =2z g (x) =sinz
However, the limit of the derivatives is still
. 2$ “077
lim — = -
z—0 sinx 0
We can derive the functions again
f(x)=2 g"(z) = cosx
And thus
2
lim =2 = lim— =2

z—0 COS T xz—01 — cosx
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4.49 Theorem (Derivative of inverse functions). Let I be an open inverval, and f : I — R
differentiable with f'(I) C (0,00). Then f has a differentiable inverse function f~'(x) :
f(I) = R and for y € f(I) we have

Proof. f is strictly monotonically increasing, thus f~! exists and is continuous. Let y €
f(I)a T = fﬁl(y) and

&y =y +h) — ) (4.50)
X
Then
v+&h) =fy+h) = fle+&n)=y+h=f(zx)+h (4.51)
Which in turn implies
f@+&(h) = f(z)=h (4.52)
Now we have
fHy+h) -y _ §(h)
h fl@+&h) - f(z)
(fa+Eh) = f@)\ 7! 4.53
() 45
h—0 / -1 1
V)= gy 7O
O

4.50 Example. (i) Let n € N and consider

f:(0,00) — R
r— x"

The derivative is f’(z) = na™~!. The inverse function is

oy 1 1 1
o) = oy T = 500 " n(gm) T n

(ii) The natural logarithm. Let f(z)0expz and ¢g(y) = Iny. Then
1 1

)= )

(iii) Let f(x) = 3. Then

iy SV y 20
() {—W% ) <0

f~!is not differentiable in y = 0.
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4.51 Definition. Let I be an open interval. f: I — R is said to be (n + 1)-times differentiable
if the n-th derivative of f (f(™) is differentiable.
f is said to be infinitely differentiable (or smooth) if f is n times differentiable for all
n € N.
f is said to be n times continuously differentiable if the n-th derivative £ is continuous.

4.52 Definition. Let I be an open interval, and f : I — R n times differentiable in € I. Then

n k) (g
Tof(y) =) ! k,( J(y - o)t
k=0

is called the Taylor polynomial of n-th degree at = of f.

4.53 Theorem (Taylor’s theorem). Let I be an open interval and f : I — R an (n + 1)-times
differentiable function. Let x € I and h : I — R differentiable. For everyy € I, there exists
a & between x and y such that

(n+1)
(1) - Tutw) - 1) = 2Oy i) - )
Proof. Let
g: I —R
k=0

Apply the mean value theorem to g and h to get

J () hly) ~ h(a)) = (9(0) —g@)DH(€) = (/) ~TufIH(E)  (455)
and thus
J(1) = k; (f(k;,)(% L L t>’“—1>
Telescoping serie (4.56)
e
By inserting £ we receive the desired equation. 0

4.54 Remark. (i) This is useful for when h/(§) # 0

(ii) The choice of h can yield different errors

Rn+1(y7x) = f(y) - Tnf(y)
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(iii) The Langrange error bound is for h(t) = (y — )"+

F(e)

(n+1)! (y—=2)

Rn+1 (ya l’) =

(iv) This theorem makes no statement about Taylor series.

4.55 Corollary. Let (a,b) C R and f : (a,b) — R an-times continuously differentuable function

with
0= @)= f"@) == [ V(@)

and ™ #£0. If n is odd, then there is no local extremum in z. If n is even then

F™(z) >0 = z is a local mazimum

F™(z) <0 = 2z is a local minimum

Proof. W.lo.g. f(™ > 0. We will use the Taylor series with Lagrange error bound. Accord-
ing to prerequisites, f(") is continuous, i.e. de > 0 such that f(") () >0o0n (z—¢e,x+¢).
The Taylor formula tells us, that Vy € (x —e,2 +¢) 3§, € (x — €, 2 + ¢) such that

F (&)

n!

fy) =Toa(f(y) = fly) — f(z) = (y — )" (4.57)

For n odd, f(y) — f(x) assumes positive and negative values in every neighbourhood of z.
If n is even then f(y) — f(z) cannot be negative, thus z is a local minimum. O
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5.1 Metric and Normed spaces

5.1 Definition (Metric space). A metric space (X, d) is an ordered pair consisting of a set X

and a mapping
d: X xX —[0,00]

called metric. This mapping must fulfil the following conditions Vz,y, z € X:
e d(z,y) >0 (Positivity)
e d(z,y) =0 <= z =1y (Definedness)
d(z,y) = d(y,z) (Symmetry)
e d(z,y) <d(x,z)+d(z,y) (Triangle inequality)
5.2 Example. (i) Let M be a set. Then

d(xvy) = {1’ x#y

0, else
is called the discrete metric.
(ii) Let X be the set of edges of a graph.

d(z,y) := Minimum amount of edges that have

to be passed to get from x to y

(iii) Let X be the surface of a sphere.

d(z,y) := ”"Bee line”

(iv) Let X be the set of points of the European street network.

d(x,y) := Shortest route along this network
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(v) Let (X,dx), (Y,dy) be metric spaces. Then
dxxy (z1,91), (z2,92)) == dx(x1,22) + dy (y1, y2)
defines a metric on X x Y.

5.3 Definition (Normed space). (V,||-||) is said to be a normed space if V' is a vector space

and
[+ V' — [0, 00)

is a mapping (called norm) with the following properties
e |[z|| > 0 (Positivity)
e |z]| =0 < 2z =0 (Definedness)
o [[Az] = [Alllz]
o llo+yll < lall + [}yl (Triangle inequality)
To every norm belongs a unique induced metric
d(z,y) = [l —yll
5.4 Example (R™ with Euclidian norm).

-] - R* — [0, 00)

(1,22, ,Tn) — \/x%—l—x%—i--"—kx%
Then (R, ||-||) is a normed space.
5.5 Example. (1) (x1, 2, ,xp) — |z1| + |x2| + - - - + |2y is also a norm on R™.

(ii) On
V ={f:]0,1] — R| f continuous}

we can define the supremum norm
1flloe = sup {[f(@)||2 € [0,1]}

(iii) We can define sequence spaces as

» = {(azn) cer Z |zn|P < oo}

n=1

with the norm

A special space is ¢2, called Hilbert space
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5.6 Remark. The Minkowski metric is not a metric in this sense.

5.7 Definition (Balls and Boundedness). Let (X, d) be a metric space, and z € X,r > 0. We
then define

B.(z)={y € X |d(z,y) <r} Open ball
Ky (z)={ye X |d(z,y) <r} Closed ball

A subset M C X is called bounded if

JreX,r>0: M C By(x)

5.2 Sequences, Series and Limits

5.8 Definition (Sequences and Convergence). Let (X,d) be a metric space. A sequence is a
mapping N — X. We write (x,),,cy or (25).
The sequence () is said to be convergent to = € X if

Ve>03dIN eNVn>N: d(z,,x)<e

z is said to be the limit, and sequences that aren’t convergent are called divergent.

5.9 Remark. On R the metric is the Euclidian metric | - |, therefore this new definition of
convergence is merely a generalization of the old one.

5.10 Theorem. Let (zy,) be a sequence in the metric space (X,d) and x € X. Then the following
statements are equivalent:

(i) (zn) converges to x

(i) Ve > 0 B.(x) contains all but finitely many elements of the sequence (almost every
(a.e.) element)

(iii) (d(x,zy)) is a null sequence
Proof. (ii) is merely a reformulation of (i), and (i) <= (iii) follows from

d(zp,x) = |d(zpn, ) — 0 (5.1)

5.11 Theorem. Let (aﬁ(”)) = (argn),xén), e ,x((in)) c R4 and
z= (21, - ,2q) € R’

(:E(”)) is said to converge to x if and only if $Z(-n) converges to z; for all i in {1,--- ,d}
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Proof. For y = (y1,--- ,yq) € R? we have
lyll <yl vie{L,---,d} (5.2)
If (1‘(")) converges to x, then

)

(n
:EZ- — T

< Haj(") — ZEH — 0 (5.3)

If (x(n)) converges to z; Vi € {1,---d}, then

(2

Ve>03NeNVn>N: |2 —a| <= vie{1,---d} (5.4)
Vd
Thus
Hw(”) — xH = \/(x§”> —a)?2 4 (@Y )24+ (x((i") —xq)?
g2 g2 € (5.5)
<444z
=V + p + + 5
=c
So (x(”)) converges to . O
Theorem. Fvery convergent sequence has exactly one limit and is bounded.

Proof. Assume that z,y are limits of (z,) with  # y. Then d(z,y) > 0. There exists
N1, Ny € N, such that

d(zp,x) < d(a;,y) Vn > Ny (5.6a)
d(zn, ) < d(z’ Y vn > N, (5.6b)

From this follows that
d(z,y) < d(x,z,) + d(zn,y) < d(z,y) Ymax{Ny, Nao} (5.7)

which is a contradiction, thus sequences can have only one limit.
Now if (x,) converges to x, then

ANeNVR>N: d(z,,z)<l1 (5.8)

Then
d(xn, z) < max {d(z1,x),d(z2,x), - ,d(xn_1,2),1} (5.9)
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5.13 Theorem. Let (V,||-||) be a normed space over F. Let (x,),(yn) C V be sequences with
limits z,y € V and (A,) CF a sequence with limit A € F. Then

Tp+yn —x+y AnZy — Ax
Proof. Left as an exercise for the reader. O

5.14 Definition (Cauchy sequences and completeness). A sequence (z,,) in a metric space (X, d)
is called Cauchy sequence if

Ve >03dN eN: d(xp,zp) <e VYm,n>N

A metric space is complete if every Cauchy sequence converges. A complete normed space
is called Banach space.

5.15 Example.
(R,|]) and (C,||) are complete
(Q, |-]) is not complete

5.16 Theorem. FEvery convering series is a Cauchy sequence

Proof. Let (x,) — x. This means that

Ve>0eNeN: d(xn,x)<g Vn > N (5.10)

Then
d(xn, Tm) < d(Tpn,z) +d(x,zm) <e Ym,n>N (5.11)
O

5.17 Theorem. R" with the Euclidian norm is complete.

Proof. Let (a:(”)) C R™ be a Cauchy sequence. We know that
Vg ER™: [yl < |lgll Vi€ {1, ,n} (5.12)
We also know that (xl(n)) are Cauchy sequences because

‘(xgn) - a;;”)‘ < Ha:(") — x(m)H Vie{l,...,n} (5.13)

Thus l‘l(n) — x; and therefore (x(”)) — . O
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5.18 Definition (Series and (absolute) convergence). Let (V/ ||-||) be a normed space and (z,,) C

V. The series
x
>
k=1

is the sequence of partial sums
n
Sp = Z Tk
k=1

If the series converges then )7 | xj also denotes the limit. The series is said to absolutely
convergent if

[e.9]

>zl < oo

k=1

5.19 Theorem. In Banach spaces every absolutely convergent series is convergent.

Proof. Let (V,|||l), (zn) C V and require > o2 (V. |||)zn < co. We need to show that
Sn = Y p_y &k is a Cauchy sequence. Let € > 0 and ¢, = >, _ ||zx||. (¢n) is convergent in
R, and thus a Cauchy sequence. l.e.

AN eN: |t,—t|<e Ym,n>N (5.14)

For n > m > N:

n

>

k=m+1

n

< D Nzl =tn—tm = [t —tm| <e (5.15)
k=m+1

s — sml =

O

5.20 Theorem. Let (V,|-||) be a Banach space, Y r ; x) absolutely convergent and let o : N — N

be a bijective mapping. Then
oo oo
D= D Tty
k=1 k=1
Proof. Analogous to Theorem 2.55 OJ

5.3 Open and Closed Sets

5.21 Definition (Inner points and Boundary points). Let (X, d) be a metric space, A C X and
reX.

(i) x is said to be an inner point of A, if

Je>0: B(z)CA
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(ii) « is said to be a boundary point of A if

Ve>0: B(z)NA#£0OAB(z)N(X\A)#D

B:(x) contains B:(z) contains points
points from A from outside of A

(iii) The set
{z € X |z is inner point of A}

is called the interior of A, and is denoted as A.

(iv) The set
{z € X |z is boundary point ofA}

is called the boundary of A, and is denoted as JA.

(v) AUOA is said to be the closure of A, and is denoted as A.

y)eR?|0<y<1}
8A:{x,y)€R2‘y:1\/y:O}
y) eR?|0<y <1}

5.23 Remark. (1) AcC A
(ii) Boundary points of A can be elements of A or not.

(i) ACAUDA, ANdA=w
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(iv) 9A =0X \ A

5.24 Theorem. Let (X,d) be a metric space, A C X and x an interior point or boundary point
of A. Then
d(zn) CA: zp ——

Proof. If x € A then this is trivial, so let ¢ A. Then

VneN Jz, € (B; () N A @) (5.16)
We need to show that (x,) converges to x.
1
Ve >0eN € N: N <€ (5.17)
For n > N we have
1 < 1 < (5.18)
n_- N ¢ ’
and thus )
d(xp,x) < - <e (5.19)
OJ

5.25 Definition (Open and Closed sets). Let (X, d) be a metric space. A C X is said to be
(i) open, if every point in A is an interior point
(ii) closed, if A contains all its boundary point
(iii) neighbourhood of x € A, if x is an interiot point of A

5.26 Theorem. Let (X,d) be a metric space and A C X.

A open <= X \ A closed

Proof.

Aopen < Vo e A: z€ A (5.20a)
< VereA: z€0A (5.20b)
<= X\ A contains all boundary point of A (5.20¢)
<= X \ A contains all boundary points of X \ A (5.20d)
< X\ A closed (5.20e)

O

5.27 Remark. That doesn’t mean A has to be either open and closed.
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5.28 Example. Let (X,d) be a metric space, z € X and r > 0. Then

B.(z) ={y € X |d(z,y) <r} is open
K, (z) ={y € X |d(xz,y) <r} is closed

5.29 Remark. Consider the special case a,b € R with a < b

b
(a,b) = By (a—; ) open
2

a+b

[a,b] = Kb_a < > closed
2

5.30 Theorem. Let (X,d) be a metric space and A C X.

A closed <= V (x,,) C A convergent : 1i_>m T, €A

Proof. Assume A is closed. Let (z,,) C A be convergent to z. then
Ve>03dNeN: =z, € B(x) Yn>N (5.21)

This means that every e-ball around z contains at least one point from A. L.e. z is always
a point (or a boundary point) of A. From A closed follows x € A.
Now assume = € JA. Then

I(xn) CA: (z) — (5.22)
According to the prerequisites, x € A. O
5.31 Theorem. Let (X,d) be a metric space, and T the set of all open subsets. Then
(i) ser, Xer

(i) The union of any number of sets from T is an open set

(iii) The intersection of finitely many sets from 7 is an open set

ﬂtGT

Proof. Left as an exercise for the reader. O
5.32 Remark. (i) 7 is said to be the topology induced by d

(i) e @, X are also closed
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e The intersection of any number of closed sets is closed

e The union of finitely many closed sets is closed

(iii) Infinitely many intersections of open sets are not open in general.

5.33 Theorem. Let (X,d) be a metric space and A C X. Then
A open = O0A, A closed
Proof. Let A be open and x € A C A. This means
Je>0: B(z)CA
We have to show that B.(z) C A. Let y € B-(z). Since B.(z) is open
30 >0: Bjs(y) C Be(x) C A

109

(5.23)

(5.24)

This means that y € B(x) is interior point A. Le. C (z) C A, and thus z is interior point

of A.
Let B= X\ A. Then 0A = 0B
X=AUB=AUJAUBUIB=AUJAUB
Then
A and B are disjoint — /01, B disjoint
= Q0A disjoint to A B

This results in o
0A=X\(AUB) = 0A closed
——
open

and ) )
A=AUOA=AUIA = X\ B closed

5.34 Theorem. Let (X,d) be a metric space and A C X

U O=A and ﬂ C=A4

O open C closed
OCA AcCC

Proof. Let Ais open and AcA
= |y -4
OCA open

Now let O C A be open and z € O, i.e.

J¥>0: B(z)COCA = z€A

(5.25)

(5.26a)
(5.26b)

(5.27)

(5.28)

(5.29)

(5.30)

This implies that O C A. Since this holds for all open O C A, this statement is proven.

The other statement follows from the complement.

O
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5.35 Theorem. Let (X,d) be a complete space and A C X be closed. Then (A,da) is complete.
Proof. Left as an exercise for the reader. O

5.36 Remark. Topological terms (open, closed, continuous, compact) don’t just depend on A,
but also on X.

5.37 Definition. Let (X, d) be a metric space and z € X.
(i) @ is said to be an isolated point if 3¢ > 0 such that B.(z) = {z}.
(ii) x is said to be a limit point if it’s not an isolated point.

5.38 Definition (Punctured neighbourhood, Punctured ball).‘ U C X is said to be a punctured
neighbourhood, if there is a neighbourhood U of z with U = U \ {z}
A punctured ball is B.(z) = B \ {z}.

5.39 Definition (Limit of mappings). Let (X,dx),(Y,dy) and z a limit point of X. Let U be
a punctured neighbourhood of x and f: U — Y. Then f converges to y € Y in x (y is said
to be the limit of f in z), if

Ve>030>0: f(Z)€ B(y) [d(f(T),y) < €]
if # € Bo(z) [d(&,x) < 6]
5.40 Example. Let f,g:R?\ {0} — R.

f(@) = |lz]] o(x) = HlH

Then lim,_,¢ f(z) = 0, because for £ > 0 and § = /¢ we have
A(3,0) = 7~ 0| =& <8 = d(f(2),0) = [|7]]* - 0] = |l7]]* < & = 5*
5.41 Theorem.
f converges toy €Y inx <= Y(zn) C X : flan) 2"y
Proof. Let (x,) C X with x,, —— x. Let € > 0, then
30 >0: f(z) € B:(y) if z € Bs(x) (5.31)

Furthermore
AN eN: =z, € Bs(x) Vn> N (5.32)

Then
f(xn) € Be(y) Vn> N (5.33)
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To prove the other direction, assume f doesn’t converge to y in y. This means
Je > 0: 3% € Bs(x) but f(Z) ¢ B(y) V6 >0 (5.34)

Therefore
VneN: 3z, € Bi(x) (5.35)

We know that ,, —— = since d(z,,2) < L, but f(z,) doesn’t converge to y since

5.42 Corollary. Let (X,d) bq a metric space, x € X a limit point and U a punctured neigh-
bourhood of x. Let f,g:U — F with

lim f(Z) =y lim g(Z) = y2
T—T T—T
Then
lim (f + g)(Z) = y1 + 2 lim (f - g)(Z) = y1 - y2
T—T r—x
tim (1) ) =
T—x g Y2
Heuristic Proof. Draw parallels back to number sequences O

5.4 Continuity

5.43 Definition. Let (X,dx), (Y,dy) be metric spaces. f : z — y is said to be continuous in
re X if
Ve>030>0: 7€ Bs(z) = f(&) € B(f(2))

f is said to be continuous is it is continuous in every point.

5.44 Example. (i) Let (X,d) be a metric space.

id: X — X
T

is continuous (choose § = ¢).
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(ii) The function
f:R* — R
(JI,y) — ($, _y)

is continuous. For (,7), (z,y) € R? we have

1£(@,9) — fla, P =@ -2y -9 =G -2)*+(y -9

(iii) Consider
f:R?—R
0, z-y=0
(.9) — !
1, z-y#0

f is non continuous in (0, 0).
5.45 Remark. (i)
f continuous in z <= Ve > 035 >0: f(Bs(x)) C B:(f(x))
(ii) Continuity is a local property, this means if z € X, U a neighbourhood of z and f, g
functions with f|y = g|v, then
f continuous <= ¢ continuous

5.46 Theorem. Let ;1:0 eX,g: X—=>Yand f:Y — Z. If g is continuous in xg and f is
continuous in g(xo), then f o g is continuous in xg.

Proof. Since f, g are continuous we know that

Ve>030>0: ye Bs(g(rg) = f(y) € Be(f(g(x0))) (5.36a)
V6 >03p>0: x€ By(xog) = g(x) € Bs(g(xo)) (5.36b)

Then Vz € B,(zg) we have
(f 0 g)(wo) = f(g(x0)) € Be(f(g(0))) (5.37)
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5.47 Definition (Lipschitz continuity). A function f: X — Y is said to be Lipschitz continuous
if

AL >0: dy(f(x),f(y) < L-Dx(z,y)

L is called Lipschitz constant. If L = 1, f is called contraction.
5.48 Example. Let f,g:[0,1] - R.
fla) =a? g9(z) = vz
f is Lipschitz continuous, ¢ is not.

5.49 Theorem. Fvery Lipschitz continuous function is continuous.

Proof. Let f: X — Y be Lipschitz continuous, with Lipschitz constant L. Let £ > 0, then
for x € Be (z0)
d(f(z), f(x0)) < L-d(z,20) <e (5.38)

Thus, f is continuous in xg, and since we chose an arbitrary zg, f is continuous everywhere.

O
5.50 Example. (i) Consider
T . F" —TF
($lax27 e 7$n) — Z;

Then
[mi(z) — mi(y)| = |zi —yil <l —yl|

So m; is a contraction.
(ii) Let (X,d), (X x X,dxxx) be metric spaces. Then

d:XxX —R
(z,y) — d(x,y)

is a contraction. Let x1,x2,y1,y2 € X and apply the triangle inequality
d(x1,y1) < d(z1,72) + d(z2,91) < d(w1,72) + d(Y2, Y1) + d(72,92)
This implies

ld(z1,91) — d(z2,y2)| < d(z1,22) + d(Y1,Y2)
= dxxx((z1,22), (y1,92))

which means the metric is continuous.

(iii) Analogously, this works for ||-||.
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5.51 Theorem. Let f: X — Y.

. . . x is an isolated point in X
[ is continuous in x € X <= " N e By ()

Proof. Let f be continuous in x € X. If x is an isolated point there is nothing to show, so
let = be a limit point. Then

Ve>036>0: f(z)€ B.(f(z)) Vi€ Bs(x) (5.39)

Now let = be an isolated point, i.e. 3§ > 0 such that Bs(x) = {x}. Then

f(Baetra(z)) = {f(2)} C Be(f(x)) Ve >0 (5.40)
If z is a limit point and limgz_,, f(Z) = f(x), then let £ > 0
36 >0: f(Bs(x)) C B:(f(x)) (5.41)
This then implies
f(Bs) C B:(f()) (5.42)
O

5.52 Corollary.
f: X =Y continuous inx € X <= V(z,) CX: f(x,) P (2)

This means, for continuous f we have

30, §(n) = 1153, &)

5.53 Corollary. Let f1,---, fn : R™ — R. Then define

fiR™ — R”
T (f1($),f2($), T ,fn(fL'))

f is continuous if and only if f1,--- , fn are continuous.

5.54 Corollary. Let f,g: X — R be continuous in x € X. Then

f+g f-g

are continuous in x, and if g(x) # 0 then

s also continuous in x.
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5.55 Example. Let n= (n1,--- ,nn) € N§j and = € F". Define

m

n = Iy C n
'l =a)" x5t xg x

7 is called multi index. We set

Inl:==m+n+n3+-+mm

Let ¢, € F Vn with [ <N N € N. Then we call

a polynomial with n variables. Such polynomials are continuous. Example:
(x1,29) — x3 4+ 23 + 2] + 237
5.56 Remark. In the context of polynomials (and power series) we define
0°=1

Reminder: If f: X — Y and U C Y then f~!(U) is said to be the preimage of U under f.
It’s the set of all points of X that get mapped to U.

fHU) ={z € X|f(z) e U}

5.57 Theorem. Let f: X —» Y

()
. . . F~Y(U) is a neighbourhood of
f is continuous in T z  VYUneighbourhood of f(x)
(ii)
f is continuous <= f~1(O) is open YO C Y open
(iii)

f is continuous <= f~1(C) is closed VC C Y closed
Proof. We will prove (i). Let U be a neighbourhood of f(x), i.e.
Je>0: Bf(x))CU (5.43)

Since f is continuous

36>0: f(Bs(z)) C Be(f(a)) (5.44)

which in turn means

Bs(x) C f~H(B:(f(2))) € fH(U) (5.45)
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so f~1(U) is a neighbourhood of f(z). Now let e > 0. Since B.(f(z)) is a neighbourhood
of f(x), f~1(B:(f(x))) is a neighbourhood of z. This means

36 >0: Bs(z) C fY(B:(f(x))) (5.46)

Thus f(Bs(x)) C B:(f(x)) which means f is continuous in z.
(ii) and (iii) are left to the reader. O

5.58 Definition (Subsequences and (sequential) compactness). Let (X, d) be a metric space,
and (z,) C X, (ng) C N are strictly monotonically increasing. Then (zy,) is said to be a
subsequence of (z,,).

A subset A C X is said to be (sequentially) compact, if every sequence (z,) C A has a
subsequence convergent in A.

5.59 Remark. If (z,,) converges to x € X, then every subsequence of (x,) converges to x. How-
ever, consider

(zn) = (=1)"
This sequence doesn’t converge, but the subsequences (x3,) and (z2,+1) converge to (dif-
ferent) values.

5.60 Example. Let X = R, then (0,1) and N are not compact. Because

(2n = <) € (0,1) (zn=n) C N

n

have no convering subsequences.

5.61 Theorem.
A CR" is compact <= A closed and bounded

Proof. Assume A is not closed, i.e. for z € 0A\ A
3(z,) C A with z,, —— (5.47)

Every subequence of (x,) converges to x, but x # A. From this follows that A is not
compact. Assume A is not bounded, i.e. A\ B,(0) # @ Vn € N. Now choose (z,,) C A
such that ||(z,)|| > n. (x,) cannot have a convergent subsequence, because on the one hand
for (z,,) convergent to x we have ||y, || — ||z||, but on the other hand ||z, | > n — oo.
This proves the 7 = ” direction, to prove the inverse, consider the case n = 1: Let A C R
be bounded and closed. Then

3K >0: AcCI =[-K, K] (5.48)

Let (zy,) C A be a sequence. We recursively define more intervals. Let I, = [a, b) such that
Zy, € Iy, for infinitely many n € N. Half the interval:

h—
Ijy1 = [a, 2(1) or I = [2,b> (5.49a)
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such that x, € Iy4; for infinitely many n € N. By doing this we are creating a sequence of
nested intervals of length K - 27%%2. Now set n; = 1, and then recursively define

Ngy1 > max {ny, -, g} and Ty, € I (5.50)

We now need to show that (x,, ) is convergent. Apply the Cauchy criterion: For I > k we
know that z,, and z,, € I, i.e.

T, — Ty < K - 27FF2 E2 (5.51)

This means, x,, is a Cauchy sequence, so it converges to x € R. Since A is closed, we have
x € A O

Theorem. Continuous mappings map compact sets to compact sets.

Proof. Let f: X — Y be continuous and A C X compact. Let (z,) C f(A). We need to
show that (z,) has a convergent subsequence. We know that

3 (yn) CA: Tp = f(yn) (5.52)

Since A is compact, there must be subsequences (yp,) with yp,, koo, y € A. Because of
the continuity of f, we have

fyn,) —— f(y) € f(A) (5.53)
Ty
Thus, f(A) is compact. O]

5.63 Remark. Let f : R™ — R" be a continuous mapping. f maps closed, bounded sets to closed,

5.64

5.65

bounded sets. In general, closed sets are NOT mapped to closed sets, and bounded sets are
NOT mapped to bounded sets.

Example: f:(0,00) = R, z+ 27!

f0(0,1)) = (1,00) f([1,00)) = (0,1]
~—— —— —— ~——
bounded unbounded closed not closed

Corollary. Let A C R™ be compact and f : A — R continuous. Then f assumes its
mazimum on A. Le.
JreA: fly) < flz) Vye A

Proof. f(A) is compact, so it’s closed and bounded. We want to show that compact subsets
K of R have a maximum M := sup K such that z,, —— M. Since K is closed we know
that M € F, so M is a maximum. Especially, 3z € f(A) maximum and 3z € A with
flx) == O

Theorem. Let A C R", B C R™ be compact subsets and f : A — B a bijective, continuous
mapping. Then f~' is also continuous.
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Proof. Define g := f~!. g is also bijective and maps B — A. Let C C A be closed. Since
A is bounded, C is also bounded. Thus, f(C) is also compact (i.e. bounded and closed),
and we have

f(C)={f(x) € Bl]z € C}

={f(9(y)) € Blg(y) € C} (5.54)
={y € Blg(y) € Ct=¢7"(0)
So g~1(C) is bounded, and since C' was an arbitrary closed set, g is also continuous. O

5.5 Convergence of Function sequences

5.66 Definition (Pointwise convergence). Let M be aset, f,: M - F Vne Nand f: M — F.
The sequence (f,) is said to be pointwise convergent to f if

nlg]go fa(z) = f(x) Ve e M

5.67 Example. Consider

fn:[0,1] — R
1—nz, z€][0,2]
T —
0, else
1
0.8} B
0.6 |- 8
04l fi |
0.2 > .
£\ \/3
0 | | | |

0 0.2 0.4 0.6 0.8 1

The f, are continuous for all n € N and converge pointwise to

f:00,1] —R

1, =0
Tr—
{0, x#0

f is not continuous.



5.5. CONVERGENCE OF FUNCTION SEQUENCES

5.68 Remark. Let M be a set. Then

B(M)={f.: M —F|IKeR: |f(z)] <K VYoe M}

119

is a linear subspace of the space of all functions M — F. We can define the supremum norm

oo : B(M) — R
fr— sup {[f(x)[}

zeM

Proof. We will now proof that ||-|| is a norm. It is defined, because
[flle =0 = [f(2)] =0 Vo e M

This implies
flz)=0 Ve e M = f=0

The triangle inequality is proven by first considering
@) < flle Vf € B(M)VeeM
Let f,g € B(M), then

[f (@) + g(@)] < [f@)] +lg(@)| <[[flloo + 9l V&€ M

Which implies
1f + 9lloe = sup [f(z) + g(x)] < |flloc + ll9llc
xeM

5.69 Definition (Uniform convergence). A sequence of bounded functions (f,),
fniM—TF
is said to be uniformly convergent to f : M — F if its norm converges.
1fn = flloo == 0
5.70 Remark. Formally, pointwise convergence means
Ve>0Vre M AN eNVn>N: |fulx)— f(z)<e
and uniform convergence means
Ve>03dINeNVee MVYn>N: |fulx)— f(z)<e

5.71 Theorem. The function space B(M) is complete.

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)
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Proof. Let (f,) C B(M) be a Cauchy sequence in terms of ||-|| . Firstly, we have for some
fixed x € M

[fn(@) = fm(2)] < lfn = Fnll (5.60)

Since (fy) is a Cauchy sequence, (f,(z)) is also a Cauchy sequence in Fy. Because F is
complete, (fn(z)) converges, and we define

f(2) = lim f,(2) (5.61)

n—oo
thus (f,,) converges pointwise to f. Let € > 0. Then
INEN: |fu fumle <e V,m>N (5.62)

Then Vz € M, Vn,m > N we have

[fn(@) = fin(@)] < fn = finlloo <€ (5.63)
We can find the limit for m — oo
|f(z) = fa(2)] < e (5.64)
and
[flloe = sup | f] < sup |f(z) — fu(@)] + sup [fu(z)| = € + | fallo (5.65)
zeM zeM reM
Thus, f is bounded. Furthermore
1f = falloo = sup | f(z) — fa(z)| <€ (5.66)
zeM
which in turn implies
n—oo
1f = fallw —0 (5.67)
O

5.72 Definition. Let (X, d) be a metric space, then Cy(X) is said to be the space of all contin-
uous bounded functions.

5.73 Remark. If X is compact (e.g. a bounded, closed subset of R™) then all continuous functions
are bounded. We then write C'(X) for Cy(X).

5.74 Theorem. Let (X,d) be a metric space. Cy(X) is closed in B(X). In other words, every
uniformly convergent sequence of continuous functions converges to a continuous function.

Proof. Let (fn) C Cp(X) be a sequence that uniformly converges to f € B(X). Let x € X
and € > 0, then
INeN: |f- anooyg Vn> N (5.68)
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Choose a fixed n > N. Since f, is continuous, this means that

36> 05 |fule) = fay)l < 5 Wy € Bs(a) (5.69)

Then we have for all such y

£ (@) = FW) < [f(@) = ful@)] + [fn(2) = Fu(w)[ + | fuly) = F(v)]
S 2| = falloo + fu(2) = fuly) <e

This proves the continuity of f in x. Since x € X was chosen arbitrarily, f is continuous
everywhere. O

(5.70)

5.75 Definition. Let zp € F and (a,,) C F. Then

o0
Z an(z — xo)"
n=1

is called a power series around xy. The number

[ee]
E an(z — xo)" converges}
n=1

p = sup{lfv — 0|

is the convergence radius.

5.76 Remark. All results so far (including proofs) can be extended to R™-valued functions, or
functions with values in a Banach space in general.

5.77 Theorem. Let Y, an,(x — xo)" be a power series with convergence radius p € [0,00) U
{oo}. If |z — xo| < p then the series converges absolutely, for |x — xg| > p it diverges.

1
— = limsup {/|an,|
n—oo

p_
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Proof. W.l.o.g. choose zop = 0: For |z| > p the series diverges by definition. If |z| < p then
there exists y € IF such that |z| < |y| < p and Y 2, apy™ convergent. Especially, (an,y™) is
a null sequence. This means 3C' > 0 such that |a,y"| < C Vn €N

(o) oo T n (0] T n
S Jana = 3 Jany ‘ <oy 7] < (5.71)
n=1 n=1 Yy n=1 Yy

This statement only holds for p > 0. O

5.78 Remark. (i) We have

o
Z lan|a” converges}

n=1

p:sup{a € [0,00)

(i) If the following limit exists, then

5.79 Example. The series

is convergent on (—1,1), so p = 1. The limit function is

T —

1—z

5.80 Theorem. Let > 2 an(x — x0)™ be a power series with convergence radius p > 0. Let
0 < a < p. Then this power series converges uniformly on K,(xg). Especially

Proof. W.Lo.g. choose zp = 0. Let 0 < a < p. We know that ) 7 a,a™ converges on
K,(0).
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Define
n K (0) —TF
f ©) (5.72)
rr+— 2" VYneN
We can see that
[fllso =" sup [fo]= sup =a" (5.73)
2€K4(0) 2€K4(0)
and thus - - -
doanfn = llanfall =D lan|" < o0 (5.74)
n=1 n=1 n=1
because a < p. The series Y 7 | an fy is absolutely convergent in C'(K,(0)). Since C'(K,(0))

. . . N .
is complete, > > | an fp is convergent because the partial sums )" | anf, are continuous

VN € N. Therefore f is also continuous on K,(0). Let z € B,(0). Then there exists some
a > 0 such that |z| < a < p. Thus, f is continuous on K,(0). Since K,(0) contains a
neighbourhood of z, and continuity is a local property, f is also continuous in x. Because
x € B,(0) was chosen arbitrarily, f is continuous. O

5.81 Remark. exp, sin, cos are continuous.

5.82 Example. The statements above can be extended to Banach space-valued power series (e.g.

matrix-valued functions). The norm on R™*" is
[A]l = sup {||Az[| | vz € B1(0)}

Define
(o] An
exp(A) := Z

n!
0=1
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This converges VA € R™ "™ because

|| An =1 > 1
— _ n _ n
SIS = A <> 4l
n=1 n=1 n=1
= exp([|4]]) < o0
Thus, > 07, % converges absolutely. Now consider the function
R — R™*™
t — exp(At)

This is a matrix-valued power series

exp(At) = Z (f;t!)” = Z ﬁt"

n=1 n=1

with a convergence radius of p = oo. In this case exp(A + B) doesn’t necessarily have to
equal exp(A) - exp(B).
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6.1 Partial and Total Differentiability

6.1 Definition. Let U C R™ be open, x € (1, -+ ,2,) € U and define the function f : U —
R™. The mapping f is said to be partially differentiable in x in terms of x; if

t'—>f(xla"'7$i717t7l’i+17"'1xn)
is differentiable in z;, i.e.
B ORI S _
azf(x) — lim f(mla s Li—1, T4 + y Li+1, 7xn) f(xla ,I'n)
h—0 h

exists. 0;f(x) is said to be the partial derivative of f in z in terms of z;. Another notation

is

of

axi
This mapping is said to be partially differentiable in x if it is partially differentiable in terms
ofx; Yie{l,--- ,n}.

6.2 Example. Consider

f:R?—R
1, z=0Vvy=0
(z,y) —
0, else
f is partially differentiable in (0,0), but not continuous.
6.3 Theorem. Let U C R be open, x € U and f: U — F.
f is differentiable in x
<~
JaeF,¢:U—=F: fly)=[f(z)+aly—=z)+¢(y) VyelU

and
im 2@ _
y-w |y — |
Proof. We will first prove the 7 <" direction. So let a, ¢ be as demanded in the theorem.
Then
) = J@) o oW ly—2l e 6.1)
y—a ly—zf y—=x
which means f is differentiable in x and f/(x) = a. Now let f be differentiable, and set
o(y) = f(y) — f(x) — f'(@)(y — =) (6.2)
Which is equivalent to the equation in the theorem, with a = f’(x). Then
y=z |y — y—a ly — |

O
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6.4 Definition. Let U CR", z € U and f: U — R™. f is said to be (totally) differentiable in
z if a matrix A € R™*™ and a mapping ¢ : U — R™ exist, such that

fy) = flz) + Aly —2) + ¢(x) VyeU

and

i 2

vz fly —af

f is said to be (totally) differentiable if it is (totally) differentiable in every point x € U.

6.5 Theorem. Let U C R™ be open, x € U and f : U — R™ with

=0 m)s fioooo s fm:U—R

If f is totally differentiable in x, then it is partially differentiable as well, and the matriz A
s given by
aji = i fj()

Proof. Let A, ¢ be as demanded above. Let e1,--- e, be the canonical basis for R”. We
insert y = x + he; and receive

f(x + he;) = f(x) +h-Ae; + ¢(x + he;) (6.4)

By rearranging this yields

f(@ + he;) — f(z) ¢(z 4+ he;) |h] no
== A 7 R 7 A ) 6.5
. e; + ] . e (6.5)
Thus, f is partially differentiable in x in terms of x; with 0, f(z) = Ae;. O

6.6 Definition. The matrix (0; f;j(z));; is called the Jacobian matrix of f in . We write D f(x).
If f is totally differentiable, then D f(x) is said to be the (total) derivative of f in z.
Form =1 (so f : R” — R), the Jacobian matrix has one column, and we call it gradient

Df(x) =: V f(x)
Note: I will adhere to the physical notation of the gradient, using the Nabla operator V.
6.7 Example. Let A € R™*™ and define
fa:R? — R™
x— Az

Then we have
faly) = Ay = Az + A(y — z) = fa(z) — faly — z)
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Thus, fa is differentiable (¢ = 0) and the derivative is
Dfa(x) =A Vx e R"
For another example, let
f:(0,00) x (0,21) — R?
(r,¢) — (rcos ¢, rsin @)
Then f is partially differentiable.

_ [cos¢ —rsing
Df(r,¢) = <sin¢ 7 COS ¢ >
So f is also totally differentiable (We’ll get back to this later).

6.8 Remark. (i) Let U C R™ be open and f : U — R™ differentiable, then the derivative D f
is a function U — R™*"

(ii) Total differentiability is also called local linear approximation. Linearity is the prop-

erty
Az + M\y) = Az + Ny VYV, y e R" A e R

(iii) For arbitrary vector spaces V, W, a mapping V' — W is said to be linear if
Alz + M\y) = Az + Ny Vz,y e R"" A e R

So we can analogously define differentiability for mappings f : V — W between
arbitrary normed vector spaces.

(iv) f is totally differentiable in z if and only if the Jacobian matrix exists and

i W) — (&) = Df(2)(y — x)

=0
=y ly — ||

(v) Let f=(f1, -+, fm) with f1,--+ , fin : U = R.
f totally differentiable <= f; totally differentiable Vi € {1,--- ,n}

The Jacobian matrix D f;(z) is the i-th row of D f(z).

(vi) Total differentiability implies continuity.

)
(vii) Partial and total differentiability are local properties.
(viii) The mapping h — D f(z) - h is linear.

)

(ix) The derivative x — D f(x) is not linear in general.
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Theorem (Chain rule). Let U C R™ be open, V. C R™ open, x € U, g : U — V differen-
tiable in x, and f: V — RF differentiable in g(x). Then f o g is differentiable and

D(fog)=Df(g(x))- Dg(x)

Proof. Differentiability of ¢ in 2 means
dpg : U — R™: g(y) — g(x) = Dy(z)(y — =) + ¢g(y) (6.6)

Differentiability of f in g(x) means

3V - RF Jm =)z - g@)I™t =0 (6.7)
and
f(2) = f(g(2)) + Ds(g(2))(z — g(x)) + d(2) (6.8)

Now set z = g(y), then

fl9(y)) = f(g(z)) + Ds(g(z)) - Dg(x)(y — x)
—— N —
(fo)(w)  (fog)(x) (6.9)

+ (Dg(9(2))9q(y) + ¢£(9(y)))

And we finally need to show

Dy(g(x))dg(y) + ¢5(9(y)) y—a

0 6.10
v 2 (040
We know that
Pq(y)
Df(g(z)) —0 (6.11)
ly — |l
because
z+—— Df(g(z))z linear and thus continuous (6.12)
We define a new mapping
v:U—R
My — -1 1
Lo 1@ =l —g@)T, 2 # g(@) (6.13)
0, z=g(x)
1 is continuous in g(x). Then Vy € U we have
¢5(9(y)) lg(y) — g(=)]]
o=l S (o1

—0
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and
o) ~0fe)] _ |y 92, 950 ’
IIy—$|| IIy—SUII IIy—ﬂfH
< o=l [l o
ly — =] Hy—wH
<l Dg(=)ll Y=
thus v is bounded.
—g(x
ly — ||
O
6.10 Theorem. Let U C R™ and f : U — R™. IfVx € U the partial derivatives 0;f(x) exist
and are continuous Vi € {1,--- ,n}. then f is totally differentiable.
Proof. Without proof. O

6.11 Definition. Let U C R” be open. f : U — R™ is said to be continuously differentiable
if all partial derivatives exist and are continuous. The vector space of all such functions is
denoted as C'(U,R™), or in the special case m = 1 as C1(U).

6.12 Example. 1. Coming back to a previous example, we consider

Df(r, ¢) = (C?Sgb —rsingf))

sing  cos¢
Thus, f is continuously differentiable, and therefore totally differentiable.
2. Let N € N and ¢, € I for every multiindex n € Nj with || < N. Then the polynomial
P:R"—TF
T — Z ey
\nl%N

is continuously differentiable, and therefore totally differentiable.

O;x" —8(m1,z2,--- )
— . R [ N O LS SR
= 77z$1 "X Ty Ty z,"

This is another polynomial, and therefore continuous.
We introduce the following new notation, for z,y € R™:
Szy ={z+t(y—2)[t€(0,1)}
Sey = {z +t(y —x)[t €[0,1]}

They denote the connecting line between z and y.
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S:E7y

6.13 Theorem (Intermediate value theorem for R-valued functions). Let U C R™ be open, x,y €
U and Spy CU. Now let f:U — R differentiable on S, and continuous in x,y. Then

K€ Say: fly)— fla)=Df(E)y - =)
Proof. Consider

g:[0,1] — R

t— flx+t(y —x)) (6.17)

Apply the one dimensional intermediate value theorem. Due to the chain rule, g fulfils the
prerequisites. 360 € (0,1) such that

fy) = f(x) = 9(1) = 9(0) = g(0) = Df(x +60(y — x))(y — ) (6.18)
For € = . + 6(y — x) follows the initial statement. O

6.14 Theorem (Intermediate value theorem). Let U C R™ be open, Sy, C U and f : U — R™
differentiable on Sy, and continuous in x,y. Then

e Sey: If(y) = F@I <[DFE)y— )|

Proof. For a € R™, consider the (real) helper function

a’ f(x) = (a| f(x)) (6.19)
According to the previous theorem
3¢ € B.: a f(y)—a' f(z) =a" Df(E)(y —x) (6.20)
In this implication the chain rule has been applied. We can rewrite this using the scalar
product
170) = 7@ = [(7w) — F@IDFE)w o) 620
<N7(y) = F@IDf(E)(y — )|
O

6.15 Corollary. Let U C R" be open and f: U — R™ a differentiable function.

Df=00onU = IV CU: f constant on V
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Proof. Let x € U, choose € > 0 such that B.(x) C U. Then

Vy € Be(x) 3§ € Soy: |If(y) = f(@)I| < IDFE)(y — )] =0

This implies
1f(y) = f(@)] =0 = f(y) = f(z) Vy€ Be(z)

6.16 Remark. Functions with vanishing derivatives must be constant. Consider
f : (_27 _1) U (172) —

-1, <0
T —
1, x>0

Local constancy implies constancy on connected sets.

6.2 Higher Derivatives
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(6.22)

(6.23)

6.17 Definition. Let U C R™ and let f be (the only) partial derivative of order 0. Now define

recursively

(i) f issaid to be (k+ 1)-times partially differentiable if all partial derivatives of order k

are partially differentiable.

(ii) The partial derivatives of order (k + 1) are the functions 9;g i € {1,--- ,n} where ¢

is the partial derivative of order k of f.

The k-th partial derivative in terms of ¢ of f is denoted as

orf

f is said to be k-times continuously differentiable if all partial derivatives of order k are
continuous. C*(U,R™) is the vector space of all k-times continuously differentiable func-

tions.

f is said to be infinitely differentiable (or smooth) is it is k-times differentiable Vk € N,
and the vector space of all infinitely differentiable functions is denoted as C*°(U,R™).

For total differentiability we have

fiR* —R™ Df :R™ — R™"

6.18 Remark. Let f:R™ — R™ be sufficiently often differentiable. Consider for u € R™

NS (T ES (€

Directional derivative along u
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Now consider for fixed x

D?f(z) : R"® x R" — R™
(u,v) — D(Df(-)u)(x)v

D?f(x) is linear in v and u, and

D2f(:L‘)(u1 + Aug,v) = D(Df(-

( (u1 + Aug))(x)v
(Df

(

2

up + ADf(-)uz)(x)v
ur)(z)v + AD(D f()uz)(2)v
uy,v) + )\DQf(.'E)(UQ, v)

—~~ —~
~— ~— ~—

Df
fx

D
D
D

~—
—~

D?f(x) is a bi-linear mapping.

6.19 Definition. Let U C R™ and f : U — R™. Define recursively for k > 1:

(i) f is said to be (k+1) times (totally) differentiable on U, if the term D¥(-)(uy,- - -

is differentiable on UVuq,--- ,u; € R™.
(ii) The (k + 1)-th derivative of f in = € U is the multi-linear mapping
DFLf(z) - (RMFH s R™
(ur, -+ s upey0) — D(DPF()(ur, -+ up)) (x)v
6.20 Remark. Let f1, -, fmn : U = R, then the function

f:U—R™

is k-times totally differentiable if and only if the fq,--- , f, are totally differentiable.

(Dkf(x)(ulv 7Uk))j = Dkfj(m)(ub"' 7uk)

133

6.21 Remark. D* f(x) really is multi-linear (linear in every point) Yk € N. Other multi-linear

mappings are

(i) The scalar product on R"
R" xR" — R

(ii) The determinant
R™"™ — R
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6.22 Remark. A matrix A € R™*" is uniquely determined by its effect on the canonical basis
€1, -+ ,en. This means if v € R, then Jay, -+ ,a, € R that are uniquely determined such
that

V=Q1,€1 + -+ Open

Then
Av = o Aer + - - + o Aey,

Ae; is the i-th column of A. An analogous statement for multi-linear mappings would be,
that
A Rnxk Rm

is uniquely determined if A(e;,, €iy,- - ,€;,) known Viq,--- i € {1,--- ,n}.

6.23 Theorem. Let U C R"™ be open, f: U — R™ k-times differentiable in x and let e1,--- , e,
be the canonical basis of R™. Then

Dkf(x)(eilv"' 7eik) = 81 811](.(.%')
Vig, -+, € {1,-~- ,TL}.

Proof. For k = 1 this is already proven. So we can use proof by induction; assume the

statement holds for a k, i.e. Wiy, - ,ix € {1,--- ,k}
D¥f(x)(eiy, i) = Oy -+ O, f ()
Then for 41, -- , ks 1 € {1, s ,n}
Dk+1f(x)(ei17"' 7€ik) - D(Dkf( o )(ei17 T 76%))('%') “Cipin
= D(0y,- - 0i, f())(@)ei (6.24)
= ik+1aik ce allf($)
The order in which partial derivatives are applied is important! O

6.24 Example. Consider
f:R?—R
(z1,x3) —> 22 cos(zz)
Then we can calculate
D2f(ac)(u, V) u=wuie; + uges, v = vie] + Ve
As follows
D?f(z)(u,v) = wyvi D*f(z)(e1, e1) + u1va D f () (e1, €2)
+ ugv1 D2 f () (€2, e') + ugua D? f(z) (€%, €?)
= ujvy - 2 - cos(we) — 221 sin(x2)uve

— 2y sin(zg)viug — x% cos(x2)ugve
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Theorem. Let U C R" be open, and f : U — R™ k-times continuously differentiable. Then
f is k-times totally differentiable.

Proof. This is already proveb for k¥ = 1. So we can use induction over k; assume the
statement is correct for k € N. Let wup,--- ,up € R?, then D¥f(-)(uy,--- ,ux) is a linear
combination of the partial derivative of f of order k, and is thus continuously differentiable
once more. Therefore D2 f(-)(uy,--- ,uy) is totally differentiable, and thus f is (k+1)-times
totally differentiable. O

Theorem (Theorem of Schwarz). Let U C R™ be open, and also f € C*(U,R™). Then
Vo € U Vu,v € R": D*f(2)(u,v) = D*f(x)(v,u)
and
Ve e U Viy,ia € {1,--- ,n}: 0;,0;, f(x) = Oi,partial;, f(z)
Proof. Let m =1, x € U, € > 0 such that B.(x) C U. If u = 0 or v = 0 then both sides of
the equation vanish, so let u,v € R” \ {0} and

€
O0<t<c:= (6.25)
2. max{||u”7 ”UH}

Define the helper function

gr: (0.1 — R (6.26)
s+ f(x +tv+su) — f(z + su)
And apply the one dimensional intermediate value theorem. 3¢ € (0,¢) such that
g1(t) = 91(0) = g1(&) - t = (Df (x + tv + gu)u — Df (x + §u)u) - ¢ (6.27)
Analogously, define and apply the intermediate value theorem to
g2:(0.8] — R (6.28)
s— Df(x+ sv+&u)u
and get n € (0,t)
92(8) = 92(0) = ga(n)t = D(DF(Ju)(w + o+ Ewut 629

= D?f(z + nu + &u) (u, v)t
using these results, we can get £, € (0,t) for all t € (0, c¢) such that

flz+tv + tu) — f(z +tv) — f(x + tu) + f(x)
=0g1(t) —1(0) = (Df(z +tv + {uw)u — Df(z + Eu)u)t (6.30)
= (92(t) — 92(0))t = D*f (& + o + &u)(u, v)t>

~
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So we can write

. flea4+tv+tu) — f(z+tv) — f(z+tu) + f(z)
20 12

— T 2
= lim D2f (2 + v + €u)(u,v) (6.31)
—x
= D f(z)(u,v)
The left side is symmetric in terms of swapping u and v, so the right side must be as
well. O

Note, that
D2f(x)(6i1,61'2) = ai28i1f(x> = ailai2f(x) = D2f($)(ei2v €i1)
6.27 Remark. Via induction:

(i) DFf(x)(u1,--- ,u) is independent from the order of the w;, if D¥f is continuous.

(ii) The limit of the second derivaative is useful in the numerical discussion of differential
equations.

6.28 Theorem (Taylor’s Theorem). Let U C R™ be open, f: U — R be (I + 1)-times differen-
tiable and h € R™ such that x +th € U Vt € [0,1]. Then 30 € [0, 1] such that

1

an 1)!Dl+1f(ac +6h)(h,--- ,h)

l
Fla+h) =0 D @) B +
k=1""

Heuristic Proof. Apply the one dimensional Taylor theorem with Lagrange error bound

onto a helper function
:10,1] — R
9: (0.1 (6.32)
t— f(z +th)

O
6.29 Remark. (i) Consider h =" | hje;. Then
D*f(x)(h,h) = Y hihyD* f(x)(eire;) = Y 80, f(x)hih;
i,j=1 t,j=1
(ii) Analogously to one dimension, we can formulate criteria for local extrema:
Df(x)=0,---, D" f(x) =0 and D'f(z) # 0

e 1 is a local minimum if [ is even and D'f(x) is positive.
e 1 is a local maximum if [ is even and D!f(z) is negative.

e 1 is no local extremum of [ is odd or if D'f(z) is undefined.

Definedness is complicated to determine for [ > 2.
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6.3 Function Sequences and Differentiability

6.30 Ezample. Consider (fy):

£ iR —C
T — lemz
Then
1
alloo = & ——0
<
(fn) converges uniformly to the zero function
But

f'r/L(x) —_ Z-einzr — Z(ez:c)n

converges (pointwise even) only for = 2kw, k € Z.

6.31 Remark. Let f: X — V where V is a normed vector space. Define

[flloe = sup {IIf(@)[[ |2 € X}
the supermum norm. Also define
e B(X,V) the space of bounded functions from X — V

e Cp(X,V) the space of continuous, bounded functions from X — V/

6.32 Theorem. Let U C R" be open and f, : U — R™ continuously differentiable Yn € N.

If (fn) and (Dfy,) converge uniformly to f : U — R™ and g : U — R™* ™ then f is
differentiable and Df = g.

Proof. First consider m = 1. We use the operator norm on R™*™. First, let Df, be
continuous Vn and thus g is continuous. Choose x € U and ¢ > 0, then

(S
36 >0: gly) —g@)] < 3 if |ly—=z|| <6 (6.33)

Furthermore .
dN e N: \|Dfn—g|]oo<§ Yn > N (6.34)

Let y € Bs(z). Then according to the intermediate value theorem,
VneN3E, € Spy={z+tly—=z)|te]0,1]} (6.35)

such that
fn(y) - fn($) = Dfn(gn)(y - ZU) (6'36)
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We have &, € Bs(x). Then

1
1
1D fr(&n)ll—D fr(@)|ly—2|| (6.37)
SHDfn(gn) - g(én)” + ‘|g(§n) - g(a:)H + Hg(x) - Dfn(x)H
<IDfa = 9l + 19(&n) — 9(2)l| + [lg — D falls
=2||Dfn = gl + 1l9(&n) — 9(@)[| <
For n — oo we have
) = 1) — g(e)(y — )| < = ¥y € B (6.38)
Since € > 0 is arbitrary, we get
. 1
Jim m!f(y) — f(z) —g(@)(y —z)| =0 (6.39)
This means that f is differentiable in = with D f(z) = g(z). O

6.33 Remark. On C’}B(U , R"™) (the space of continuous, differentiable and bounded functions with
bounded derivative) we can define a norm:

1l = 1l + 11D F o

Then the above theorem is equivalent to the statement that Ch(U,R™) with | fl|e, is
complete.

6.34 Theorem. Let f(z) = Y 2 a,x™ be a power series with positive convergence radius p.
Then f is differentiable on B,(0) and

o
fl(z)= Znanxnfl
n=0
Proof. We need to inspect the convergence radius R of
n—1 1 n
Z napx"" ==Y na,r (6.40)
x

({/n) converges to 1, so 3¢ > 0 such that for sufficiently big n we have

(1— &) /an < Vs < (1+)/an (6.41)
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and thus
_Ez(l—s)-limsup V/]an| < limsup { |nan|:l§ Lte (6.42)
p n—00 n—00 R p
So
Loe L 1#e (6.43)
p R p
Since this holds for every e, this implies p = R. Now for x € B,(0) set
o0
g(x) = Znanx”_l (6.44)
k=1

Let « € B,(0) be fixed and choose a > 0 such that |z| < a < p. This means that

N N
fn(z) = Z anz"” and gn(z) == Z Az
n=0 n=0

converge uniformly on B (0) to f and g. Obviously, fy, = gn, so f is differentiable and f/ =
g. Since differentiabiility is a local property, the desired statement follows Vz € B,(0). O

6.35 Corollary. Let f(x) =Y o7 anz™ be a power series with convergence radius p > 0. Then
f € C®(B,(0)), and
a, = fP(0) - (T'kY)

Furthermore, the series representation (if it exists) is unique.

Proof. The infinite Differentiability follows inductively from the previous theorem. Also
inductively we have

e}

fB@)=> nn-1)-(n—k+1)a,z"" (6.45)
n=0
Choose ¢ = 0 and receive
FEO)=nn—-1)-(n—k+1ay, (6.46)

6.36 Example (Derivative of the exponential function).

o > am\! 1 > pn— O pn .
@ =2 ) = T =
n=0 n=1 n=1 n=0

6.37 Remark (Taylor Series). We can define the Taylor series for f : F — F

oo (n
n=0

n!
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e In general, this doesn’t hold true for all z, not even for f € C°.
e The convergence radius could be 0

e There are examples of convergent Taylor series that don’t converge to the initial

function, e.g.
1
Froe {exp(—m)7 x>0

0, else

f is infinitely continuously differentiable in 0, but the Taylor series would converge to
0.

6.38 Definition. Let a, € F (Multiindex notation) be coefficients Vn € N¢. Then

E n
anT

neNd

is said to be a (formal) power series with d variables.
A function f: U — F with U neighbourhood around 0 is said to be analytic in 0, if and
only if
Je > 0,a, €F: f(z)= Z apz" Vo € B:(0)
neNd

6.39 Remark. (i) The convergence of the series to S(z) can be defined as follows: Ve > 0 3A C
N4 finite such that ¥B D A finite we have

Z apr — S(x)| <e

neB

(ii) If the series converges in (y1,--- ,¥yn), then it also absolutely converges in the open
cuboid

{xERd‘\xi| <yl Vie{l,-- ,d}}

which means

> lagl(leal, -+ |zal)? < 0o

d
neNg

(iii) If the power series converges on a neighbourhood U around 0, then it is infinitely
differentiable and
o)

n!

an
with

o= aroy .- o) nh = mlng!- - !
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(iv) The formula above is only rarely useful to calculate the Taylor series. By inverting it
we can calculate the derivative of a known series representation. E.g.

2k+1
k!

X Ve eF
k=0

2 e O L — x
f(z) = xe® :x-z :Zk:OOO
~1

f®)(0) = 0 is k is even, and it is something else if k is odd.

(v) C¥(U) is the space of all analytic functions.
CU)DCHU) D C*(U)D---DC*U)D--- D C®(U) D C¥(U)

(vi) The analytic functions are closed among sums, products and concatinations. A power
series is analytic within its converges radius.

6.40 Example. Consider the power series

Doyt = ) () ay
n=0 HGN(Q)

with

ap =1if g =n
ap = 0 else

This series converges on

{(z,y) ey <1}

1

to =y
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So the convergence area must not necessarily be a sphere. The limit function is also
defined outside of the convergence area.

6.4 The Banach Fixed-Point Theorem and the Implicit Func-
tion Theorem

6.41 Theorem (Banach Fixed-Point Theorem). Let (X,d) be a complete metric space, and
¢ X — X strictly contractive, i.e.

34C €(0,1) 0 d(é(z),9(y)) < Cd(z,y) Vo,y e X
Then there exists exactly one fized point x© of ¢, i.e. ¢(x) = x.

Proof. First, ¢ is Lipschitz continuous, and thus continuous. Let xg € X, and recursively
define z,+1 = ¢(x,). Then

d(xn—i-l,xn) = d(ﬁb(xn)’ P(rn-1)) < Cd(xmxn—l) (6'47)

and via induction
d(Tpsis Tngk—1) < CFd(zp, xp_1) Vk,n €N (6.48)
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Especially,
d(xp, Tp_1) < C" td(xq, z0) (6.49)

Using the triangle inequality we can compute

d(xn—&—ka :L'nfl) < d(CCTH_k, -’En—&-k—l) + d(xn—‘rk—la xn+k—2) + -+ d(fﬁnv xnfl)
<(CF+ Pt Rt Dd(zn, Tn)

1— Ck+1
< ——- d(ﬂf y L 71)
1-C me (6.50)
1— CkJrl o ld
10T e
>~ 1— C ('1:1, JIO)
i d(x1,20) 7250
=1 _ C T1, 0
This means
Ve >03N € N: d(xpig,Tn-1) <e Vn >N VkeN (6.51)
Which in turn means that (z,,) is a Cauchy sequence, and thus convergent. (x,) converges
tor e X
z= lim z, = lim ¢(xy,_1) = ¢(lim x,_1) = ¢(z) (6.52)
n— o0 n—oo n—oo

To prove the uniqueness, let x,y both be fixed points. Then

d(z,y) = d(é(z), ¢(y)) < Cd(z,y) (6.53)

Since C < 1, we have
dlz,y) = =y (6.54)
O

6.42 Remark. The Banach fixed-point theorem implies that every map that is within the area it
is mapping, will have a point on the map that lies directly on top of the point in the real
world that it maps.

6.43 Example. Consider the equation
T — y2 =0

with the solutions

y=vu y=—vu

on (0,00). For a point (£,n) that solves the equation, there exists a neighbourhood U and
a function f such that all solutions of the equation on U are of the form (z, f(x)).
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6.44 Remark. Let F : R x RY — R?, and consider z1,--- ,zp € R as independent variables,

6.45

and y1, -+ ,yg € R as dependent variables of the equation system

F(x,y) :07 xr = (xla"' a-rP)’y: (ylava)

Let (£,1) be a solution. The question is wether a f : RP — R? exists, such that (x, f(z))
are solutions Vz € U, where U is a neighbourhood of &.

z— F(z, f(2))

If F is differentiable, then let D, F(x,7) € R®*? denote the total derivative of the function.
Analogously this works for y as the variable. We approximately have

F(z,y) = F(z,n) + DyF(z,n)(y —n) =0
Theorem (Implicit Function Theorem). Let U C R”.V C R? be open, and
F:UxV —=R?

continuously differentiable. Choose § € U,n € V such that F(§,n) = 0, and DyF(§,n)
invertible. Then there exists a neighbourhood U C U of &, a neighbourhood V- C V' of n and
a continuous function f:U — V such that f(§) =n and

F(z,f(z))=0 Vz €U

Proof. Set D = DyF(&,n). Then consider

¢ : function — function

. (6.55)
¢(9)(x) — g(z) — D™ F(x,g(x))
where g : R — R?. Then we have
#9) =g <= D'F(z,9(z)) =0 <= F(z,9(z)) =0 (6.56)

Since this is a fixed point problem, our goal is to apply the Banach fixed-point theorem.
Let I : R? — R¥ be the identity mapping. Then the function

(z,y) — ||l = D' DyF(z,y)| (6.57)
is continuous and vanishes in (£, 7). 30, > 0 such that Bs(§) C U, and B.(n) C V and
_ 1
| = D™'DyF(z,y)|| < 5 Vo€ Bs(&),y € B-(n) (6.58)

Because of the continuity of
z+— [|[D7TE(2,n)|| (6.59)
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we can choose a (possibly smaller) § > 0, such that
D~ F(a,m)|| < Z Vo € By(¢) = U (6.60)

Now let X denote the set of all continuous functions g : U — R?
9(&) =n (6.61a)
lg(@)=nll <5 Yo el (6.61D)

Equation (6.61b) implies that g(z) € B.(n) C V. Furthermore X is a subset of Cg(U,R?),
which is a complete set with the norm

l9lloe = sup { 9@l |z € T} (6.62)

X is non-empty (for example, it contains g(§) = n) and bounded, which means X is also
complete. Now, for a fixed x € U and V' C B.(n) consider the mapping

d:V — R
_1 (6.63)
y—y— D F(z,y)
From the intermediate value theorem we can conclude
1@(y) — ®(2)|| <sup ||I = D™ DyF(a,y)||lly — =l
yeVvV
D(z,y) (6.64)
< glly =
=5 y—=z
Now, for g1,g2 € X and = € U we can see that
16(91)(x) — d(z2) ()] = [[@(g1(x)) — P(g2())]|
1 (6.65)
< 5llgi(@) = g2(2)]
and by choosing the supremum over all z € U we can see that
1
[¢(g1) — #(92) I < 5 ll91 — 92l (6.66)

=2

Thus ¢ is strictly contractive on z. It is only left to show that ¢(X) C X. From the
definition of ¢ we have Vg € X

(9)(€) = g(§) =n (6.67)
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So ¢(g) is continuous, and finally

6(6)(x) — 1l < 16(0) (@) ~ o) @) + () ) ~ 7
< 3 Jot@) —nll + |7 ()|

- (6.68)
3 <3

€

< —

-2

Thus, ¢ maps X to X, and the Banach fixed-point theorem tells us

NfeX: ¢(f)=f < F(z,f(z))=0 Yo eU (6.69)
O

6.46 Remark (About uniqueness). We know there is exactly one function f in X such that
F(z, f(z))=0 Vo eU

f(x) the only solution in V, for z € U, because if F(z,y) =0 for y € V, then

ly = f)ll = [@(y) — e(f(2))] < %Ily — f(@)]

which implies y = f(z)

6.47 Theorem. There is a possibly smaller neighbourhood U around & on which f € Cl(U, f/)
The derivative is given by

Df(x) = —(DyF(, f(2)))" DxF(x, f(x))
Proof. Without proof. O

6.48 Corollary (Inverse Function Theorem). Let U C R™ and f : U — R™ continuously differ-
entiable. If Df(&) is invertible for some & € U, then there exists a neighbourhood U around
¢ and a neighbourhood V around f(&) =: n such that f bijectively maps U to V, and the
inverse function

18 continuously differentiable. Furthermore

Dg(n) = (Df(&)™"

Heuristic Proof. Use the implicit function theorem on the equation system
F(z,y) = f(z) —y=0 (6.70)

and solve that for x. O
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6.49 Example (Inverse function of the complex exponential function). Let
z — exp(z)
be a function R?2 — R?, i.e. 2 =z + yi and

exp(z) = exp(z) exp(yi) = exp(x)(cosy + isiny)
Consider
¢ : R* — R
(z,y) — (exp(x) - cosy, exp(z) - siny)

This mapping is continuously differentiable (analytic even) and D¢(x,y) is invertible ev-
erywhere. Thus ¢ has a locally differentiable inverse function on exp(C) (the logarithm).

One can show that exp(C) = C\ {0}. Typically, the main branch of the complex
logarithm is defined as

In:C\ {z e R|z <0}
= R x (—m, )

One can choose from many other domains, however there is no continuous logarithm on

C\ {0}.
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7.1 Contents and Measures

7.1 Definition. A set M is said to be countable if there exists a surjective mapping from N to
M, ie.
J(xp) CM: VyeM IneN: z,=y

A set M is said to be countably infinite if it is countable and unbounded.

7.2 Remark. (i) Countably infinite sets are the smallest kind of infinite sets.
(ii) Subsets of countable sets are countable.

(iii) The union of two countable sets is countable. Let (x,) C M, (y,) C K by surjective
sequences, then

($17y171’27927 o )

is a surjective sequence for M C K. This argument can be used to prove Z is countable.

(iv) The union of countably many countable sets is countable. Let M be a countable set of
countable sets, and (A4,,) C M a surjective sequence. Then Vn € N exists a surjective
mapping (Zn, Jken C Ay

This sequence is surjective on

U4
AeM
Especially, for countable M, K we have

Mx K= ] {(y)|ycK}
zeM

Thus N x N, N, Z and Q are countable.
(v) There exist uncountable sets, like [0, 1], R and P(R).
7.3 Definition. Let 2 be a set. A family of subsets
(Ai)ier C P(©2) (I denotes the index set)
is said to be pairwise disjoint is

AiﬁAjZQ Vi,jel, i #j
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7.4 Remark. (i) Let A C P(R") be a family of sets. A mapping

w: A— 0, 00]
is said to be the content of A, if VA, --- , A € A pairwise disjoint the following holds:
k
A U-UA €A = p(AU--UAL) =) p(A)
1=1

The content is a generalization of the concept of length (R), area (R?), volume (R?)
etc.

(ii) In the context of contents, measures and integrals we define

c+o0o=00 VeeRU{oo}
c-00=o00 Yee (0,0]
0-00=0

(iii) The goal is to choose the domain of the content as big as possible. Ideal would be
A = PR"™. This introduces the Banach-Tarski paradox:

e Let B1(0) C R? be the unit sphere

e One can show: There exists a disjoint decomposition
AjU---UApUB U---UBg = B(0)
and a set of translations and rotations
Dy,---,Dp,---T1,--- ,Tg
such that

D1A1 UDyAsU---UDpAp = Bl(O)
Ti'B1UTyByU---U TQBQ = Bl(O)

7.5 Definition. Let Q be a set, A a family of subsets of Q (so A C P(Q2)). A is sait to be a
o-algebra, if

(i) oe A
(ii) AcA = A“=Q\AcA

(iii) For a countable subset {41, -+, A,} C A follows

UAlC.A

1€EN
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A mapping
p:A— 0,00

is said to be a measure, if
1 <U AZ) = Z w(A;)  (o-additivity)
ieN i€N

for pairwise disjoint (A;)ien C A and p(@) = 0. The pair (©2,.4) is called a measureable
space, and (€2, A, ) is called measure space.

7.6 Example. (i) Let  be an arbitrary set, and let there be a disjoint decomposition
AjU---UA,=Q

Then

n

el

IC{l,--~,n}}

is a o-algebra.

(ii) Let © be arbitrary and x € Q. Then

1S a measure.

(iii) Let € be arbitrary, then

{Number of elements in A, A finite
Ar—

0, A infinite
is the so called counting measure. It is useful for finite, countable sets.

(iv) Let © be countable and (aq)wer C [0, 00]. Then

a measure.
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(v) Let (£, .A, 1) be a measure space and A € A. Define the to A confined o-algebra
Ala:={BNA|Be A}
Then (A, Ala, 1) is a measure space.
7.7 Remark. For countable subsets A = {A;, -+, A,, -} C o-algebra we have
C
(A = <U A?) cA
ieN ieN
If A, Be A = A\ B € A then we can write
A\B=AnB"
A measure p is monotonic, which means if A, B € A and A C B, then
w(B) = pu(B\ A) + pu(A) = p(A)
7.8 Definition. A mapping u: P(Q2) — [0, 00] is said to be an outer measure, if (&) = 0 and
Ac|JA = u(A) <D A
‘€N ieN

Just like measures, outer measures are monotonic. Let Z be the family of bounded intervals,

i.e.
I= U {9l [z, 9), (2,9, (z,9)}
z,yeR
<y
We define

Wz, y]) == Ulz,y) == U((z,y]) = 1((z,9)) =y —=
7.9 Theorem. The mapping

A P(R) — [0, 0]

i=1

Ac|Jr, IieIVieN}
€N

defines an outer measure on the real numbers. Analogously one can create outer measures
on R?,R3.

Proof. We know

AM@) <I([0,e)) =€ Ve >0 (7.1)
which implies A\(@) = 0. We have to show that
Ac A4 = A4 <D M) (7.2)

keN keN
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If the right side is oo there is nothing to show. So let >, - A(Ax) < co. Let € > 0, then
Vk € N 3(I,) C T such that

Ay @ (I and D10, < (MAR) + 2%) (7.3)
ieN ieN
Then -
AcJAvc U n (7.4)
k=1 i,keN

and .

A< ST U <Y (MAw + 27) =3 M) e (7.5)
k,jieN keN keN

Since this inequality holds Ve > 0

AA) <D M) (7.6)
keN
must be true. The outer measure is not additive. O

7.10 Theorem. Let p1 be an outer measure on (2, P(2)). Then the family of measureable sets
A={ACQ|WE)>pu(ENA)+puENA) VEcP(Q)}
is a o-algebra, and pla a measure.
7.11 Theorem. Firstly, we always have
W(E) < (BN A) + u(E 1 A°) (7.7)
which means A is measureable if and only if
wE)=pu(ENA) +u(ENAY) VE € P(Q) (7.8)
It’s easy to see that @ is measurable, and that
A measurable <= A° measurable (7.9)

We have
EN(AUB) = (ENA)U(ENB) i (7.10)
=(EnA)U(ENnBnN A%)

Which means that VA, B measurable and VE € P(Q):

w(E)

uw(ENA)+ u(En A°)
wWENA) +u(ENA°NB) + u(En AN BY) (7.11)
> u(EN(AUB)) +pu(EN(ANB)Y) > u(E)
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So AU B is measurable and it follows for disjoint A, B

wWENA) +u(ENA°NB)=uEN(AUB)) (7.12a)
= wENA)+pENB)=puEN(AUB)) (7.12b)
= 1 15 additive for measurable sets (7.12¢)

Then by using induction we can see that finite unions of measurable sets are measurable
and that for Aq,--- , A, measurable, pairwise disjoint sets

) (.U Ai) - (113)

holds. Now let (A;);en be pairwise disjoint measurable sets, and let
‘ i=1

Then VE € P(Q)

pENS) =Y pENA) (7.15)

To check measurability, consider

W(E) > w(EN Sy) + u(ENST)

> iu(E N A;) + u(En S°) (710)

=1

Forn — oo:

W(E) > (BN A;) + w(ENS°)

g

(2

1

ENS) +u(EnS%) (7.17)
N——
Uiz, ENA;

> p(E)

\Y

Thus S is measurable
> WENA) =p <Em UA,) (7.18)
i=1 i=1
For E = Q the o-additivity follows. It is left to show that for measurable (but not necessarily
disjoint) A;, that |J;2, A; is also measurable. To do that define

i—1
B =4\ [ |4 (7.19)

Jj=1
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Then the B; are disjoint and measurable. Thus

Us-

(7.20)

”C8

1s measurable.

7.12 Definition. Application of the previous theorem on the outer measure from Theorem 7.9
gives us the o-algebra of Lebesgue-measurable sets and the Lebesgue-measure .

7.13 Remark. A C R is said to be a null set if its outer measure is 0. Obviously
A({0}) =0
For countable A we have

AA) = A(Usea{z}) <D AM{z}) =0

T€EA

So N, Z and Q are null sets. Null sets are measurable, because

VE € P(R): AENA)+MENAY) = \NENAY) < \(E)
0

7.14 Theorem. Intervals are Lebesgue measurable and
A[a, b)) =b—a
Proof. Let A be a bounded interval. Decompose R into the intervals
R=ILUAUIR (7.21)

For I € Z we have INI, INA, INIr bounded (or empty) intervals. Now let £ C P(R)
and

E C U [Z- (7.22)
€N
a covering. Then
EnAcl|JnLnA EnAY c |J((LinIL)ulinIg)) (7.23)
€N ieEN

are coverings of countably many intervals, and we have

DU = D> LA+ (ULNIL) + (TN TR))

€N 1€Nnatn €N (724)
> ANENA)+AENAY)
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A is the infimum of all possible coverings
ME) > MENA)+ MENAY) (7.25)
And thus A is measurable. It is left to show that
A=la,b] = ANA)=b—a (7.26)

So let (I,,) C T such that
1= (I)<b-a (7.27)

neN

First, let all I, be open. Choose

A, = A\ (O IZ-> (7.28)

=1

Those A,, are non-empty, since A cannot be covered by finitely many intervals of length
< b — a. Choose a sequence r, € A, Vn € N. Since A is a compact there exists a
toward x € A convergent subsequence of x,. The point x cannot be contained in any I,
since because the I, are open, infinitely many x, would be contained in I,, which would
contradict the construction of A,,.

= ([,,) do not cover A (7.29)

For arbitrary I,, (so not necessarily open), let (z)) be the sequence of the (countably many)
boundary points of the intervals.

b—a—1
5:%>0 (7.30)

And thus
€

{11 iEN}U{<xk—2—k,xk+2%> ’VkeN} (7.31)

is a covering of A by countably many open intervals of total length

o0
2e b—a—-1 b—a+l
§l+22—k:l+ s =5 —<b-a (7.32)
k=1
which is impossible due to our construction above. O

7.15 Theorem. Open and closed sets are Lebesque measurable.

Proof. Let O C R be open. It is to show that

0= U (I,7) = O Lebesgue measurable (7.33)

l,reQ
(l,r)yco
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Let z € O, since O is open
J>0: (z—ex+e)CO (7.34)

Since Q is dense in R
d,reQ: z—e<i<zandz<r<e+zx (7.35)
Sox € (I,r) C O. If C is a closed set, then R\ C is open and thus Lebesgue measurable.
— C =R\ (R\ C) Lebesgue measurable (7.36)
O

7.16 Remark. The Lebesgue-o-algebra contains many more sets. All sets that are ”created by
normal means” are Lebesgue measurable.

7.17 Remark. For A C R and = € R we define
A+z:={y+z|yec A}
A measure on R is said to be invariant under translation, if
wA)=pu(A+z) VA A 2R

Since translations of intervals result in intervals, the (outer) Lebesgue measure is invari-
ant under translation. One can show that the Lebesgue measure is the only translational
symmetric measure on R, with

A([0,1]) =1

7.18 Theorem. Let (2, A, ) be a measure space. For a monotonically increasing sequence
(An) C A (this means A, C Apt1 VYn € N), we have

I (LEJNAn> = lim p(An) = itelgu(/ln)
n
For a monotonically decreasing sequence (By,) C A we have

7 <ﬂ Bn) = lim p(By) = inf j(By)

neN
if W(By) < oo for N € N
Proof. If 1(A,) = oo for some n € N there is nothing to show. So let
w(A,) <oo VneN (7.37)

Set Ag = @ and define
Cp:=A, \ An—1 (7.38)
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These C), are pairwise disjoint, and thus

1 <U An) =4 (U Cn) = ulCn) =D (1(An) — p(An-1))

neN neN n=1 n=1
Telescoping series (739)
— lim () — u(Ao)
n—oo N——
=0
Now let p(Bn) < 0o — u(Bp) < oo Vn > N. Set
D,=By\B, Vn>N (7.40)
(D,,) is monotonically increasing and thus
o0 o0 o0 ¢
UDR—UBNQBS—BNH<H Bn> =ByNBY=By\B (7.41)
n=N n=N n=N
B

Which in turn implies

u(Bn) — (B) = p(By \ B) = lim p(Bn \ By)
nﬁ)OO%,_/
p(B)—p(Bn) (7.42)
= p(By) = lim (By)

7.19 Remark. p(Bn) < oo for some N € N is a necessarily requirement.

7.2 Integrals

Let (2, A, 1) be a measure space. The most important example is on R with the Lebesgue-
o-algebra and the Lebesgue measure. We have one technical requirement, and that is that
(Q, A, ) is a o-finite measure space, i.e.

J(En) CA: | En=Qand u(E,) < oo VneN
neN

On R this requirement is fulfilled by defining FE,, = [-n,n].

7.20 Remark (Notation). Let ®(z) be a statement depending on x € Q. We write [®] for

{z e Qfo(x)}
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Example: y € C
[f=yl={recQlf(x)=y} =)
We write ”® holds” for ”®(x) holds Vz € Q7. For example ”f > ¢” instead of 7 f(z) >
g(x) Yr e Q.
® is said to hold ”almost everywhere” (a.e.) if the set

{z|-Q(2)}

is a null set. For example, ” f > g almost everywhere” means u([f < g]) = 0. The sequence
(fn) converges pointwise a.e. towards f if

[lim fu# f] ={zeq| lm fu() # f(2)]
is a null set.

7.21 Definition. Let A € A, then
1y O—R
1, z€ A
w —
0, else

is said to be the characteristic function of A. A is the support of 1,4. With this we can
define the space of simple functions

X = {Zn:ai]lA

i=1

neNA; € A u(A;) < oo, a; G(C}

X T notates the non-negative, simple functions.

7.22 Remark. (i) Let A, Be€ A

lanp=14-1p
lavB=1a+1p—1anp=1a+1p—141p

(ii) The set X is a vector space, and the product of characteristic functions is another
characteristic function, i.e.

frgeX = f-geX
Thus X is an algebra.

(iii) If Ay,---, A, is a decomposition of €2, which means they are disjoint and

then
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(iv) The representation of simple functions as a linear combination is not unique
]l[o,z] + 1[2,3] = 1]0,1] + 1[1, 3]

(v) One can easily see that simple functions can only assume finitely many values, and
their support [f # 0] has a finite measure. The canonical representation is

f= Z g Lip=y
y=f(Q)

7.23 Definition (Integrals of simple functions). Let f € X in canonical representation

[= Z a;la,
i=1
Then we define .
[ Fdn= Y anan
i=1

7.24 Remark. This sum is always finite, the only A; with infinite measure is that where a; =0

Let f = Z;”Zl bj1p; be another representation of f, so Bi,---, By, is a decomposition. If
AN Bj #+ O i.e.

EIxEAiﬂBj: f(x):ai:bj
Then

m n

/fd,u:Zaiu(Ai):Zam AimUBj :ZaiZN(AimBj)
=1 =1 J

=1 =1 j=1

U7Z: (4inB;)

= iibjlu,(Az ﬂBj) = ibj,u (( ' Az) ﬁBj)
j=1 =1

i=1 j=1

= me(Bj)

7.25 Theorem. Let f,g be simple functions, a € C. Then

/(f+ag)du=/fdu+a/gdu

If f, g are real-valued and f < g a.e., then

[tan< [gan
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/fduz/gdu

Finally, the triangle inequality holds

\/fdu]s/wu

Proof. Let f, g be in canonical representation

And especially if f = g a.e.

f=> aily, (7.43a) g=>Y bjlp, (7.43b)
i=1 j=1
Then

n m
f+ag= ZazlAi + azbjﬂBj
i=1 j=1

n m m n
:Zai:ﬂAi Z]]-Bj "‘aij]lBj (Z]]'Al> 7 44
=1 J=1 j=1 i=1 ( . )
—_—————

1 1
n m

— Z Z(ai + abj)1a,nB;

i=1 j=1

A;NBjwithie {1,--- ,n},je{l,---,m} is a decomposition of 2

i=1 i=1 j=1
j=1
Q
This means that
/(f +ag)dp = ZZ((M + abj)u(A; N By)
i=1 j=1

:ZCLZ‘M AN UBj —i—aij//,((UAi)ﬂBj)
i=1 j=1 j=1 i=1

:/fd,u,—l—oz/gd,u
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Now let f > 0 almsot everywhere, i.e. [f < 0] is a null set. If a; < 0, then 4; C [f < 0], and
then p(A4;) = 0 and thus the integral is a sum over non-negative values, so it is non-negative
itself. If f < g a.e., then g — f > 0 a.e.:

OS/(g—f)dMZ/gdu—/fdu (7.46)

Finally to show the triangle inequality

'/fdu‘ - gammn

7.26 Remark. From linearity follows, that f can be in any representation

n
/= Z a;l4,
=1

<> lalut4) = [ 171as (7.47)
i=1

and the integral will still be
n
/fd,u = aip(A)
i=1

7.27 Remark. Notice how the integrals so far did not have any integration variables. The integrals
map functions (not their values!) to numbers. If the integration variable is of concern, we
can write

[ H@ dut)

For Lebesgue integrals we define

/f(a:) dz = /_Z f(z)dx

7.28 Definition. f : ) —  is said to be measurable, if there is a sequence of simple functions
(fn) C X that converge pointwise towards f.

7.29 Remark. (i) For real-valued functions f

f measurable <= [f<yle A Vye A

(ii) Simple functions and characteristic functions are measurable.
(iii) Continuous functions are Lebesgue measurable.

(iv) Sums, products, quotients (if existant) of measurable sets are measurable.



7.2. INTEGRALS 163

(v) If (fn) is a sequence of measurable functions, then

sup fn limsup f, lim f,

neN n—o00 n—oo
are measurable if they exist.
All functions from now on will be considered measurable.

7.30 Definition. Let f: Q — [0,00), then

/fdu:ZSUP{/gdu‘geXJr, g<f}

7.81 Remark. (i) This integral can be oo.

(ii) If f is a non-negative, simple function, then VA that are non-negative, simple functions

with & < f
/hdué/fdu

The old integral (integral over simple functions) is identical to this one.

(iii) Let f,g be non-negative and f < g a.e. Define A = [f < g]. Then for all simple h < f
we have
h-14<yg

/hdu:/h-]lAdug/gdu

[ ran=suw [nauz [gan
h

/fd,u:/gdu if f=ga.e.

(iv) If [f > 0] is a null set, then f is the zero function a.e. and

/fdu:O

/fdu:()andeO = f=0a.e.

and
Which implies

Especially

The inverse is also true

Let Ay, :=[f > 7] € A, then

1
71, <f VkEN
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Since [ fdp =0, this implies

1 1
14, dp=—-pu(Ag) =0
/ oAk K kﬂ( k)
= u(Ax) =0 VkeN
The Ay are monotonically increasing, and thus due to the continuity of the measure
1
0= lim p(A) = p (kg[f > k]) (If = 0])

(v) The definition means 3 (f,) C X such that f, < f

/ fodp = / fdp
Define g, = max {fi1, -, fn}. These are also simple functions and f, < g, < f Vn €
N.
— [ fanz [guaus [1au
And thus
/ fndp —— / fdp
{

/gndu—>/fdu

The sequence g, is monotonic.

(vi) Let (gn) be convergent to g : 2 — [0,00). Then

g<f = /gd,ug/fd,u

Vn € N we have g, < g, and thus

n—oo

lim gndus/gdu

Vf > 0 there exists a monotonically increasing sequence of simple function such that

/gndu—>/fdﬂ

and thus g = f a.e.
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(vi)
Jenan=c[ tan ce oo

/fdu+/gdu§/(f+g)dﬂ

7.32 Theorem (Monotone Convergence Theorem). Let f > 0 and (f,) a monotonically increas-
ing sequence of functions converging pointwise to f a.e. Then

lim fndu=/fdu
n—oo

Proof. First, let lim,,_,o fr, = f everywhere. Since (f,,) is monotonic, this must also hold
for [ f, dpu, so

lim [ fodup < /fd,u (7.48)
n—oo
First, consider the special case (A,) C A monotonically increasing, with
U4=9 (7.49)
neN
Then
ILm /f]lAndu = /fdu (7.50)
For f =1p
Jim [ 1pla, dp= lim p(BNA)
Ipnan
=u(|J BnAw) (7.51)
neN
= u(B) = / 1pdp

Since both sides are lienear in f (at least for simple functions), the equality holds for
arbitrary simple functions. Now let f > 0 be arbitrary and h € X, such that for ¢ > 0

/hdu > /fdu . g (7.52)
and thus h < f. From this it follows that

INeNVa>N: /hﬂAnduz/hdu—; (7.53)
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And thus
Vn >N : /hﬂAnduz/fdu—e

which proves Equation (7.50) for arbitrary f > 0. Now let ¢ € (0, 1), and set

Since f, are monotonic, the A, are as well, and
4. =2
neN
Then
[ = [ fatadnz [ervadn=c [ risan
Thus
[ Fradn = [ o
Which in turn implies
i >
Jim [ fadp > C/fdu
For ¢ — 1 we have
Jim [ frdp = / fdp
And if f, — f only a.e.
A= [ h_>m Jn = f]

then Q\ A is a null set.

lim fndp = lim fnladp
o

n—oo n—

7.38 Ezample. Calculate the integral of f(y) = yljg . ()

2n—1
1

fn = ko Lk e (k1) )
k=0

166

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)
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is a monotonically increasing sequence which converges to f on R\ {z}.

2n—1 . . 72 2n—1
J =3 kg () =5 3
k=0 k=0
_z?2n(2n —1)
T92n 9.9n
_z2 2n—1
2 on

%7
2

7.34 Ezxample. Consider f, = nl (0,1)- This sequence converges pointwise to the zero function.
But .
/fndu:n-zlaéO
n

This is due to f, not being monotonic increasing.
7.85 Example. Let (a,) C C, and define
o= an]l[n,nJrl}

This sequence converges pointwise to 0, but

/fnd)\ = a,

depends on (a,) and can converge to any value (or even diverge).

7.36 Definition. A function f: ) — C is said to be integrable if

[ 11 < o0
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A sequence of simple functions (f,,) is said to be an approximating sequence of f if

J17 = fald === 0

/(f+g)du—/fdu+/gdu

Proof. Let (fn),(9,) C X be monotone sequences with f, — f, g, — ¢ almost every-
where. Then (f, + g5,) is monotonically increasing as well and converge pointwise to (f + g)
almost everywhere.

7.37 Corollary. Let f,g >0

{ lim f, # f} null set, [ lim g, # g} null set
n— o0 n—oo

(7.63)
= Lfim, Ao # 70 [ gn # ] i se
This implies
/(f +g)dp = lim /(fn +gn)dp = lim [ frdp+ lim / gndp
(7.64)
= / JSdu+ / gdp
O

7.38 Remark. (i) The set of integrable functions is a vector space, because for f, g integrable
and a € C

/ I+ agldu < / 1+ lellgldp
= [ 1r1du+ lal [ lglan < o0

However, f - g is not integrable in general!

(ii) Let f > 0 be integrable, and (f,,) C X such that f,, — f pointwise a.e.
i [ fudn = [ fap < oo
n—o0
Vn € N:
J15=tutdu= [ (7= gan= [ an= [ fuan =20

(iii) Let f: Q@ — R be a function. Decompose the function into a positive and a negative
part:

fri= 1 1ipo feoi= = Tg<g
f+,f, 203 and
f=fr—f- |fl = fy+ [
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(iv) |[Re f| <|f], Im f| < |f|. If f is integrable, then Re(f) and Im(f) are also integrable.

(v) Let f,g be arbitrary, and (f,), (g9») approximating sequences for f and g. Then for
aeC:

[15+ag=u+agldn < [ 17 = fuld+a [ lg = g0
Z/f—fn!duﬂal/g—gnldu

n—oo

—0

Thus f, + ag, is an approximating sequence for f + ag

(vi) Consider
f=(Ref),—Ref)_)+i((mf), —Imf)_)

If f is integrable, then all the terms are integrable as well and have approximating
sequences. Thus, f has an approximating sequence.

(vii) Now let (f,) be an approximating sequence for f. Let ¢ > 0, then

INENVR> N : /\f—fn\du<;
VYn,m > N
‘/fndu— /fmdM’ - '/(fn +fm)du‘
< [ 1= Fuld
< [~ 11417 = fa
<e

Which means ([ f,dp) is a Cauchy sequence, so it converges to I € C

(viii) Let (g,) be another approximating sequence for f

‘/fndu—/gndu‘ S/!fn—gn!du

< [t~ s+ 1 = guldn =0

So the integral is invariant to the choice of approximating sequence.
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7.39 Definition. Let f be integrable, and define

/ fdp = lim / Jndu

for some approximating sequence (f,,) of f.

7.40 Remark. If f is a simple function, then (f,),cy is an approximating sequence. The new
integral definition is compatible with the integral for simple functions. and with the integral
for non-negative functions.

7.41 Theorem. Let f,g be integrable.
(1)
Va € C: /(f—l—ag)du:/fd;u—a/gdp

[ fan< [ o

f=gae = /fdu:/gdu

Vfdu' < [ 111

Proof. Let (fn), (9n) be approximating sequences for f and g. Then (f, + ag,) is an
approximating sequence for (f + ag).

(ii) If f < g a.e., then

and

(iii)

[+ agdn=tim [+ agin =t [ fudps lim [ g.dn (7.65)
n—o0 n—00 n—oo

[ fdp [9du

To prove the second statement, let f < g a.e. Then (¢ — f)— =0 a.e.

- /(9 —f)-=0 (7.66)

/gdu— /fdM: /(g—f)d“ (7.67)

~ [ prau- [g-p-du=0

And thus
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The final statement is proven by applying the reverse triangle inequality

Ja= 10l < [17 = fuldn 250 (7.68)

This means if (|f,|) is an approximating sequence for |f|, then
[t = tim [ 15jde = Jim ‘ / fndu‘ - ] / fdu’ (7.69)
O

7.42 Remark. For A C A we define

/gdu :Z/gllAdM
A

gl 4 can be integrable, even if g isn’t. The above integral doesn’t depend on the behavior of
g outside of A. We use [, gdu even if g isn’t defined outside of A. Integrals are independent
from the behavior on null sets, so
1
1
/ —dz =0
1

is perfectly fine, even though the integrand is not defined for x = 0.

7.43 Example. Let Q@ =N, A =P(Q) and p the counting measure. Let f : N — [0, 00), then

N
v =flgeny =Y F() 1
n=1

is a sequence of monotonically increasing, simple functions that converge to f pointwise.

N [e%e)
JEE T X dim 3 Fttnd) =30

Thus we can conclude
f : N — C integrable < /]f\du = Z |f(n)] < oo
n=1

and

[ = 5 st
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7.3 Integrals over the real numbers

7.44 Definition. Let a,b € R, a < b and f : [a,b] — C integrable. Then set

/abf(x)dx - /<a,b) fdA:/f.n(a,b)dA

/baf(x)dx = —/abf(:n)dx

7.45 Remark. Let a,b € R, a < b, then every bounded function is integrable over (a,b)

and

/(a,b)|f|dA§/( sup If(x)ldAszlloo/a LapdA = || fllo - (b—a)

a,b) z€(a,b) (a,b)
—_———
€R A(a,))

If f is continuous on [a, b] then it is also bounded. Let a < ¢ < b

/abf(x)dx:/fﬂ(a@d)‘:/f'(]l(a,c)Jrll(c,b))d)\
—/f']1<a,c>dA+/f-ﬂ(c7b)dA
Z/:f(ﬂ:)da:Jr/cbf(x)dx

One can easily see that this formula holds for any ¢ € R.

7.46 Theorem (Mean value theorem for integrals). Let a,b € R, a < b and f,g : [a,0] = R
continuous with g > 0. Then 3¢ € (a,b) such that

[t =1© [ g

FEspecially, 3n € (a,b) such that

b
[ @ = e - a)
Proof. Let f be continuous, and [a, b] compact. Then define

c= min f(z) C= max f(z)

Thus,
pm, xpr € [a,0] 0 f(am) =¢, flanm)=C (7.70)
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Define @ := min {@,,, z3s} and b := max {,, zas}. Then

c-g(z) < f(z)g(z) < Cg(x) (7.71)

If we define )
_ / g(z)da (7.72)

then we have )
c-Ig/ <C-I (7.73)

Due to the mean value theorem, 3¢ € (a,b) C (a,b) such that

b
1) =1 [ F@gla)ds (774

7.47 Definition. Let a,b € R, a < b and f : [a,b] — C. Then
F:la,b] - C
is said to be the antiderivative of f, if it is continuous, on [a, b] differentiable and F’ = f.
7.48 Remark. Let F,G be antiderivatives of f. Then on (a,b) we have
(F-GQ)=F -G =f-f=0
Thus F — G = ¢ for ¢ € C. Since F,G are continuous, F' — G = ¢ also holds on [a, b].

7.49 Theorem (Fundamental Theorem of Calculus). Let a,b € R, a < b and f : [a,b] — C
continuous. Then for arbitrary xg € [a,b] the function

o [ )y
o
is an antiderivative of f. Let G be an antiderivative of f, then
b
| iy =) - 6a)
Proof. First, let f be real-vauled.

Fa) = | " )y (7.75)
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For a fixed = € [a,b] and h such that z + h € [a, b] we have

x+h x
.mx+m—5w0=/' ﬂw@rl/f@My
i 0 (7.76)

z+
:/’ Fy)dy = £(&) - h

with &, € (z,x + h) from the mean value theorem. For h — 0, the &, converges to x, and

thus f(&n) — f(2)

— lim (F(z+h) - F(z)) = 0 (7.77)

so F' is continuous. For z € (a,b) we have z + h € (a,b) for a small enough h, and then

. F(x+h)—F(x) . ,
lim A = lim f(&) = f(z) = F'(2) (7.78)

If G is another antiderivative then G = F + ¢ with ¢ € R.

b ) b
/f@@:/‘ﬂw@+/f@@:F@—H@:mw—m@ (7.79)

For complex-valued f, simply decompose f into a real and imaginary part. O

7.50 Remark. The antiderivative of f is often denoted as

/f($)d$ indefinite integral

This notation is also used for

/ f(x)dz definite integral

7.51 Corollary (Partial Integration). Let a,b € R, a < b and f,g : [a,c] — C continuously

differentiable. Then

[ @)t = aigo) - [ g @)da
And the definite integral is
b b
/ fl(@)g(x)dz = f(b)g(b) — f(a)g(a) —/ f(2)d (z)d
Proof. Let H : [a,b] — C be the antiderivative of fg’. Then fg — H is continuously

differentiable, and
(fg—H) =fg+fg—H =fg (7.80)
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so fg — H is an antiderivative of f’g. From the fundamental theorem follows

b
/“fmmquzuy—wa—uy—Hx@

= f(b)g(b) — f(a)g(a) — (H(b) — H(a)) (7.81)
! f(@)g (2)dz
0

7.52 Corollary (Substitution). Leta,b € R, a <b and g : [a,b] — R continuously differentiable.
Choose £ = min g([a, b]) and n = max g([a,b]). Let

f:l&n) —C
be continuous. Then
[ Ho@ng @ = [ sy
for (y=g(z)), and
b g(b)
[ #o@ng @z = [ sy
a g(a)

Proof. Let F be an antiderivative of f, then F o g is continuously differentiable, and due to
the chain rule

(Fog)(z) =F'(g(x))d (z) = fg(x))g (x) (7.82)
thus F o g is an antiderivative of (f o g)¢’

b
/ f(g(x))g'(z)da = (F 0 g)(b) = (F o g)(a) = F(g(b)) — F(g(a))

o(b) (7.83)
~ [ty
g(a)
O
7.58 Example. Consider
sinz cos' x
tanx = = —
Ccos T COS T

We have to determine the antiderivative of f(y) = i with y = cosx

1
—/dy:—lny
Y

/tanxdx = —In|cos x|

After resubstituting we get
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The derivative of this function is identical to tan wherever it is defined. If we want to
calculate definite integrals like
b
/ tan zdx
a

there cannot be any incontinuities between a and b.

7.54 Example. Consider

F:(0,00) — R

o0 —x
e
a+— dz
o T+a

Is this function continuous?

7.55 Corollary. Let (X,d) be a metric space, f: QxX — C anda € X. Let f(-,a) be integrable
Va € X and let f(w,-) be continuous in a Yw € Q. Let U be a neighbourhood of @ and g an
integrable function (independent from a) such that

|f(w,a)] < g(w) YweQVaelU
Then the function

F: X —C
o [ fw. ()
1S continuous in a.

Proof. Let (a,) C X be a sequence with a,, — a. Set f, = f(+,a,). For sufficiently bit n,
an is in the neighbourhood U, and thus

[ful =1f(ran) < g (7.84)
Then Vw €
Jim fu(w) = T f(w.0) = f(.) (7.55)
And

lim F(a,) = lim | fp(w)du(w)

n—oo n—oo

- / lim f(w,an)dp (7.86)

- [ #.a)dut)
— F(a)

The sequence criterion for continuity tells os that F' is continuous in a. O
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7.56 Example. Let a € (0,00). Then

e—$ e—IE —X

a 2
Va € g,oo Vz € [0,00) : < — = < integrable
2 r+a 5 a

Thus, F' is continuous in a. Since @ was arbitrary, F' is continuous.

7.57 Corollary. Let X C R"™ be open, f:Qx X — C anda € X, f(-,a) integrable Va € X. Let
U be a neighbourhood of a, and f(w,-) differentiable Vw € ) in every point of U. Let g be
integrable (independent from a) such that

[1Daf(w,a)]| < g(w)
Then the function
F:X—C
ar— [ fw. ()
is differentiable in a and
DF(@ = [ Dafw.@)du(e)
Proof. Without proof. O

7.58 Example. The term

r+a
is differentiable in terms of a
d e *
daz+a

e " 4 a
_ < . X _
—( a)2 &26 Va€<2,oo> Vxe[O,oo)

Thus F' is differentiable and B
e X
Flla)=—- | ———d
(a) ,/@+@2$

Since a was arbitrary, F' is differentiable.

7.4 Product measures and Fubini’s Theorem

7.59 Example. Let
f:10,1] x [0,1] — [0, 00)

Question: What is the volume (or the A\? measure) under the graph of f, i.e.

{(2,y,2) €R*|0< 2 < f(z,y)}
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The possibilities are

0 0

From now on we define (2, 4, 1) and (P, B,v) to be measure spaces.

7.60 Definition. The product o-algebra A ® B is the smallest o-algebra on 2 x ® that contains
all sets of type A x B for A€ A, B € B.
Examples for A x B are

A A

~
~
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NO examples for A x B are

A

~
W

A A
A measure 9 defined on A ® B is said to be a product measure of p, v if
V(A x B)=u(Av(B) Ac A,BeB

7.61 Remark. Product measures always exist. For o-finite measure spaces they are unique.
Notation:
pRv or p=p®pu

7.62 Example. R with Lebesgue measure A. A? is the product measure on R2.

X2(a, 5] x [e,d]) = Alla, B)A([e, d])
— (b—a)(d—c)

This means the product measure characterizes the area. Analogously this can be extended
for A3, \* etc.

7.63 Example. Consider

f:R?—R
o
f= Z (]l[n,n+1)2 - I[[n—l—l,n—&-Q)><[n,n-‘,—1))
n=0
Yy
=1 =0
| || -
1 -1
e R =0
L
‘ ‘ : : —
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// f(z,y)dzdy = 0 // f(z,y)dydx =1

But the integral [ fd\? doesn’t exist

|f]dA? = 3 2 = o0
Jio =3

Theorem (Tonelli’s Theorem). Let f: Qx ® — [0,00) be measurable (in terms of A® B).
Then the functions

wr— f(w, d)

are measurable for almost all ¢ € ®. Analogously

¢ — f(w, )

is measurable for almost all w € .

¢ r— /f(w,qb)du(w) measurable
w— /f(w,qﬁ)du(qﬁ) measurable

and
[ w8 a0 = [ fo0duw)an )
- | .01 6)uw)
Furthermore, f is integrable in terms of p ® v is one of the above integrals is finite.
Proof. Without proof. O
Corollary (Cavalieri’s Principle). Let A C A® B. Define
Ay ={¢ e ®|(w,¢) € A}

Then
wr— v(Ay)

is measurable and

(4 v)(A) = / v(Ay)du(Ay)
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Proof. 1t is easy to see
(w,90) € A <= pc A, (7.87)

Thus we can see
1a(w,¢) = 14,(¢) (7.88)
And then

(9 0)(4) = [ 1a(0.0) d(u 0 v) (@.0)

_ // 14(w, ¢) dv (¢) dp (w) (7.89)
1a,(¢)
_ / V(Ay) dp ()
O

7.66 Theorem (Fubini’s Theorem). Let f : Q x ® — F be measurable with measures p,v, which
is integrable in terms of u@v. Then the functions w — f(w, @) are measurable and integrable
for v-almost every ¢ € ®, and the functions ¢ — f(w,d) are measurable and integrable for
p-almost every w € Q. The functions

s / F(w. 6) dv (6) b / f(@,6) dp ()

are measurable and integrable, and

[ tedrduon = [ feo)a @)
- [ e an v @)
Proof. Without proof. O
7.67 Corollary. Let a;,b; € R, a; <b; Vie {l,---,n}.
D = Jar, b1] X [az, ba] X -+ X [an, by]

Let f: D — R be continuous or bounded. Then

b1 bn
[rav= [ [ mdn, o
D

al

and the order of integration is irrelevant.
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Proof. f is bounded by k € R (continuous with compact domain)

/ |fldA" < / Ed\" =k - (by —a1)(be —az) - (b, —a,) < o0 (7.90)
D D
f is A"-integrable. By applying Fubini’s theorem the desired statement follows. O

7.68 Example. Calculate the center of mass of

A:{(x,y)ERQ‘mzyz/\xgl}

The center of mass is defined by

[ ()@

dA

In component form this is
/ zd\? (z,y) = /:CILA(x, y)dA? (z,y)
A

_ / eLa(z, ) dA2 (z,y)
[0,1]x[—1,1]

1 p1
N /0 /1 ﬂ[‘ﬁ,m (y) dydx

! 4
:/ 56-2'\/5(11':5

0

Meaning the center of mass is at (%, 0).

7.5 The Transformation Theorem
7.69 Definition. Let U,V C R"™ be open. A mapping T : U — V is said to be a diffeomorphism
if it is bijective and if T and 7! are continuously differentiable. Analogously we define

C"-diffeomorphism if it is r-times differentiable

C*>°-diffeomorphism if it is infinitely differentiable
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7.70 Remark. (i) In physics, f and f o T are often denoted with the same symbol
(ii) We can apply the chain rule to T o T~! = idy
DT(T"}(y)) - DT (y) = Iv

Since T~! is surjective, DT (z) is invertible Vo € U. According to the theorem about
inverse functions, the inverse 7! of a bijective mapping is continuously differentiable
if DT'(x) is invertible

(iii) If T is a diffeomorphism, then 7! is one too.
7.71 Example. (i) Polar coordinates:

T :(0,00) x (0,27) — R\ {[0, 00] x {0}}

(r,¢) — (rcos ¢, rsin @)

(ii) Another diffeomorphism would be

T: Bl(O) — R"
€T

T —
1 — [|l]]

(iii) An example for a mapping that is no diffeomorphism would be

T:R—R

l’i—>£L‘3

The Jacobian "matrix” 7"(z) = 32?2 is not invertible.
(iv) Another counter example would be
T:(0,00) x R — R\ {0}
(r,¢) — (rcos ¢, rsin @)
This function is not injective, so it’s not a diffeomorphism.

7.72 Theorem (Transformation Theorem). Let U,V C R" and T : U — V a diffeomorphism.
Then f:V — R is integrable over V if and only if f o T - |det DT is integrable over U. In
this case

/dd)\":/foT-\detDT]d)\”
|4 U

Proof. Without proof. O
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7.73 Example (Area of the unit circle). The area is defined as

R0 = [ i 4¥°

We transform into polar coordinates:

U = (0,00) x (0,2m)
V =R?\ ([0,00] x {0})
A2 —nullset

We define the transformation
T : (r,¢) —> (rcos¢,rsin @)
Which results in

det DT'(r,¢) =r
Iy )0 T(r,¢) = T(q(r)

So we can calculate

unmzfmmmmemw
B
=/mmeAVM@
U

00 2w
= / ]]_(071}7‘ dQSd'I“
0 0

1
= 27T/ Li,1)(r)dr = 271'/ rdr
0 0

=arl=r

7.74 Remark. (i) Consider

T:R*" — R"
z+— Ax A e R™"

If 3JA~!, then T is a diffeomorphism with DT = A
= /fd/\2 = \detA|/fon)\2
(ii) Let A be an orthogonal matrix (so a rotation/mirroring).

det A==+1 = |detA| =1

Thus, rotations and mirrorings do not change the volume.

184
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(iii) Let A = diag(a,a,---,a) a € (0,00) (this is a scaling matrix). Then
det A = a"
which means that continuous scaling of a factor a scales the \"-volume by a”.

(iv) This is a ”generalization” of the substitution rule

/R F(g(2)d (@) dz = /R f(y) dy

K:/e_x2dx
R

Kz—/e_"’”2 dac/e_y2 dy—/ e_(x2+92)d/\2(x,y)
R R R2

By transforming f = e~ (@*+9*) into polar coordinates

7.75 Example. We want to compute

Consider

K2—/ foT|det DT|d\?
U
:/ e S dX2(r, ¢)
14
o0 2m )
:/ re” " drdo
o Jo
o0 _ 2

:277/ re " dr
0

1 1
=27 lim <—2e”2 + ) =7

n—oo 2

Thus K = /7.

7.76 Example (Integrability of radial functions). Let f : [0,00] — R be measureable and set

F:R"—R
z— f([lz]])

185

||I-|| is the Euclidian norm. Under which conditions is F' A"-integrable? Let D := (0, 00) x
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(0,7)" 2 x (0,27). And define

Dy

T:D—R"\ A

7 COS @1
7 Sin ¢ cos Po

(r.6) 7 sin ¢1 sin @2 cos ¢3
T’

rSin ¢ -+« - sin ¢y, 2 COS Pp—1
rsin¢; - - - sin ¢p,_2 sin ¢,

Then ||T'(r,¢)|| = r and
|det DT(r, ¢)| = "L sin™ 2 ¢y sin™ 2 ¢ - - - sin p_g = " LA, ()

Thus

/n| )| dA™ (x /FoT 6)| |det DT(r, 6)] A" (r, )

/D/ ’”!f )|An(¢) dr A" (¢)
_ / @ [ A @)
0 Dy

<o

So F is A'-integrable if r"~1 f(z) is integrable over [0, co).

7.6 Lebesgue-Stieltjes Integral

7.77 Definition. Let F' : R — R be a monotonically increasing, continuous function. Then we
set

Ar(@):=0 Ar((a,b]) = F(b) — F(a), (a,bl €T
7.78 Theorem. \g is a measure on H.

Proof. Without proof. O

/Afd)\F

7.79 Definition. The integral
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is called the Lebesgue-Stieltjes integral on R and is denoted by

/A F(@)dP(z) = /A Fdrp

If A = [a,b], then we write

[ rwarw
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8.1 Solution Methods

8.1 Definition. An ordinary differential equation (ODE) is an equation of the form
F(ﬂ:,y,y',~-- ’y(n)) =0

with F' : R"*2 — R. n is the order of the ODE. Let I be an open interval. A function
y: I — R is a solution of the ODE if y € C"(R) and

F(mvy(x)vy/(x)v”‘ ,y(")(w)) =0 Ve el

8.2 Example.
1
y'=—— Gravitational field
Y
y' = —siny Pendulum

8.3 Remark. (i) Often times F is only defined on subsets of R"+?2
(ii) ODEs are not simple to solve
(iii) Even if we can’t calculate explicit solutions, we can inspect the following properties

e Existence of solutions

e Uniqueness of solutions

e Dependency of solutions from initial conditions
e Sability

8.4 Example. (i) Let I be an open interval and f : I — R continuous. Then the solution of

y = f(x)

is the antiderivative of f. Let x¢ € I, then
x
y(z) :/ ft)ydt+c ceR
o
(ii) Consider the ODE
y =y

The functions = — ce® are solutions Ve € R. Are those all the solutions that exist?
Let y : I — R be any solution, and consider

Then

So u(x) = c.
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8.5 Definition (Initial Value Problem). Let 3o, - ,y,—1 € R and also F' : R"*2 — R. The
system of equations

F(I‘?yvy/a"' 7y(n)) =0

is said to be an initial value problem (IVP).

8.6 Example. Consider the problem

This describes the movement of a point mass in the gravitational field of the earth along
a straight line through the center of the earth with the initial position yy and the initial
velocity 1.

8.7 Example. Consider the problem
y =y y(0) =1

Assume y : I — R is a solution and y(z) > 0 Vz € I. Then

y'(t) vtel

By integrating we get

/x ! '(t)dt /y(z) La
xr= — = — _
o vV L

Substitution

1 y(x) 1
= - =———1Vxel
Y y(x)
So a solution is
(2) = —
4 14z

The biggest domain that makes sense is (—1,00). Analogously one can approach equations
with ”separated variables”, so of the form

/

Y = f(y)g(z) y(w0) = yo
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8.8 Theorem (Separation of Variables). Let I,J be open intervals, and let

f:I—R g:J—R

191

be continuous with 0 # f(I). Let xo € J, yo € I. Then there exists an open interval Is C J

and xo € Iy such that the IVP

y' = f(y)g(z) y(zo) = o
has exactly one solution on Iy. Set
Y1
F(y) = / —dt
Y

o f(t)
Then y : Is — I is uniquely defined by

Proof. f does not have any roots, thus w.l.o.g. f > 0.

1
F'(y) = —— >0 = F strictly monotonically increasing

()

(8.1)

Therefore there exists an inverse function H : F'(I) — I. According to the theorem about

inverse functions, H is C' and

H'(2) Vz e F(I)

1
- F(H(2))
F(I) is an open interval containing the 0. Then we have
y(@) = H(G(@) v €l

where

Now choose Iy such that z¢ € Is and G(I2) C F(I). Then
Y () = H'(G(x)) - G'(x)

~ )

= fy(z))g(x)
So y solves the ODE. However, if ¢ : I — R some solution of the IVP, then Vx € Iy

_ [ Y S 1CO T L S
Gla) = / glo)de = / Fa@) = /WO) 7y 2 = F@)

(8.2)
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8.9 Remark. Iy is obviously not unique. We can find the biggest possible domain with

U I2 = IQ,max

z€ly
I> open
G(I2)CF(I)

8.10 Theorem. Let f : R — R be a continuous function, a,b,c € R and I an open interval.
Then y : I — R s a solution of the ODE

Y = flaz + by + )
if and only if u(zx) := ax + by + ¢ is a solution of
u'=a+bf(u)

Heuristic Proof. Consider
o' (@) = a+ by (2)

O

8.11 Example (Euler Homogeneous ODE). Let f : R — R be a function and I an open interval
not containing the 0. Then y : I — R is a solution of the ODE

T
y=rC)
if and only if
_ y(=)

u(zx) = .
solves the ODE

u/ — f(u) —u

T

8.12 Ezample. Let f : R — R be continuous and aq, as, b1, b2, c1,co € R such that

ap b
a9 bQ

£0

Now let Z, ¢y be the solutions of the equation system

T +by+c1=0
a2T + boyy +co =0

Let I be an open interval not containing the 0. Then y : I — R is a solution to

r_ a1+ b1y + 1
y asx + boy + co
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if and only if

u:I—1—1R

rr—ylr+2)—7g

’ al+by;>
“ _f<a2+b23

Proof. Let y: I — R be a solution to the initial equation. Then

PN a4+ 3)+bhiy(r+3) + o
u(l‘)—y(x—i—a:)—f<a2($+j)+b2y($+@+62>

is a solution to

(awv + biu(x) + a1z + by + Cl>
asx + bou(x) + a2 + bay + c2 (8.7)
a; + b (x)
=f <>
as + b
The other direction is left to the reader. O

8.13 Definition (Exact ODE). Let D C R? be open, and p,q : D — R continuous. The ODE
p(z,y) +a(z,y)y =0
is said to be exact if there exists a C'-function H : D — R, such that
OH=p 0oH = q
Such a function is called a potential function.
8.14 Theorem. Let D C R? be open, and p,q: D — R continuous. Let
p(z,y) +aq(z,y)y =0

be exact and H a potential function. Furthermore let I be an open interval and y : I — R
a C'-function such that

{(z,y(x)) |z el C D
Then y solves the ODE if and only if 3c € R such that

H(z,y(z)) =c
Proof.

L H () = H (a, y(2)) + 02 (2, () ()

=p(z,y) + q(z,y)y (z)
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8.15 Theorem. Let D C R? be open, and p,q: D — R continuously differentiable. If

p(x,y) +q(z,y)y =0

is exact, then
Oap = O1q

Proof. Let H be a potential C2-function. Then

82]7 = 6281H = 8162H = 61q (8.9)

8.16 Remark. The above condition is merely necessary! However, for "nice” D it can be consid-
ered sufficient.

8.17 Example. Consider

(2x + y2) +2zyy’ =0 y(l)=1
—_———— ==~
P q
Then
Oap =2y O1q =2y

So Oop = 01q. If H is a potential function, then
O H (x,y) = pla,y) = 22 + 3

= H(z,y) = /P(fﬂay) dz = 2* + 3/255 + G(y)
and

O H (z,y) = q(x,y) = 22y = 22y + G'(y)
= Gly)=c
So the potential function is
H(z,y) = 2* + v’z

We can insert the initial condition
H(1,1)=2

So the solution has to fulfil
P 4yx)’r=2 Voeel

and thus
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Only the positive sign fulfils the initial conditions, so the solution is

2

y(z) = E_x

This function is defined on (—oc, —v/2]U(0, v/2], however due to the initial conditions (0, v/2]
is the only useful domain.

8.18 Remark. If
p(z,y) +q(z,y)y =0
is not exact one can try and find an ”integrating factor”, i.e. h: D — R such that
h(z,y)p(z,y) + h(z, y)e(z,y)y" =0
is exact. A necessary condition is
(O2h(z,y)) p(z,y) + h(z,y)02p(x, y) = (O1h(z,y)) ¢(z,y) + h(z,y)O1q(z, y)
This is a partial differential equation and won’t be discussed further in this chapter.

8.19 Definition (Ordinary Differential Equation System). An ordinary differential equation sys-
tem (ODES) is an equation of the form

F(xvyvy,f” ’y(n)) =0

with
F:RxREXREx ... xR — R™

8.20 Example. (i) Let z = (21, 22, 23), then

" z 1 =z
Iz 12117 111
is the Kepler problem.
(ii) The equation
b = ab — ybr
r’ = —owur + obr

is called the ”Lotka-Volterra-Equation” and it models the population of prey and
predators.

8.21 Remark. The ODES
F(.’B, Y, yla y//7 e 7y((")) =0
is equivalent to the ODES of first order
yi =y
F(:anvyl)y%"' aynfl)zo y2:yi
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8.2 The Picard-Lindelof Theorem

8.22 Example. Consider the ODE

y' =2/ly|

Possible solutions are

Another solution could be

—(z—a)®, x€(—0,a)
y(z) =<0, x € [a,b]
(x —b)2, x € (b,00)

for a,b € R with a < b So the IVP y(0) = 0 has many solutions.

8.23 Definition. Let D C R x R™ be open, (zo,y0) € D and f : D — R"™. We say f fulfils a
local Lipschitz-condition in the point (z,yo) if there exists a neighbourhood U of (x, yo)
such that

8.2 Ezample. Consider

FiR—R
(z,y) — 2%y?

Then

f(@,y) — f(z,2)] = [2°(y° = 2°)| = |22y — 2)(y + 2)|
|

The function «a(x,y, z) is unbounded, so the global Lipschitz condition isn’t satisfied. Now
choose a fixed (zo,y0) € R x R, and set

R > max {|zol, [yo[}
Then Y(z,y), (x,2) € (—R,R) x (=R, R)
a(z,y,2) < By + 2] < B (|y] + |2]) < 2R

So f fulfils a local Lipschitz condition in (zg, yo).
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8.25 Definition. Let (2,4, 1) be a measure space, f :  — R measurable and fi,--- , f,, are
the component functions of f. So

f(w) = (fl(w)va(w)’ T 7fn(w>)

f is said to be integrable if fi,---, f, are integrable, and we define

[ fan= < Ry fndu>

8.26 Theorem. Let (2, A, ) be a measure space, define ||| to be the norm on R™ and let
f:Q — R™ be measurable. Then f is integrable if and only if || f|| is integrable, and

|/ sau] < [ nrtan

Proof. Without proof. O

8.27 Lemma. Let D C R x R™, (zg,y5) € D and f : D — R™ continuous. Let I be an open
interval and y : I — R™ be continuously differentiable, such that (z,y(x)) € D Vx € 1.
Then y is a solution of the IVP

/

Y = f(x,y) y(7o0) = o

if and only if y satisfies the integral equation
xT
vo)=w+ [ ity
o
Proof. Let y fulfil the IVP. Then
o)~ o = vla) ~y(eo) = [ y(Odt= [ ftyle) s
o o
If y fulfils the integral equation, then
y'(z) = f(z,y(2))

O

8.28 Theorem (Picard-Lindeléf Theorem). Let D C R x R™ be open, (zg9,y0) € D and f: D —
R™ continuous such that f fulfils a local Lipschitz condition in y. Then Je > 0 such that
the IVP

/

Y = f(x,y) y(7o0) = o

has exactly one solution on (xo — &, x9 + €).
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Proof. Let U C D be a neighbourhood of (xg,yo), such that

1f(z,y) = f(z,2)| < Llly — 2| V(z,y),(z,2) €U
Choose a,r > 0 such that

D = [zg—a,z0+ a] x K.(y0) CU

D is compact and f is continuous, i.e. f is bounded on D by M € (0, 00).
If ()| <M V(z,y) €D
Choose an ¢ such that 0 < € < a and such that
eM <r el <1
Set I := (xg —¢e,x9+¢), and
X ={y:I— K,(yo) |y continuous} C C(I)

X is closed, and thus complete. Define T': X — X with
T()(@) = w+ | f(tyle)de
xo

We want to show T'(y) C X

I7() () — oll = \

/x: [t y(t) dtH < /x: £t y(2)] dt

X
§M/ dt<eM <r
zo

198

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)
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Now consider

HTwmw—T@X@H=‘

[ st = sie o) o
< / £t y@®) — ft,4(t))| dt

(8.17)
g/’mew—gwuﬁ
x0
X
< [ Lyl < Ll - Gl ¢
z0
By taking the supremum over all € I we get
IT(W) = T()loo < LNy — 3l (8.18)

<1

So T : X — X is strictly contractive. According to the Banach fixed point theorem, there
exists a unique fixed point of 7" in x, that means Jy € X such that

ym+/xﬂLMGﬂﬁ—T@Mﬂ—y®)Vw€I (8.19)

Due to Lemma 8.27, there eixsts a unique solution to the ODE. O

8.29 Remark. One can approximate a fixed point by repeatedly applying T'. For example consider

o(z) = yo
and define

do = ¢ ¢i = T(¢i—1) = yo + /x f(t, dia(t)) dt

This process is called Picard iteration, and the ¢; converge uniformly to the solution.

8.30 Example. Consider

v =Vl

(If(x,?’JZ)/:g‘(fE,(]H)

Which means the local Lipschitz condition is not satisfied.

Then

1
= lim —— — 0
v=0 /|y

lim
y—0

8.31 Theorem. Let D C R x R™ be open, f : D — R™ continuously differentiable. Then f
satisfies a local Lipschitz condition in terms of y.
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Proof. Let (x0,y0) € D. Choose r > 0 such that K, (xo,y0) C D. The total derivative D, f
is continuous and thus bounded on K, (zg, yo)-
L >0: [[Dyf(z,y)| <L V(z,y) € Kr(x0,y0) (8.20)

Applying the generalized mean value theorem yields

1 (2, y) =, 2)| < sup |[Dyf(z,y+t(z = y))llly — 2|

te[0,1] (8.21)
< Llly — 2|
If n =1 we can specify

[f(z,y) = [z, 2)] =10y f (2, 6)(y — 2)| (8.22)

O]

8.82 Example. Consider
"_ _ Yy
[

The function

f:iRxR3\ {0} x R® — R3 x R3
D

_3
v s (5,03 +48 + 4 1)

is continuously differentiable. So the IVP for arbitrary initial points in D has a locally
unique solution.

8.33 Definition. Let D C R x R™ be open, (z9,yo) € D. A solution 7 : I — R" of the IVP
y' = f(z,9) y(xo) = yo

is said to be a (real) continuation of the solution y : I — R™if I € I and y(z) = §(z) Vz € I.
A solution y is said to be a maximal solution if there are no real continuations.

8.34 Theorem. Let D C RxR"™ be open, (xg,yo) € D and f : D — R™ continuous and satisfying
a local Lipschitz condition in terms of y. Then the IVP

/

Y = f(x,y) y(7o0) = o

has a unique solution.
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Proof. First, let y : I — R™ and g : I — R™ be solutions of the IVP. Then y = § on
INI=:(a,b). Let
c=sup{¢ € [zg,b) |y = 7§ on [zo,¢|} (8.23)

According to Picard-Lindelof, such ¢ exist. Then there exists a sequence (¢,) C (zg, ¢) such
that y = g on [z9,¢,) Vn € N and ¢, — ¢. If ¢ < b, then

y(c) =(c) (8.24)
because y(c,) = g(cn) Vn € N. The IVP
u' = flz,u) u(c) = y(c) (8.25)

has a locally unique solution on (¢ —e,c+¢) e > 0 according to Picard-Lindeldf. Since the
y and g are both solutions to the IVP, they are identical on (¢ — ¢,c + ¢). However, this
contradicts the construction of ¢, so ¢ = b.

= y=1y9y on [zyb) (8.26)

Analogously, one can prove y = g on (a, zg]. Now let I;,ax be the union of all open intervals
that are domains of the solution of the IVP. For x € I,,.x we can choose

Ymax(7) = y() (8.27)
for arbitrary solutions y : I — R with x € I. So
Ymax : Imax — R (8.28)
is a maximal solution that is unique. O
8.35 Example. (i) Consider
y =e? y(1) =0

The solution to this is

and is maximal.

(ii) Consider

The solution to this is
(0,00) — C
T — eé

and is maximal.
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We define (X, d) to be a metric space, z € X and A C X. Then
d(z, A) = inf {d(z,) |y € A}

8.36 Theorem. Let D C R x R™ be open, (xo,y0) C D and f : D — R™ continuous and
satisfying the local Lipschitz condition in terms of y. Let a,b € RU {—o00,00} such that

—o00 < a < xy < boooo

and let
y:(a,b) > R

a solution of the IVP

Y = f(z,y) y(z0) = Yo

Then y is the maximal solution of the IVP if and only if one of these conditions

(i) b= o0
(i) tim [y ()] = o
(iit) lim d((z, y(=)),dD) = 0
and one of these
(i) a=—00
(i) tim y(a)] = o
(i) tim d(z, (). 9D) = 0

18 fulfilled.

8.3 Linear Differential Equation Systems
8.37 Definition. Let I be an open interval, and A : I — R™*", b : I — R™. Then the ODES
y' = A(z)y + b(z)

is said to be a linear differential equation system. If b is the zero function, then the system
is homogeneous (otherwise it’s inhomogeneous). If A(x) = const ., then the system is said
to have constant coefficients.

8.38 Remark. (i) By using substitution we can transform the equation

y™ = ap_1(@)y" Y + an_o(2)y™ P + - + agy + b(a)
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into the system

y;L_l = an—l(l')yn—Q + an—2(ﬂj)yn—3 + -+ apy + b(ﬂf)

!
Y=y
Y2 = U

Yn—1=Yp_o

203

(i) Let y,z be solutions of y' = A(x)y + b(x), then y — z is the solution of the related

homogeneous equation y' = A(z)y. This follows from

(y = 2)'(z) = Alz)y(z) + b(x) — (A(z)2(x) + b(x))

= A(z)(y — 2)()

a,b>0 and
y(z) <a+b

[

blz—xzo|

Then
y(z) < ae

8.39 Lemma (Gronwall’s Lemma). Let I be an open interval, zg € I,y : I — [0,00) continuous,

Proof. Here we only prove x > xg, but the proof for x < xg works analogously. Let ¢ > 0

be arbitrary and choose
X

z(x) :=a+€+b/ y(t)dt

o

Then
2 (z) =by(z) <bz(z) Ve el
And since
z(t)>a+e>0
we get

Due to the monotony of the exponential function
2(z) < 2(20)et®70) = (g 4 ¢)eb@=0)

So
y(z) < z(x) < (a+ s)eb(m_mo) < aet®=20) g e

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)
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From now on I will always be an open interval, and

A: T — R™"
b: I —R"
are continuous, xg € I and yg € R.
8.40 Corollary. The IVP
y = Alz)y + b() y(xo) = yo

has a unique maximal solution that is defined on all of I.
Proof.

f:IxR" —R"

(z,y) — A(x)y + b(x) (8.36)

We need to show that f fulfils a local Lipschitz condition in y. Let (z1,y1) € I xR™. Choose
a compact I such that z1 € I1 C I. Then A(z) is bounded on I3, i.e.

AL >0: ||A(z)| <L Vxelh (8.37)
And then V(z,vy), (z,2) € I} x R"
1f (2, y) = f(a, 2)]| = [[A(@)(y — 2)| < [[A@)[llly — 2[| < Llly — 2| (8.38)

So f fulfils a local Lipschitz condition, and thus there exists a unique maximal solution.
Let a,b € RU{—00,00} such that y : (a,b) — R™ is the maximal solution. Assume b € I
(so y isn’t defined on all of I). Then there exists M, K > 0 such that ||A(x)| < M and
Ib(z)]| < K and [xg,b] and

ly(@)l| =

o foon] -

0

Yo + /j A(t)y(t) + b(t) dtH

0

< Ivoll + / JA® 1y (@) d + / Bl (8:39)
xo xo
< lyoll + K(b— o) + M / ly ()] e
o
Applying Gronwall’s Lemma onto ||y(t)] yields

ly(@) | < (lyoll + K (b = wo)) =01 < ([lyo| + K (b — wo)) M=) (8.40)

and thus y is bounded on [z¢, ). So none of the conditions from Theorem 8.36 are satisfied,
and therefore b ¢ I. This mean that y is defined up to the right boundary of I. O
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8.41 Remark. One can show that for linear systems, the Picard iteration leads to a solution that

converges on all of I. This would lead to an alternative proof.

8.42 Corollary. Let y,z: I — R" be solutions of the ODES
Y = Az)y + b(x)
Then the following are equivalent
(1) y(x) = z(z) Veel
(i) y(xo) = (o)
(i1i) y(x) = z(z) for some x € I

Proof. (i) = (i1), (i1) = (%) is trivial. To prove (iii) = (i), let x; € I such that

y1 = y(x1) = z(x1). Then y, z are solutions to the IVP

y' = A(z)y + b(c) y(z1) =m (8.41)
Since this problem has unique solutions
y=2z (8.42)
must hold. ]
8.43 Theorem. The solution set of the homogeneous ODES
y' = A(x)y
so
Vi={y: I =>R"|y(z) = A(z)y(z) Yz eI}
is an n-dimensional linear subspace of C*(I,R™).
Proof. Proving that V' is a vector space is trivial. So let eq,--- , e, be a basis of R” and let
y; be the unique solutions of the initial value problem
y/:A(x)y y(l'o) =€ (&S {17 777’}
Then y, - -+ ,yy is a basis of V. To prove their linear independence, let aq, - -+ , @, € R such
that
then
a1y1(zo) + -+ + anyn(z0) = 1€+ + anen =0 (8.44)
Since the eq, - - - , e, are linear independent

alp=ay=--=qa, =0

(8.45)



8.3. LINEAR DIFFERENTIAL EQUATION SYSTEMS 206

To prove that the yq,--- ,y, span V, set z € V and choose a1, ..., a, € R such that
arer + ages + - + ane, = z(xg) (8.46)
Then the z and a1y + - - - + @y, are maximal solutions of the ODES that are equal in xzg.
Thus
Z=a1yr + -+ apyn (8.47)
O

8.44 Definition. A basis y1, - ,y, of V is said to be a fundamental system of the ODES

Analogously, n linearly independent solutions of the equation
Y™ = a1 @)y Y + an_o(2)y ™D + -+ agy
are said to be a fundamental system.
8.45 FExample. Consider the inhomogeneous equation
y = sin(z)y + sin(z) cos(z)

First, find the solutions to the homogeneous equation

/
vo_ sin(x)
Y

This can be done via integration

/ y(®) dt = —cos(z) + ¢

Iny+c¢= —cos(z) + ¢

Then the solution is
y=Ke™ cos(z)

The fundamental system in this case is e “**. We can use a technique called ”variation of
the constant” to find a solution of the inhomogeneous equation. Define

y(2) = Cla)e™ W

Deriving this gives
Y (x) = C'(z)e” cos(z) _ C(x)sin(x)e™ cos(z)
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Resubstituting this into the initial equation yields

z)e” ) 4 O(z)sinfrie ™) = C(x)sinfrie "™ + sin(x) cos(x)

C'(z)e” ) = sin(z) co
C'(z) = sin(z) co
C(x) = (1 - cos(x))e

(z

s(x)
S(x)ecos(a:)

So the general solution to the ODE is
y(z) =1 — cos(z) + Ke™ @)
8.46 Theorem. Let y1,--- ,yn be a fundamental system fory' = A(z)y. Define an n X n-matrix
W(z) == (y1(2),y2(x), . .., yn())
Then W (x) is invertible Vo € I and
z: I —R"

T W() /x W) b(t) dt

s a solution to the inhomogeneous system

y = A(z)y + b(z)

Proof. According to the prerequisites the yi, - - - , yj, are linearly independent, so the y1 (), ..., yn(z)
are also linearly independent in R™. Thus
det W(z) #0 = W(x) invertible (8.48)
Deriving this yields
W'(z) = A(x)W (x) (8.49)

which means the i-th column of this equation is y;(z) = A(x)y;(x). Deriving z gives us

") = W (e : -1 )W (x) ' b(z
2 (x) = W'( )/IO W ()" b(t) dt + W (z)W (z)” "b(x) (8.50)
= A(z)z(z) + b

z)

To apply the fundamental theorem, W (¢)b(t) should be continuous. The mapping A +— A1
is continuous on Gl(n) (space of invertible matrices). O

8.47 Example. Consider the system

v = v + sin(x) v’ = —u + cos(z)



8.3. LINEAR DIFFERENTIAL EQUATION SYSTEMS 208

The homogeneous system in this case is

U /_ 0 1 U
v)  \—-1 0)\v
The fundamental system is

nie) = () @ w=(C%)@

z(x) = lex)yl(a:) + Co(z)y2(x)
= (e e ) (G0

Then define

Deriving this yields

d(x) = Cl(z)y () + Colayyi(@) + Ch(x)ya(x) + Colayys()
= CUz}Ayi(T) + Colz)Aya(T) + b(2)
= b(x)

This can be explicitly solved

Leading to
C1(z) = O (x)(sin?(z) + cos?(z)) = sin®(z) 4 cos?(z) = 1
Ch(z) = Ch(z)(cos®(x) — sin’(z)) =
Thus
Ci(z) ==
CQ ({L‘) =0

So the general solution of the homogeneous equation is

([ xsin(x)
Ih =\ cos(x)
Our next goal is to find a solution of ¢y = Ay with A € R"™" constant. In one dimension

the solution would be
y = Ce?

Does this also hold for n > 17
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8.48 Remark. Let A € R™*"

. =1 1
e Z E(Aw)k = Z —'Akmk
k=0 k=0
We have N
— 1 “)‘$| k x
ZEW%WSZjﬂWV”MMVW
k=0 k=0

Thus, e4® is defined VA € R"*", Vz € R. Deriving this yields

d 1 1

Az k_k—1 k—1, k-1 Azx
— = E —A =A E A =A
dz© — i — (k—1)! . ¢

8.49 Theorem. Let A € R*"*". The IVP

y = Ay y(xo) = Yo

1$ solved exactly by
yla) = Ay,

Proof. Without proof. O

8.50 Remark. (i) The problem of solving IVPs can be reduced to a problem of calculating a
matrix exponential.

(ii) The following does NOT generall hold

A A@) _ 410 A)
7€ = A'(x)e

GA+HB _ JAB

(iii) Let v be an eigenvector of A to the eigenvalue A. Then

Az . k_k _ k
e v-(E k!A:C)U—g —k!Av
k=0 k=0

xk
_ < Nk Az
= k!)\ v =e""v
k=0

8.51 Exzample. Consider the IVP
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This A is diagonalizable and has the eigenvalues

A =-1 =1

() ()

So we can solve this ODES by calculating

and the eigenvectors

1 1
eAxyo — ez, 5(7)1 +v9) = 3 (6/\1%1 + 6>\2IU2>
1
=3 (e‘rvl +e” 1)2)
And thus
Y(@) = = (e + ) da) = 3 (" =)
2 2

8.52 Remark. Often the process above is formulated as follows: Start by defining
y(z)=c-eMv c,AeFand v e R

Insert this into the ODE
exe™ = ce A

So A is an eigenvalue of A to the eigenvector v.

8.53 Theorem. Let A € R™™ be diagonalizable, and vy, --- ,v, is a basis of eigenvectors to the
etgenvalues A1, -+, A\p. Then the functions
y’t(x) = ekixv’i (AS {L T 7n}

are a fundamental system to the ODES

y'=Ay
Proof. We have
et = Mty (8.51)
In x = 0 the
yl(O) = U1, ?/2(0) =V2, yn(o) = Up (852)

are linearly independent, so the yq,--- ,y, are also linearly independent. O
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8.54 Remark. (i) There is a special case, where A € R™ " is not diagonalizable in the real
number space, but in the complex number space. Let A = A, + \; be the eigenvalue
to the eigenvector v = v, + v;. Then

e (v sin(\ix) 4 v; cos(\ix))

e (v, cos(Nix) + v sin(\z))
be linearly independent, real-valued solutions. To solve the IVP
y(z) = CeMo y(0) = %o

we want to transform it into an eigenvalue problem and find a solution to that. Doing
that gives us
y(z) = CreM* vy + -+ + Cpe oy,

By inserting the initial condition we can find
Civr + Cova + -+ + Crop, = Yo
Finding the C1,--- , C, shows us that the solution is automatically real.

(ii) If A is not diagonalizable one can try and bring A into Jordan normal form.

8.55 Fxample. Consider the IVP

v\ [0 1\ /[y e
z) \-1 0)\z = \o
The eigenvalues and eigenvectors are

Al =1 Ay = —1i

vlz(lﬂ') 02:(1—1")
. Y, —1—1
Thus we have the general solution
Cre vy + Coe ™y
which expands to
(i +1)CL7 + (1 — i) Coe” =1
(i — 1)1 + (=1 — ) Cre™ = 0

and solves to

1 , 1 ,
0121(1—1) 0221(1—‘-1)

So the solution to the IVP is

y(x) = cos(x) z(x) = —sin(x)
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8.56 Theorem. Let ay, -+ ,a,-1 € C. Let A1, -+, A\p be the roots of the polynomial
ap+ a A+ -4 ap A4 AT
and vy, -+ , v their multiples. Then the functions
z— leNT e {1, k},1e{0,-- v}

form a fundamental system for

ay + a1y’ + -+ + a1y +y "
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9.1 Line Integrals

9.1 Definition. Let I be an interval and n € N. A parametrized curve (or path) in R” is a
continuous mapping
v: I —R"

A parametrized curve is said to be regular if it is C! and 7/(t) # 0 Vt € I. It is said to be
piecewise regular if there is a disjoint decomposition

I=LUlLu---Ul,

into partial intervals such that - is regular on each partial interval.
A curve is a subset of R™ that is the image of a parametrized curve. If C is a curve, then

v: I — R"

is said to be the parametrization of C, if v(/) = C and if y is injective on I. The curves in
this chapter will always be regular.

9.2 Example. (i) a,k > 0:
v:R—R?
t — (cos(at),sin(at), kt)
This is the parametrization of a screw curve.

(ii) The unit circle
{(z,y) eR*|2* +y* =1}

is a curve with the parametrization

7 : [0,27] — R?
t — (cost,sint)

(iii) A square
{(ac,y) c R? ‘ max {|z1],|z2|} = 1}

is a piecewise regular curve.

9.8 Remark. Let v : I — R™ be regular, f:y(I) — R be continuous and a,b € I. A decompo-
sition Z is given by the grid points

a=th<ti <---<t,=0b
The fineness of Z is given by

Z) = tiz1 — t;
m(Z) tE{O,III}-?j},{n—l}( i+1 i)
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We can represent [ in terms of Z via

n—1

1(Z) = Z FOy@)) Iy tirr) — v(@&)]]

1=0

Or in integral representation

bn 1
t; t;
/ 2 HW( +1) 7( )H ]l[ti,ti+1)(t) dt

th—H - tz”

92(t)
So let (Z;) be a sequence of decompositions with

Jj—00

m(Zj) —0

Let ¢ € [a,b] not be a grid point of any Z;. Then there exists a unique grid poiont ¢; ;. such
that ¢t € [thij,thij_H]. Then
=t

lim ¢;;. = lim ¢;
Jiij j—v00 Jrtj+1

And thus
lim 9z, (t) = (’Y(t))H')’/(t)H

j—}OO

Vt that are not grid points of Z;, this means tahat
Jj—o0
9z, — fI[/|
almost everywhere. The dominated convergence theorem then tells us

J—00

b
I(Zj)Z/gZ dt—>/f ) @) dt

Special case: For f =1 one gets the arc length.

9.4 Definition (Line Integrals, Arc Length). Let I be an interval and v : I — R™ a parametrized
curve. Define the functions

f:v(I) —R E:~(I) —R"

A fds = /I FO@) | @)t

is said to be a scalar line integral (line integral of first kind), and

[ tklas) = /I (E((t)| () dt

Then
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is said to be a vector line integral (line integral of second kind). The function f or the
vector field E are integrable along + if the according integral exists. The integral

/ds
¥

is the arc length of ~, and + is said to be rectifiable if this integral is finite.
If the curve « is closed, i.e. if I =[a,b] a,b € R and

Then the above integrals are often notated as

ygds yé<E‘d3>

to emphasize that the curve is closed. This changes nothing about the formulas, it is merely
visual. I will try to adhere to this style.

9.5 Example (Circumference of the unit circle). Define

v :[0,27] — R?
t — (cos(t),sin(t))

and derive this function

' (t) = (—sin(t),cos(t)) = |[¥@)| =1

2
%ds:/ dt =27
¥ 0

9.6 Remark. (i) If ~ is only piecewise regular then the integrands might not be defined for
all t.

Then the circumference is

(ii) Line integrals don’t depend on the chosen parametrization. This means if C is a curve
and

y:I—=C p:J—=C

[yfds:/pfds
/Cfds

are parametrizations, then

We also write

The same holds for vector integrals.
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(iii) Both kinds of integrals depend on the scalar product.
(iv) Both kinds of integrals are special cases of integrals over so called One-forms

9.7 Theorem. Let vy : I — R"™ be a parametrized curve, and ¥ : J — I a diffeomorphism (so
YeC and 9'(t) #0 YVt J). Let f:v(I) — R, then

/fds: fds
o you

Proof. We can assume I,J to be open, since the endpoints of the integrals are a null set
and thus don’t matter. W.l.o.g. let v be regular. Then

fds = /J (oD (v 0 9)' (1)

~youd

- /J SO | W) ()| dt
- /J SN[ @) |9 dt (9.1)
= [ 1) @) dr

I
:Lfm

9.8 Remark. (i) One can show that for a curve C and parametrizations
y:I—=C p:J—=C
there exists a diffeomorphism ¢ : J — I such that
p=yod
So the line integral of first degree doesn’t depend on the parametrization.

(ii) A line integral of second degree doesn’t depend on the parametrization if the parametriza-
tions run along the curve in the same direction. So if ¥ > 0, ¢ is said to conserve
orientation. If ¥ < 0 then the integral switches sign.

9.9 Example. Let v : I — R3 be the trajectory of a point mass, and F : R* — R? a time-
independent forcefield. The work done is then given by

ww—meg

The fact that the parametrization can be chosen arbitrarily means that the work done in a
forcefield is independent from the velocity of the point mass.
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9.10 Remark. (i) Line integrals are linear in f or E, meaning for

frgiv(I) >R, AeR

[l(g—l-)\g)ds:/wfds—i-)\/vgds

(ii) Parametrized curves over compact intervals can be reparametrized so that I = [0, 1].

we have

(i) Let
v:[0,1] - R" p:[0,1] - R"

be curves with (1) = p(0). Define

10,1 — R" vp:0,1] — R"
2t t<0.5
t—y(1—1) — 7(20), -
p(2t+1), t>0.5

Then we have

L tids) =~ [ (Blas

(E|ds) = /Eyds /E|ds)
p v

9.11 Definition. Let U C R” be open and f : U — R a C'-function. Define

Vf=(0:f,0af, - ,0mf)

The vector field FF: U — R" is said to be conservative if there is a function g : U — R such
that
E=Vyg

g is the potential of E.

9.12 Remark. (i) In physics the sign is typically switched, so

E=-Vyg
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(i) The IDE
p(z,y) +q(z,y)y =0

is exact if and only if the vector field (p, ¢) is conservative.
(iii) If E is conservative and C!, then
0;E; = 0;E;
This condition is not sufficient in general.
(iv) If g is a potential for F, then the functions
g+c ceR
are also potentials.

(v) If E is conservative, g a potential and v : [a,b] — R™ a curve, then

b
/ (E|ds) = / (E(/() /(1)) dt
’y a
b
- / (@19 (YE)YL(E) + -+ Bug(1(E)A(E)) dlt

b
_ / (907 (t) dt = g((3)) — g(x(a))

The vector line integral over conservative fields is independent from the chosen path
(it only depends on the start and end points).

(vi) Let U be open, path-connected and E : U — R™ a conservative vector field. Choose
a fixed x¢g € U, and for x € U choose a parametrized curve -, from zg to . Then

T — (E|ds)
Yx
is a potential, because if g is an arbitrary potential we have

[ (Blds) = g(a) - g(a0) voeU

x

9.13 Example. (i) Let
E:R*\ {0} —R3

T

3
]

This field is conservative, with the potential

¢:R3\ {0} — R

]
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(i) Let
E:R?\ {0} — R?
y s
Then ) ) )
1 2 —
OBy = - ° S O Eq

$2 +y2 (.’132 +y2) (CCQ +y2)2
We can calculate the line integral of £ along the unit circle
7 : [0, 27] — R?
t — (cost,sint)
Then
E(y(£)) = (~sint,cost) = 7'(¢)
The integral is then

27
/<E|ds) :/ |(=sint,cost)||* dt = 27 # 0
¥ 0

(iii) In the chapter about differential equations we looked at an exact equation in Exam-
ple 8.17:

(22 +y*) + (2zy)y’ =0

We can now use curve integrals to calculate the potential function more easily. For
that let g = (0,0). Then for (£,7) we can define a curve connecting xo and (§,7) for
t €[0,1]:

t— (&t,nt)

Consider the vector field
E(z,y) = (2z + 7, 2zy)
Then

1
() —s / (E|ds) = /0 (Bt )| (6, m) dt

.,
1
= / (262t + €t + 26n2t?) dt
0
=& ¢

9.14 Theorem. Let U C R™ be an open subset. A continuous vector field E : U — R" is
conservative if and only if for every closed curve ~y : [0,1] — U the following holds

é(E[ds) —0
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Proof. Line integrals over F are path independent. Let 7, p : [0,1] — U be paths with

7(0) = p(0) V(1) = p(1) (9.2)

1'is closed, so

oz/w_l (E|ds) :A<E\ds>—L(Elds> (9.3)

Assume that U is path continuous. Choose a fixed g € U and let g : U — R. Then

Then vyp~

@) = [ (Eas (9.4)

0

Performing a directional derivation in direction h € R" yields

z+ah x
gz +ah) — g(z) = / (E|ds) - / (E|ds)

0 0

z+ah
_ / (E|ds) (9.5)

_ / (E(z + th)|h) dt
0

Here we have chosen a linear path of integration between zy and x, and between x and
x 4 ah. In other words, we're integrating along

t— x+th (9.6)

Using the intermediate value theorem, we can find that 3¢, € (0,a) such that
/ (E(z -+ th)|h) dt = (B(x + &h)|R) - a (9.7)
0

Then we have

g(x + ah) — g(z)

Ohg(z) = lim = lim (E(z + &.h)|h) = (E(z)|h) (9.8)
a—0 a a—0
So if A is a standard basis e;, then
dig(x) = Ei(x) (9.9)

Thus the partial derivative of g is continuous, and therefore g is continuously differentiable,
and thus a potential. O
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9.2 Surface Integrals

In this section we will exclusively look at surfaces in R3.

9.15 Definition. Let V C R? be open. A mapping ¢ : V — R3 is said to be a parametrized
surface if it is C1 and if O14(t), Da¢p(t) are linearly independent V¢ € V. A subset S C R3
is said to be a regular surface, if there exist:

e open subsets Uy, -+ ,U, C R3
e open subsets V;,--- v, C R?
e mappings ¢; : V; — U; NS

such that the ¢; are parametrized surfaces, bijective and have a continuous ¢~!. These S
are also said to be embedded, two-dimensional manifolds, and the ¢; are then called maps.
The collection of all maps ¢; are called atlas.

S C R? is said to be a piecewise regular surface if there exist parametrized surfaces
¢1, - , On, parametrized paths v1,--- ,vx and points P, --- , P, such that

S=p(V)U---Udn(Va) Uy(I) U---Ur(lp) U{Pr,-- -, P}
9.16 Example. (i) Consider

¢:(0,00) x R — R?
(s,t) — (scost, ssint,t)

(ii) The set
S2 = {(m,y,z) cR3 ’x2+y2+z2 = 1}
is a regular surface. A map describing this surface would be
¢ :(0,27) x (0,7) — R3
(s,t) — (cos(s)sin(t),sin(s), sin(t), cos(t))
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(iii) The unit cube

{(z,y,2) € R? [max {a], [y], ||} }

is a piecewise regular surface.

9.17 Remark. Our definition of regular curves is not equal to the definition of one-dimensional
embedded manifolds, because regular curves are not allowed to intersect themselves.

9.18 Definition (Cross Product). Define the vectors v = (v1,v2,v3) and w = (w1, wa, w3) € R3.
Then
VW3 — V3w2
VXw= | v3w; —v1ws
1wz — VW1

is the cross product of v and w.

9.19 Remark. (i) The cross product is linear in v and w, with

VXW=wWX"V

(ii) v x w is orthogonal to v and w.

(iii) The cross product is not associative, but it fulfils the Jacobi-identity:
ux (vxw)+vx(wxu)+wx (uxv)=0

(iv) v and w are linearly dependent if and only if v X w =0

(v) The definition depends on the coordinates of v and w. So the choice of a basis matters.
In reality the cross product depends on the scalar product.
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(vi) Consider the space of anti-symmetric matrices
1
V:{AGR”X”}AT:—A} diszin(n—l)

The cross product is an outer product on V. V can be interpreted as an anti-symmetric
bilinear form, or as the space of infinitesimal rotations (Lie-algebra to the Lie-group
of rotations). This is not relevant.

9.20 Definition. Let V C R? be open and ¢ : V — R? a parametrized surface. Then
os(t) = 019(t) x O20(2)

is said to be a vector surface element of ¢, and [|o4(t)| is the scalar surface element at the
point ¢(t).

9.21 Remark. The surface element can be defined for arbitrary C''-mappings. ¢ is a parametrized
surface if and only if o4(t) # 0 or ||og(t)|| #0 Vt e V.

9.22 Example. (i) Consider the unit sphere

¢ :(0,27) x (0,7) — R?
s,t) — (cos(s) sin(t), sin(s), sin(t), cos(t))

—

The derivatives of ¢ are

O1¢(s,t) = (—sin(¢) sin(s), sin(t) cos(s), cos(t))
Oap(s,t) = (cos(t) cos(s), cos(t) sin(s), — sin(t))

Then the surface elements are
o4(s,t) = (—sin’(t) cos(s), — sin®(t) sin(s), — sin(t) cos(t))
log(s; )] = sin(?)
(ii) Let U C R? be open, and f : U — R a continuously differentiable function. Then
¢(s,t) = (s,t, f(s,1))
is a parametrization of the graph of f. The derivatives are
O1o(s,t) = (1,0,01f(s,1)) 929(s,t) = (0,1,02f(s,1))

And the surface elements are

U¢(57t) = (_81f(37 t)v _an(Sat)) 1)
low(s, )| = /(91 (s,8) + (02 f (s, 1))2 + 1
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9.23 Definition. Let V C R? be open, ¢ : V — R3 a parametrized surface and f : ¢(V) — R.

Then
//de —//f Dlios(®)ll (D)

is said to be the scalar surface integral of f over ¢. The integral

%fa

9.24 Lemma. Let V,V C R? be open, ¢ : V. — R3 a parametrized surface and T : VosVa
diffeomorphismus. Set 1 = ¢ o T, then the surface element is

oy (t) = det(DT(t)) - o(T'(t))

is said to be the surface of ¢(V).

Proof. Calculate
Dis(t) = DS(T () DT(t) (9.10)

Or if we consider each column of the derivative separately

Oup = 04T} - o+ 1Ty - Oyod (9.11a)
Oyt) = BuTy - D16+ Ty - Db (9.11b)
Then
oy = 01¢ X 02 = (0111)(0212)01¢ x 029 + (0112)(0211)02¢p X 019 9.12)
— (det DT)oy
O

9.25 Remark. Let there be the same notation as above, and f: ¢(V) - R

//fda—//f oo t) | dX2(1)

= || @0 T@nlouT ) ldenDT0) X (1)

= | reeniessan) /fdo

In general we have to decompose a (piecewise) regular surface into disjoint regular pieces
and parametrize them. The surface integral — so the sum of integrals over the pieces
— is independent of the chosen decomposition and parametrization. Structures of lower
dimensions (curves, points) don’t contribute to surface integrals.



9.2. SURFACE INTEGRALS 226

9.26 Example. (i) We want to calculate the surface of the unit sphere. Using the parametriza-
tion we established earlier, we can get

T 27T
// do = // sin(t) d\?(s,t) = / / sin(t) ds dt
] (0,27) % (0,m) 0 Jo

. / o sin(t) dt

0
=A4r
(ii) Let U C R? be open and
¢:U—R3
(s,t) — (s,t,0)
Then |log|| =1, and let f:R? x 0 — R:

//¢de = //Uf(s,t,O) dX%(s, t)

9.27 Definition. Let V' C R? be open, ¢ : V — R3 a parametrized surface and let £ : ¢(V) —

R3. Then
//¢<Eda> :://V<E(¢(t))’%(t))d)\2(t)

is said to be the vector surface integral of F over ¢.

9.28 Remark. This integral is independent from the parametrization if the determinant det DT
is positive. Then T is said to conserve orientation. Otherwise the integral is switching signs.
For general (piecewise) regular surfaces one has to watch out that the parametrizations
are consistent. There are surfaces (regular surfaces even) where that isn’t possible (so
called non-orientable surfaces). For these kinds of surfaces the vector surface integral isn’t
properly defined.
If a surface splilts R? into an ”outside” and an ”inside”, then we typically choose the
parametrization where the surface elements point outwards.

9.29 Example. We want to integrate

1
E(x,y,z):=10,0, ——(xsin cosx
(@29.2) 1= (0.0, (osiny + yeosa))
over the surface of the unit cube. F points in z-direction, so the integrals over the sides
disappear. So we can parametrize the ”lid”
(s,t) — (s,t,1) s,te€[—1,1]

and calculate the integral

(Bldo) = L ssint + tcos s) dN2(s, 1)
(-1,1)% 2

Doing this for the base yields the same result, just with a different sign. So the surface
integral over the cube is 0.
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9.3 Integral Theorems

9.30 Definition. Let U C R3. We define the following mappings
Gradient V :CYU) — CY(U,R?)
Divergence V- :C'(U,R?) — C(U)
Curl Vx:CYU,R? — CY(U,R?)
Laplacian V?:C?(U) — C(U)
And define the operations for f € CY(U), g € C*(U), E € C*(U,R3?)
V= (01],021.05f)
V- E = 01E1 + 0:F + 033
V X E := (8,F3 — 93F2, 051 — 01 B3, 01 Ey — ,F1)
Vig =019 + 939 + dg
V is called the Nabla operator and it’s defined as
V = (01,02, 03)
and subsequently the Laplacian can be defined as
Vi=V.V

9.31 Remark. (i) All of these operations are linear. Typically they operate on everything to
their right up until the next + or —.

(ii) 6, ﬁ-, V2 can all be extended to R, however because the cross product isn’t sensibly
defined outside of R3, VX can’t be extended to R™.

(iii) There are some identities:

9.32 Remark. A parametrized curve v : [0,1] — R"™ is said to be simple closed if it doesn’t
intersect itself (7 is injective on [0,1)). In R? these kinds of curves split the space into a
bounded part U and an unbounded part. We assums v to be positive oriented (meaning U
is "left” of the curve).
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9.33 Theorem (Green’s Theorem). Let~ : [0,1] — R? be a simple closed curve, more specifically
the boundary of U. Let E : R? — R? be a C'-vector-field. Then

//U(alE2 — 0oE1)dN\? = §é (E|ds)

Heuristic Proof. Consider the following special case

b

So f :[0,b] — R? strictly monotonically increasing, C, f(0) = a < 0 and f(b) = 0. Then
define the curves

Cy =1[0,b] x {0} Cy = {0} x [0,d] (9.13)
And Cj the graph of f parametrized by

ts (t, f(1)) (9.14)

Since f is monotonically increasing, there exists an inverse function g that us continuously
differentiable. Then

// (01Ey — 02 F1) d\?
U

0 rg(y) b 0
:/ / 01 Ea(z,y) dwdy—/ / 0o By (z,y) dy dx
a JO 0 Jf(x)

b

= || (Ealotw).o0) = E0.0) = [ (Bt 50) ~ Bl 1) (9.15)

b a b
_ / By (t,0) dt + / (0, ) dt + / (Ev(t, £(2)) + Ex(t, f(0) (1) dt
0 0 0

Ji, (Elds) Ji, (Elds) Jiy (Elds)

— 95 (E|ds)
C1C2C3
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9.34 Corollary (Divergence Theorem in 2D). Let E € CY(R%,R?) and define v : [0,1] — R?
simple closed to be the boundary of U. We set

Then

/ [ Vopax- yﬁ (Elds) = /0 (B (v (1) |o(t)) dt

Proof. Set E = (—E5, ;) and apply Green’s theorem:

//v Ed)? = // (O1Ey — 0o F1) dN? = 55 (E|ds)

1
(E(y(8))]o(2)) dt

(9.16)

S~ 35

O

9.35 Corollary (Stokes’ Theorem in the z-y-plane). Let E : R? — R3 be a vector field, v :
[0,1] = R the simple closed boundary of U. Set v(t) = (y(t),0) and U = U x {0}

//U (V % E‘da> - §1§ <E)ds>

(z,y) — (z,9,0)

as a parametrization of U with o = (0,0,1). Set

E(l‘, y) = (El(x7 Y, O)a Eg(l’, Y, 0))

Proof. Choose

Then

//ﬁ <ﬁ x E"da> - /U <€ x E(m,y,O)’(0,0,2)>d)\Q(a;,y)
= /U O Es(z,y) — 02 E1(z,y) dA\(z,y) (9.17)

- é (E|ds) = 51% <E)ds>

9.36 Remark. A set U C R" is said to be simply connected, if for every closed curve v : [0,1] - U
there exists a continuous mapping 9 : [0,1]> — U, such that

O

I(1,1) = () 9(0,t) = ~(0) vt € [0,1]

9 is said to be a homotopy.
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9.37 Theorem (Stokes’ Theorem). Let U C R? be a simply connected, orientable surface whose
boundary is a closed curve . For U let there be an orientation (so a continuous normal
vector field), and orientate vy such that U is to the left of v relative to the normal direction.
Let E € CY(R3,R3) be a vector field, then

//U <6 x E‘da> - 512 (E|ds)

Proof. Without proof. O

9.38 Example. The condition that U is simply connected is necessary:

_y €T

is free of curl. Curve integrals ”around the z-axis” can be non-zero.

9.39 Remark. Let U C R? be simply connected, E € C1(U,R?). Then
E conservative <= V X E =0

IfVXE= 0, U is simply connected and -y is a closed curve in U, then there exists a surface
in U that is bounded by ~. Using Stokes’ theorem one can then see that

515 (E|ds) =0 Vv closed
5

And thus F is conservative. A surface A is said to be closed, if it splits R? into a bounded
and an unbounded part. The bounded part shall be named U and is oriented such that the
normals point outwards.

9.40 Theorem (Divergence Theorem). Let M be a closed surface and E € C*(R3,R3). Then

// V-Ed\ = # (E|do)

Proof. Without proof. O

9.41 Corollary (Green’s Identities). Let M be a closed surface, let f,g € C*(U,R), and n an
orientation (continuous normal vector field). Then

//U V2 + <6f\6g> aN? = #M <fﬁg‘da>
//Ufﬁg—gﬁfdk?’ :#M <fﬁg—gﬁf‘da>

- # (fng — 90,f) do
M
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Proof. Apply the divergence theorem to fﬁg:
V. (fﬁg) = <6f‘6g> + fVig (9.18)

Swapping and subtracting f and g yields the second equation. Let ¢ : V. — M be a
parametrization. Then

ﬁi<f69’d0> ://V<f(¢(t))6g(¢(t))‘a¢(t)>d>\2(t)
://Vf(sb(t))<§g(¢(t))‘n(¢(t))>||U¢(t)” 0.19)

Ong(o(t))
_ # fOngdo
M

9.42 Example. Let U C R? be bounded with a given volume V', and a "nice” boundary M with
area A. Set

O

R = sup{||(x,y,2)H ‘ (.’L’,y,Z) S M}
Let E(z,y,2) = (x,y,2) and ¢ : W — M a parametrization. Then

3V:// EdA3:# (E|do)
S RCCOIABENG
//y A AN ()

/ HE NI Nlos(®)]|dA*(t) < R- A

For the sphere with radius R we have equality.
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10.1 Complex Differentiability

10.1 Definition. Let f : U — C, with U C C open. f is said to be complex differentiable in

zp € U if
CEIE)

Z—20 zZ— 20

=: f'(20)

exists. If f is complex differentiable on all of U, f is said to be holomorphic. A funciton
that is holomorphic on all of C is entire.
An equivalent formulation wiould be

Ve>030>0: |z—20| <0 = [f(2) — f(20) —a(z —20)| < &
In this case a = f/(zp).
10.2 Theorem. (i) f complex differentiable in zyp € C = f continuous in z

(ii) f,g complex differentiable in zo, then f+ g and f-g are complex differentiable in zy,
and

(f +9)(20) = f'(20) + ¢'(20)
(f9)'(z0) = f'(20)9(20) + f(20)9' (20)

If g(20) # 0, then 5 is complex differentiable and

Y ~ 9(20)f'(20) — ¢'(20) f (20)
<g> (20) = 9(z0)

(iii) Let f : U — C, U C C open and C C C open with f(U) C V, and let g : V — C.
Then gof : U — C. If f is complex differentiable in zg, and g is complex differentiable
in f(z0), then go f is complex differentiable in zy with

(90 f)(20) = g'(f(20))f'(20)

(iv) If f is complex differentiable in zy, f'(z0) # 0 and if 36 > 0 such that f : Bs(z0) —
U C C is bijective, then the inverse function g is complex differentiable in f(zg), with

g/(f(ZO)) = f'(Zo)

Proof. Left as an exercise for the reader. O

10.3 Remark (Complex vs. Real Differentiability). Consider f: U — C, U C C open. Let

xr=Rez y=Imz
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and define
U_{(z,y) eR? |z +iy e U}
and
f: U— R?
(@,y) — (Re(f(z +1y)), Im(f (z +iy))) = (u(z,y),v(z,y))

Then f is complex differentiable in z = x + iy.

(i) We have
. +h) — f(2)
! _ 1 f(Z
fiz) = lim Y
. u(x+hy) +iv(e,y +h) —u(z,y) — vz, y)
= lim
h—0 h
i ME T hy) —uly) v hey) - v(@,y)
h—0 h h—0 h

= aaxu(a:, y) + iaawv(a:, Y)
(ii) And also
f(z+ih) — f(2)

! — 1
flz) = i, ih
i Yy h) F vy 4 h) — u(z,y) — v, y)
h—0 h
h—0 h h—0 h

0 0

This results in the Cauchy-Riemann equations:
0
%u(ﬂ’j7 y) = aiyv(xv y)

0 0
@U($7 y) - —%’U(l‘, y)

if f is complex differentiable in z = x + iy. B
_ From the Cauchy-Riemann equations and the real differentiability of the function f :
U — R? follows

3 _ axu(xay) 8u(:c,y) o 8mu(xay) _amv($7y)
pite = (Grsie ) o) = (o) o))

(3 )
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and thus for h = (hy, he) € R?

~ (ahy — bhy
- <bh1 +ah2) +O(IAD)

A side calculation:
((I + Zb)(hl + ihQ) = ahy — bho + ’i(bhl + CLhQ)
ahi — bhy _ (Re(a+ib)(h1 +ihy)
— <bh1 + ah2> +O(IAl) = <1m(a +ib)(hy +ihy) ) T OURD
So for h = hy + ihy we get
f(z+h)— f(z) = (a+ib)h + O(|h|)

So f is complex differentiable in z with f’(z) = a+1b. In short, we have shown the following
theorem.

Theorem. Let f: U — C with U C C open. f is complex differentiable in z € U if and
only if f: U — R? is real differentiable in (x,y) € U, and if the Cauchy-Riemann equations
are satisfied.

Proof. Proof is in the previous remark. OJ

10.5 Example. (i) Power series like

f(z)= Zanz", (an) C C

with convergence radius p € [0, 00| are holomorphic on B,(0). The following holds

fl(z) = Znanzn_l
n=0
Especially, the funciton
f(z)=e**, acC

is holomorphic on all of C with
F'(2) = e

(ii) The function

1
f(z) = o
is holomorphic C \ {0} with
1
(o) —
fi(z) = )

(iii) Functions that are not complex differentiable include

fz)=z2 f(z) =2z
(Opu =1 dyv = —1) (Opu = 22% # Oyv = 0)
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10.2 Contour Integrals

10.6 Definition (Contour integrals). Let U C C be open, v = C([a,b],U) a curve in U and
f U — C continuous. Then

b
[ #eraz= [ rawn o
0% a
10.7 Example. Consider the path
y(t) =re',  te0,2n],r >0

we want to take the contout integral along the path « of the function 2™

2 ) )
/z” dz:/ (re")ire™ dt
0% 0

2 —
= gt / i et tl) g = jpntl 2m, n=-1
0 0, n#-1

10.8 Lemma (Estimation Lemma). For every curve y € C([0,1],U) and every continuous func-

tion f: U — C we have
[ fe)a
¥

1
<suplf()| ||/

Proof.

1

1
/0 f(v(t))v’(t)dt'é NICIOIOIE:

/7 £(2)dz

10.9 Corollary. Let v € C([0,1],U) be a simple closed curve, U C C, and let f : U — C a
holomorphic function with

u=Ref v=Imf

Then

&éf(z)dz—O
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Proof. Let A C U be the surface bounded by . Then

1
7§f<z> dz = /O SO/ @)Y (1) dt

We can split v into a real and an imaginary part, like this

v(t) = m(t) +iva(t), 71,72:[0,1] = R

Then we can calculate

1
75 f(z)dz = /0 (a1 (£), 92(1)) + (3 (£), 12 () (4 (8) + i (1)) dt

+

J
£ 8, ()
-/

—0pv — Oyu) dN* + i / (Opu — Oyv) dA?
A

Because f is holomorphic we can apply the Cauchy-Riemann equation

éf(z) dz =

0
1
i / w1 (£), 72 (84 (E) + v (), 72 (B (1)

(25) G- [ GO (
(

1
/ u( (), 72())71(t) = v(n (), 12(8)72(t) dt
1
24
(
A

237

(10.2)

(10.3)

(10.4)

(10.5)

O

10.10 Definition. (i) A closed curve 7 : [a,b] — U with U C C is said to be null-homotopic, if

it can be continuously deformed into a point within the set U.

(ii) Two curves 71,72 : [0, 1] — U with identical boundary points

71(0) =12(0) A (1) =72(1)
is said to be homotopic in U if the concatenation

~v:[0,2] — U

_ Vl(t)v te [07 1]
) = {72(2 —t) te[L,2]

is null-homotopic.
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(iii) Two closed surves v,y are said to be free-homotopic in U if they can be continuously
transformed into each other.

10.11 Definition. A non-empty set U C C is said to be
(i) connected if any two points in U can be connected by a curve in U.
(ii) simply connected if U is connected and every closed surve in U is null-homotopic.
(iii) a domain if it is open and connected.

10.12 Theorem (Cauchy’s Integral Theorem). Let f : U — C be holomorphic and v a closed,
null-homotopic curve in U C C open. Then

55 f(z)dz=0
gl
Proof. Without proof. O

10.13 Corollary. (i) Let 1,72 be holomorphic curves with the same endpoints on the open set
U cCC. Then

Aﬂf(z)dz: /72 f(z)dz

for all holomorphic f: U — C.

(i) For f :U — C holomorphic, with U C C open and simple connected. Then Vzy € U

Pey= [ o= [ s
@)= [ 1= [ s
is a holomorphic anti-derivative of f, i.e.

F'(z) = f(z2) VzeU

Proof. First we prove (i). The concatenation v := 437 is a null-homotopic curve, so
together with the holomorphy of f we can apply the Cauchy integral theorem

2
0= 75 f(2)dz = /O FOr )3ty dt

) , (10.6)
— [ 1ea@yi@ e [ a2 oyie - o
0 1
Substitute s = 2 — ¢t with ds = — d¢:
1
- / FOn () dt — A3 f(2(5)ia(s) s
Y (10.7)

— [ feyde— | f(x)az

7 72
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Now we prove (ii). According to (i), we have

F(z+h)=F(z)+ / f(z)dz (10.8)
Yz+h,z
We choose 7,15, to be a straight line, i.e.
Vath(t) =t(z+h)+ (1 —1t)z, tel0,1] (10.9)
Then .
/ 1d¢ = / A(t)dt =h (10.10)
Yeth,z 0
Thus follows
F h)—F 1
Fetm-Fe) = [ j@ac e TEEEIE _ Lepgac o
Yz+h,z

and therefore

F(z+h) — F(z)

O

1
I ARELGRECL

1t )
i /0 Fains(®)) — £ rains(0)] dt 012
<5 s [fOeana®) ~ £ - [ a0 de

t€(0,1]

||

= sup |f(oana(t)) — £(2)]

te(0,1]

k—0 0
]

10.14 Ezample (The complex logarithm). Consider ¢ + €%, t € R. This is a 27-periodic function,
that means
eit _ ei(t—l—?ﬂ'n) nez

)

The function

F:C\{0} —cC

1
2 =
z
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is holomorphic, and does not have an anti-derivative on C\ {0}. If it did, then
| #618 = 0w~ Fa(0) =0

would have to hold, but we know that

d
/Z:27m'
v 2

This is a contradiction. However f does have an anti-derivative on C_ (the complex numbers
without the negative real axis) , since C_ is simple connected and f is holomorphic. Thus
we can define

Log:C_ — C

Z—
/[0 1]z (

It can also be defined as

1
Logz=14 " )
log |z| +iarg(z), else

The function arg is defined as

arg : C_ — (—m, )

z > ¢ for z = |z|e®
Log is said to be the main branch of the complex logarithm, and
Log z = log |z| + i(arg(z) + 27n), n€Z
the secondary branches.

10.15 Ezample (Fresnel Integrals). Consider the integrals

/ COS(tQ) de / sin(tQ) dt
0 0

The way these integrals are supposed to be interpreted is as
00 N
/ f(t)dt = lim / fl)de

cos (tZ) = Re e*it2 sin(tQ) = —1Im e*itQ

We realize that

Now, consider these paths
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Im

V2

1 R

So it becomes apparent that

R R o 9
/ cos(t2) dt = Re/ e At = Re/ e % dz
0 0 o

We can define a new (closed) path

I'=y172(—7)

and with Cauchy’s theorem we can realize that

0= 55 e dz = / e dz+/ e % dz — / e % dz
r ! 72 v
The next step is to evaluate each of the integrals in the last term, starting with the integral
over 7.
2 R 14+4)t 2
/ez dz :/ e~ (D7 (1 14y de
¥ 0
R
=(1+1) / e 2 q¢
0

1+ [V2R i g
= s
V2 Jo

The integrall over 7, evaluates to

R fe’e) [e’e)
1
/ e_z2 dz = / e_t2 de % e_t2 dt = 2/ e_t2 dt = ﬁ
71 0

0 —00
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And the one over v to

2 f (r+it)?; [ R24t2 —2irt
/e_z dz:/ e ' zdt:z/ e~ e "t dt
Y2 0 0

To evaluate this we need to consider the absolute value of this integral

R
2 _ p2 2 o
/e #dz| <e R/ et ‘e 2’Rt‘dt
Y2 0 R’—/

=1

—R? R 2 —R? R tR
=e / e dt<e / e vdt
0 0

R _R2
o [1} (e )
R |, R

SO

And finally
o] \/5 R

. a2 . _ 42
lim e dt = lim e U dt
R—o0 0 R—oo 0

2
\f, < lim </ e’ dz+/ e’ dz>>
14+17 \R— " ya
2
_ V2 (5+0)
147 \2
Tl —1 s
\E 2 \/g( i)
So we can calculate the Fresnel integrals
o
/ cos(tQ) dt = \/?
0 8
o
/ sin(£2) dt = /=
0 8

10.16 Theorem (Cauchy’s Theorem for circular disks). Let f : U — C be holomorphic, U C C
open and K,(a) C U. Then

|z—al|=r
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Proof. Consider the following path

|z —a|l=r

According to the first corollary of Cauchy’s theorem we have

f@) f(z) f(z) f(z)
/|z_a|Tz—adz_gg%/%ﬁz—adz+/oééz—adz+/ozgz—adz

6—0
R
v Z—a
Thus we conclude

—0
JA Ry o Ry iy (CEV PRy (O
lz—a|=r 2 — @ _Z—a ; zZ—a _Z—a
/ [ = 1) fza) [t

zZ—Q

We also know that

d
S 27
Ve Z—a

Since f is holomorphic we can realize

sup |[TA =@

K. (a) zZ—a
Which results in )

[ <o [T a0
Ve Z—a 0

2me

Thus follows
/ 1) g, = / JE =@ 4. 4 omif(a) == 2rif(a)
|z—al=r 7.

zZ—a Zz—aQa

243

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
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Or short

/ 1) 42— orif(a) (10.19)
|=—al=

FZ—a

O

10.17 Corollary. Let f : U — C be a holomorphic function and U C C an open set such that
K,(a) CU. Then

1 2m )
fla) = — fla+ret)dt
2 0
Proof. Left as an exercise for the reader. O

10.18 Definition (Analytic functions). Let f : U — C be a function and U C C a domain. f is
said to be analytic in zg € U if and only if there exists a power series

oo
n
g anC
n=0
with convergence radius

-1
p= (limsup]an]%> >0

and d € (0, p) such that Bs(zp) C U and

f(z) = /k an(z — 20)", Yz € Bs(20)
=0
f is said to be analytic on U if f is analytic Vzg € U.

10.19 Theorem (Power series expansion). If f is holomorphic on a circular disk B, (zy) for some
r > 0, then f is analytic in zyo. f can be represented with the on B,(zy) convergent power

series -
f(z) = ch(z —20)", z€ Bpy(2)
n=0
with ) 2)
z
n =5 ——ards ¥ ;
c 9 /|zz0|=7" (z — z)nt1 z pe(0,r)
Proof. Without proof. O

10.20 Remark. If f is holomorphic then f can be infinitely often differentiated on C with

f(”)(z) =nle, = nt 1)

————dz
2mi |z—z0|=p (Z - ZO)n+1
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By employing the estimation lemma we can then find that

1
< —
|Cn‘ - 27

This is Cauchy’s estimate.

f(z)
/IZ—ZOp (z — z) L dz| <

=— sup |f(2)]

P" B, (20)

M,
-2

9

M, < oo

10.21 Theorem (Liouville’s Theorem). Every bounded entire function is constant.

245

Proof. According to the power series expansion theorem, f can be represented by a power

series on all of C:

f(z) = Z 2"
n=0

and the coefficients satisfy the Cauchy estimate

1
lenl < 7 sup |£(2)]

|zl=p

This inequality tends to 0 if p tends to oo for all n > 1, thus we can find

CnZO,

Thus

Vn >1

f(2) = ¢y = const .

10.22 Theorem (Fundamental Theorem of Algebra). Every polynomial of degree n > 1

1
< —sup|f(z
p" Zec| )l

<oo

f(z) = anckzk, cn # 0
k=0

has a root, i.e.
dzg € C:

f(20) =0

Proof. Assume there exists no root. Then the function

Z—

1
f(2)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)
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would be holomorphic on all of C, since z — 1 is holomorphic on C \ {0}. Furthermore we

find that
dR>0: |z| >R = |f(2)| > |f(0)] >0 (10.25)
which implies
! ! 1 < (10.26)
SUp ——— = SUp ——— = max ———— < 00 .
e ()] <r [f(2)] <R [f(2)]

since f doesn’t have a root. According to Liouville’s theorem % has to be constant, and
thus f must be constant. This implies that ¢, = 0, which contradicts the assumption. So
f has to have a root. O

10.23 Corollary (Polynomial Decomposition). Let
n
f(z) = chzk, neN,c €C,c, =1
k=0
Then 3z; € C, j=1,---,n such that

@) =1]GE-2)
j=1

10.3 Identity Theorem & Analytic Continuation

10.24 Definition. Let f : U — C be a function on U C C and n € N. f has a root with
multiplicity n at zg, if

If f is holomorphic it can be written as

F(2) =) calz = 20)*
k=n

10.25 Theorem (Identity Theorem). Let U C C be a domain and f : U — C analytic. If
{zeC|f(z) =0}
has an accumulation point, i.e.
n—o0

f(zn) = 07 (Zn)nEN C Uv (Zn) — 2x € U

then f =0 on U.
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Proof. Since f is analytic in zg € U, 36 > 0 such that
f(z) = ar(z—20)", Vz € Bs() (10.27)
k=0

Because zg € U is a root of f we can find that ag = 0. If a # 0 for some k£ > 1 then we
can consider

m =min{k > 1|ay # 0} (10.28)
Define -
9(2) = anpm(z — 20)" (10.29)
n=0
Then g(z9) # 0 and
f(2) = (2 = 20)"g(2) (10.30)

This function g is analytic in Bj(29), and thus continuous. This means 3" < § such that g
doesn’t vanish on By (29). We can conclude that f doesn’t vanish on By/(20) \ {20} either.
If a, =0 Vk €N, then f =0 on Bs(.,).

Now define the set

A= {z cU ’ F® ) =0, Vke Ng} (10.31)

Since f(™ is continuous for all n € Ny, we find

A= ﬂ {zEU‘f(")(z):()}

neNg

-N <f<”)>_1(£)i) (10.32)

closed

closed

But A is also open. To prove this we consider a point z; € A. Then the Taylor series of f in
z1 is identical to the zero-function. But then f = 0 on a neighbourhood V of z;. However,
since f(2) =0 Vn € Ny and z € V, we can use our previous results to conclude that
V C A, making A a closed set.

U can now be represented in terms of A:

U=AU(U\ A) (10.33)

This is the disjoint union of two open sets. Since U is a domain (and thus connected) this

can only be the case if
A={U,o2} (10.34)

Since zg = 0 we can conclude A = U. O
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10.26 Definition. If V C U C C, and there exist two holomorphic functions
f:vV—=C
f:U—C
with the property

f(z) = f(z), VzeV

then f is said to be the analytic continuation of f on U.

10.27 Remark. If the set V' has an accumulation point and if U is a domain, then the analytic
continuation f of f on U is unique (This follows from the identity theorem).

10.28 Example. (1) f(z) =Y .2, 2" is holomorphic on {z € C||z| < 1}. The function

is an analytic continuation of f on C\ {1}.

(ii) We can also find the analytic continuation along a chain of circular disks: for j € N
define the power series
Z an(3)(z — 2z)"

around z; € C with convergence radius p; € (0,00]. If the disks overlap and the
functions are compatible, i.e.

fi(z) = fe(2), Vz € By (zj) N By, (2k)

then there is a unique holomorphic continuation on

U BPj (ZJ)

jEN

10.29 Definition (Analytic continuation along curves). Let 7 : [to, t1] — C be a continuous curve

and -
z) = Z an(z —20)"
n=0

a converging power series around zg = y(¢p). Then the family of functions

Zan z— )n’ te [to,tl]

is an analytic continuation of f along ~ if
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L4 ft():f

e Vit € [to,t1] exists a € > 0 such that for all |7| < e the functions f; and fiing -4,) are
compatible.

10.30 Example (Complex Logarithm). The family

Li(2) :=it + i (=1" (e"z — l)n, t € ]0,00)
n=1

n

is an analytic continuation of the main branch of the complex logarithm Ly(z) = Log(z)
along the unit circle. This yields the secondary branches of the complex logarithm:

Lorn(z) = 2min + Log(z)

10.4 Laurent Series

10.31 Definition (Classification of isolated singularities). Let f : U — C and U C C open.
Then zp € C\ {U} is said to be an isolated singularity if there exists an € > 0 such that

BE(Z()) \ {Zo} cU.
An isolated singularity zg is said to be

(i) removable if f can be analytically continued on U U {zp}

(ii) a pole if Im > 1 such that
(2 = 20)" f(2)

has a removable singularity in zg. The smallest such m is the order of the pole.
(iii) essential if it is neither removable nor a pole of finite degree.

10.32 Ezample. (i) The function f(z) = #2 is holomorphic on C \ {0}, and has a removable
singularity in zp = 0. An analytic continuation of f on all of C is given by

o0 2n
zZ
R =
: ;( a1

(ii) Let g : U — C be holomorphic with g(z9) # 0 for zp € U. The function

has a pole of m-th degree in zj.
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(iii) Consider the function
f:C\{0} —C
s er
f has an essential singularity in zg = 0. The power series representation of f is

11
f(Z)ZZE;
n=0

This doesn’t remove the sungularity in zg, and the pole is of infinite order
Hlf2)) 2% 00, VEkEN

10.33 Theorem (Riemann’s Theorem). An isolated singularity zo € U of a holomorphic function
f:U\A{z0} — C is removable if and only if f is bounded in a punctured neighbourhood of
20, 1.€.
e >0,c>0: |[f(2)]<c Vze{(eC|0<|(— 2| <e}

Proof. 1f f can be analytically continued on U U {zy}, then this continuation is continuous
in zg and thus bounded in a neighbourhood of zg. Inversely, if there exists some ¢ > 0 and
€ > 0 such that

lf(2)]| <c¢ Vze{(eC|0<|(— 2] <e} (10.35)

Define the function

g:U—C
D A S 20)°f(2), 2 # 20 (10.36)
0, z =2z
Then
- 9(2) —g(z0)| _ 2= z0PlfR)] _

lim ————— = lim ————— =1 — =0 10.37
D T T ooy Jlim (|2 = 201/ ()1) (10.37)

Thus g is holomorphic on U with g(z9) = ¢’(20) = 0, meaning that

9(2) = enlz = 20)" (10.38)
n=2

with ¢, € C. So the function

f:U—C (10.39)
z— Z ez — 20)" 2 = Z Cnt2(z — zn)" (10.40)
n=2 n=0

is a holomorphic continuation of f on U U {z}. O
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10.34 Definition (Laurent Series). If we define the coefficients ¢, € C for n € Z, and z, zg € C,
then the series

o0 o0
chz—zo Zc nz—zo)fn—i-ch(z—zo)"
n=0

nel n=1

Analytic part Principal part

is said to be a Laurent series. It converges absolutely if the parts do so.
If 1 € [0, 00] is the convergence radius of the principal part and R € [0, 00] the conver-
gence radius of the analytic branch, then the Laurent series converges on the annulus

K, r(20) ={2€C|r <|z—2| <R}
and is holomorphic.

10.35 Lemma. If the series f(z) := >z ca(2z — 20)" converges on K, r(20), then for p € (r, R)

1
cn:?g Ldz, nez
|z—z0|=p

270 (z — zo)"t!

Proof. Due to the uniform convergence of the series on K, r(zp), we have

Z—20|=p

kez  JBmaol= p (10.41)
= Z CL 27Ti(5k,n,17,1 =27 - Cn
keZ
with d; ; the Kronecker delta, defined as
L i
Giy=4 "7 (10.42)
0, i#J
O]

10.36 Theorem. Let f : K, r(z0) — C be holomorphic, then

= Z Cn(z - ZO)n

neL

with )
Cn §£ Lz)dz, neZz, pe(rR)
je—zol=p (

C2mi z — zg)"

Proof. W.l.o.g. we set zg = 0. Similar to the proof of Cauchy’s theorem, we can prove
Cauchy’s theorem for annuli. To do that we define the following integration path
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v 7

(2

The two parallel path segments in the right figure are actually overlapping. They have been
drawn next to each other for visual clarity. Now we can write

1 SO
_277”' (—z|=¢ ¢—=z d
! /() 1 f(Q)
2mi Pens C— 2 2mi P - (10.43)

1 f(Q) 1 11
—— LS e+ —- . d
27TZ'¢C|R_5 C 1—% C+27T’L.Z¢C|T+5f(g)1— C

We can now make use of the geometric series:

1i :Z<§> 2] < [¢] (10.44a)

% n=0
1 > "
1_<220<C> Ll <1 (10.44b)
Thus we get
1 11 ("
10 =559 .. Z G oz er(C)Z%anC

- Z <27TZ % —R_§ Cn+1 ) + Z Zn+1 (27TZ %{ —r46 f(C)CTL dg) (1045)
n “n f(©)
= CnZ z — d

=C_n
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10.37 Example. Consider
1 1 1

f(z):z(z—l):z—lig

Using the geometric series we can then find for K¢ ;(0)

R =—1 -3
n=0

the Laurent series of f around zy = 0. For Ko (1) we get

1 1 1 1
&) = i oo 1-a=

1 o0
- 2 Seew
n=0

——
rinci I E/_/
Principal part Analytic part
10.38 Example.
o0 n o0
1 1 /1 11
f(Z):ez :Zn'<z> =1+ Zﬁzin
n=0 n=1

Principal part
converges on K (0).

10.39 Theorem. If f: U\ {20} — C has an essential singularity in zg € U, then for every e > 0
the image f(B:(z0) \ {20}) is dense in C, i.e.

VaeC I(z,) CU\{20}: 2n—20 = f(zn) — «
Proof. Left as an exercise for the reader.
10.40 Remark. We have essentially noticed three things:
(i)
f has a removable singularity in zg

<= f is bounded in a neighbourhood of z

<= lim f(z) exists and is bounded
|z—z0|—0

f has a pole of order m > 1 in zq

< lim |f(z)]=o0cand lim (z—20)"f(2) <o
|z—z0|—0 |z—z0|—0
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(iii)
f has an essential singularity in zg

<= the set of accumulation points of f(z) for z — zp is all of C

10.41 Definition. Let U C C be a domain. For holomorphic g,h : U — C with h # 0 the
function
f:U\{z€U|h(z) =0} — C

9(2)
h(2)

Z

is sald to be a meromorphic function. Meromorphic functions are holomorphic on
U\{h(z) =0}. If 29 € U a root of order m € N of h and a root of order k € Ny of
g, then the isolated singularity in zg of f is

e removable for k£ > m

e a pole of order m — k for k <m

10.5 Residual Calculus

10.42 Definition (Residue). Let = > 0, 29 € U and f : Ko,(20) — C holomorphic. Then for

€ (0,r) the number
1

Res,, f = 5 ygB,,(zo) f(z)dz

is said to be the residue of f at z.

10.43 Lemma. If f is a function as defined in Definition 10.42 with the Laurent series expansion

f(z) = anz cn(z — 20)", then
ResZo f=c

Proof.
1
L= — d_E " — 2p)"d 10.4
Res,, f 2m§éB(Zofz z 2 C27”¢B(ZOZ 2p)"dz (10.46)

:5n,71

10.44 Example. If f has a pole of order h at zp, then the Laurent series of f around z is

1 1
f(z):a—kih‘Fa—(h—l)W—F ta- 1 +Zan z—z0)"
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and thus

(z—20)Ff(2) = a_p + a_(g—1)(z —20) +---a-1(z — 2)" 4 Z an(z — z)" "
n=0

From this follows
. 1 dh—l B
Res;, f = Zlgglo WW(Z —20)" f(2)

10.45 Example. If f(z) is meromorphic with a root of order 1 of h at zp and g(zg) # 0, then

. (z—20)
Res, f = lim (2 — 20)f(2) = lim e 9(20)
o 20 o 9(20)
= TR Y ) T Wiz

10.46 Example. Consider f(z) = =:—. f is meromorphic with poles of order 1 in z, = nx, n € Z.

sinz’
With the previous example we can thus get

1

Res,, f = ———
o8z f cos(zp)

= (-1

10.47 Theorem (Residue Theorem). Let U C C be open and S := {z1, - ,z,} C U a set of
pairwise disjoint points. Let vy : [0,1] — U \ S be a closed, piecewise differentiable curve
without intersections that is null-homotopic in U and surrounds S in a positive orientation.
Then for any holomorphic function f:U \ S — C the following holds

%f(z)dz = QWiiReszj f
Y j=1

Heuristic Proof. ~y is null-homotopic, so we can choose arbitrary curves around the residues.
Consider a path v that surrounds every residue with a disk of radius p;, and connects them
to each other using straight segments that cancel each other in the limit. Then

?gf( )dz_yg dz—Zyng dz-2mZResZ]

7j=1

10.48 Example. The residue theorem can be used to calculate integrals such as

>~ 1
[l
oo L+ 2
This integral is to be interpreted as

00 1 R
/ dz = lim i I
oo 14+ 24 R—oo J_ R 14+ 24 R—oo
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The poles of the integrand in C are the roots of the numerator:

1420 =0 <= 2t=-1=¢""

Which gives us the position of the isolated singularities

s .37 -5 ST
21 =¢e'4 z9g=¢e''2 z3=¢€"1 zg =€
We want to integrate along the following path
Im
A
TR
22 z1
—R il i R Re
2 . . 2

Using the residue theorem we get

2
dz .
IR—I-/W T QWZZRGSZj f
4 j=1
So our next task is to calculate the residues of the poles z; and z».
1 . 1 . 1 1 1
Reszl <1 + Z4> - 21521(2 B 21)1 + 24 - Zlggl <Z — 292 — 232 — Z4>

I U T T O A R SR |
_2172221723217,24_2% 1-21-281_-24

21 21 21
3 1 1 1
4
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Analogously for zs:

We also need to calculate the integral along the curve vg. We use the parametrization

Yr(t) = Re', te [0, 7]

1
dz’:

L | ” i R
——Rie"dt| < | ——
/0 1+ Riehit "' ’—/0 |1+ Rieit|dt

_/ﬂll
- 0 R3 ‘€4it+%‘
————

So in total, we get

2
dz T
= lim Ir =2 E Res,. f = —
/Rl-i-a:4 Rfio R mj:1 esz; f NG

10.49 Example (Fourier integrals of rational functions). We want to inspect Fourier integrals of

the form ~ p

oo Q(2)
where P and () are polynomials such that the degree of () is greater than the degree of P.
The roots z1, -+, 2z, € C of @ can not lie on the real axis. For the integration we’ll use the

same path as in the previous example. Using the residue theorem we get

> P(Z) iz Py P(Z)ezz ¥ = 2mi es P(Z)eiz
[ oo e[, qaee=2 o e (25*)
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The integral along vr doesn’t contribute anything to the total calculation:

P(2) .. ‘: " P(Rei) iReitd‘
Q) /oQ(Re”)e !
™ |P(Re™)|| ;pet

S/o QEen 1“1V

I want to insert a quick calculation:

. Zt . _ . _ .
ezRe choste Rsmt‘ —¢ Rsmt7 t e (077{_)

Using this we can continue our calculations

T |P(R€Zt)}
S/o Q(Re)|
—_———

<M, M>0

e*Rsintdt

s
gM/ e~ Rsint qp fizoe
0 21

Thus we showed that
~ P() . | P(:) )
/ e dx = 2mi Res., < e'?
Q) Imz(zj)>o Q)

Q
——
f(z)

10.6 Application: Potential Theory

to be harmonic if
d

Vio(x) =) 0ip(z) =0, zecR’

=1

U.

258

10.50 Definition (Harmonic Function). A function ¢ : U — R with U € R open, d € N is said

10.51 Theorem. If f : U — C, U C C is holomorphic, then Re(f) and Im(f) are harmonic on

Proof. 1f f is holomorphic on U, then f is also analytic, which means it is infinitely differen-

tiable on U. Using the Cauchy-Riemann equations the desired statement can be shown.

typical problem from electrostatics is

V2p(x,y) =0 (z,y) €U
(Z)(l’,y) :¢0<x7y) (x,y) e oU

O

10.52 Ezample (Potential problems in R?). Let U C R? be a domain with smooth boundary. A
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where ¢ : U — R is the desired function with given boundary values ¢g € C(0U,R). Such
a boundary value problem is known as the Dirichlet problem.
An important example is the Dirichlet problem for the upper half plane

{(x,y) ERQ‘y>O}

with ¢g € C(R). We want to assume that ¢¢ decreases like

|po(x)] <

, TER >0
1+ |z

near infinity.

Theorem (Poisson integral formula for the upper half plane). The function

I y
z y)_ﬂ/w¢0(t)($—t)2+y2dt

solves the Dirichlet problem for the upper half plane

V2h(z,y) =0 (z,y) € {(z,y) eR?|y >0}
¢(x,0) = ¢o(z) reR
Proof. The function
1 [ 1
is holomorphic on C with
Re(f(z +1iy)) / oot Im< _z> dt (10.48)

We find that

n () = (=)~ (o) e 00

and thus

Re(f(z +1iy)) = ¢(z,y) (10.50)

for y > 0. However according to Theorem 10.51 this means that ¢ is harmonic for y > 0:
V2(z,y) =0, Y(z,y) € {(z,y) e R?*|y >0} (10.51)

It remains to be shown that the boundary values are being accounted for. For that we
rewrite the Poisson integral formula as

o(z,y) = (o * Py) /qb (x—t)d (10.52)
with the Poisson kernel P (z) = 71”62 2+ We will finish this proof later. O
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Definition (Convolution). We define

LY(RY) := {f : RY — R measurable

/. rf<x>rdm<oo}

the Lebesgue space of absolutely integrable functions. It is a complete, normed space with

£l = [ 1f1do
R4
It induces a metric space with the metric
d(f,g) = IIf —gllp

Let (f,) € L'(RY). This sequence converges to f € L'(R?) if

I fo = fllpr =0

Since L' is complete, every Cauchy sequence converges. For f,g € L'(R%)

(Fx9)a) = [ Fwate—y)dy
is said to be the convolution of f and g.
Theorem. The convolution is well defined as a mapping

s« : LYRY) x LYRY) — LY(RY)

with ||f *gll;2 < [[fllllgll. The space (L*(R?), %) is a commutative and associative
algebra, i.e. Vf, g, h € L' (RY):

(i) fxg=gx*f

(it) (f xg)*h=fx(gxh)

(i) fx(g+h)=[fxg+fxh

(iv) VAEC:  A(f*g)=(Af)*g=fx(\g)

Proof. We will only be proving that the mapping is well defined and that the inequality
holds. First, let

f.ge L' NL>® :={ f:R? — R measurable
zcRd

esssup |f(z)] < oo} (10.53)

Then the convolution f x g is well defined (pointwise almost everwhere), because
[f(9)g(z —y)| <C|f(y)] = feL' = integrable (10.54)

geL>®
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We then find that

I gl = [ xo)@lde= [
< [ [ 1f@lista =l dyds (10.59)

= [ 15 [ late = ldeay

By substituting z = x — y we get

f(y)g(xr —y)dy|dz
]Rd

= [ 1 [l dazay = 171 gl (10.56)
For more general f,g € L' we can approximate f via a function sequence
fn:=min{f,n} € L' N L>® (10.57)
Then f, ey fin L', since
@) <1f(@@)] Vo eR? (10.58)

By using the previous results we can conclude

[ g = fm o gllpr = [1(Fn = fm) % gl < o = Finll 1 191 20 (10.59)
N————

,1M—00
—0
So (fn * 9)nen is a Cauchy sequence in L' and thus

f*g:= lim f,*xg (10.60)
n—oo

10.56 Remark. One can show that (L'(R?),*) does not have a neutral element, i.e.
6 L'RY: fxd=f VfeLY(RY

10.57 Definition (Good kernels, Approximative identity). A sequence of convolution kernels
(K,) C L*(R?) is said to be a class of good kernels if

Vn e N: Ky(z)dz =1
Rd

dM >0VneN: / |Kp(z)|de < M
R4

Vo >0: lim | Ky (z)dz =0

n—o0 |m|>6

A sequence of good kernels with K, > 0 for all n € N is called Dirac sequence.
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10.58 Theorem (Smoothing by convolution with good kernels). Let (K,) C L'(R?

good kernels. Then:

(i) If f € LY(R?) then
1 5 K — Fll sty = 0

262

) be a class of

(ii) If K, C C™(R?Y) ¥n € N and if the partial derivatives 0“K,, |a| < m are bounded,

then
f* K, € C™RY and 0*(f x K,) = f x 0°K,

(iii) If f € C(RY) is bounded, then

lim (f * K,)(z) = f(z), VYzeR?

n—o0

10.59 Ezample. Let (g,) C (0,00) be a null sequence. Then

1
Poisson kernels Py(x) == f%
m™Te+ ey
g Lt
GauB kernels op(x) = (2mel)"2e ¥k, zeR?

are classes of good kernels. Now let 0 < ¢ € L}(R?) with ||¢| ;1 = 1. Then
1 z
onle) = 40 (3)

is a class of good kernels. We can show that

11 e 11 1 1 (=
3*”:w§2zgﬂz=gp<g>
OO
k €k
One has to show that 11
_ - Ll
(z) w1+ 22 <
with
/ P(z)dx =1
R

To do that we can calculate

1 1 1 1 /7
/RP($) dr = / dz = —(arctan(oco) — arctan(—o0)) = - (— — (

—~— ™ R1—|—33‘2 ™
>0
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Proof of Theorem 10.58 (iii). Consider f *x K, (x) — f(x). We can calculate

Fo Kz /fa:— y)dy — f(z /K

(10.61)
= [ =) = 1) Ko dy
Since f is continuous in =z,
Ve>030>0: |f(z—y)—flz)|<e Vy| <o (10.62)
From the definition of good kernels follows that
dM > 0: /Rd | K (y)|dy < M (10.63)
which lets us conclude
/|y<5 [f(z —y) — f(@)| [Kn(y)|dy < 5/|y<5 [ Kn(z)|dy < eM (10.64)

<e

By utilising the boundedness of f and (iii) from the definition of good kernels we can show

/ \ﬂx—w—f@MKawmyS%/' Ko(y)ldy <2¢s (10.65)
ly|>d R ly|>d

We can now use the previous results to show that

K@) = F@I < [ £ =) = 1@l W) dy

= / |f(z—y) = f(@)|[Kn(y)] dy+/ [f(z—y) = f(@)||Kn(y)| dy
ly|<d ly|=6
g;\%e <2ce
e(M + 2¢)
(10.66)
Since € can be chosen arbitrarily it follows that

[ Kp(z) =% f(z) VaeR? (10.67)

With this it is now easy to finish the proof for Theorem 10.53. We had seen that

¢@w%jé@ﬁﬂﬂx—ﬂ&=0m*%xw (10.68)
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Now let (¢,) C (0,00) be a null sequence. Since ¢ is continuous and bounded, and since

(P.,) C LY(R%) is a class of good kernels, it follows from what we have just proven that
Jim (¢o * Pe, )(2) = ¢o() (10.69)
All in all it follows that
V23¢(z,y) =0 T€ER, y>0 (10.70)
$(x,0) L7 go(x) Vr € R
O

10.60 Remark. If ¢ : U — C is holomorphic, U C C open and V C U a domain, then ¥ (V) is
also a domain with ¥(9V) = 9¢(V). (Open mapping principle). Then the solution to the
Dirichlet problem on V'

V24 =0 onV
¢ = ¢o on 9V

can be obtained through a holonomic transformation ¢ : V' — Cy with ¢(V) = C4 of the
Dirichlet problem on the upper half plane.
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11.1 Fourier Transform on L!(R?)
11.1 Definition. For f € L'(R9) the function

f:RY—C

is said to be the Fourier transform of f. Sometimes it is written as (F f)(k).

k —

11.2 Remark. (i) There are several alternative conventions regarding sign and phase of the
transform.

fi) = [ e p(a)da

is also a valid definition in other scientific fields, however we will stick to the former
definition throughout this script.

. d

(i) k- z = (klz) = 35 kjz;

(iii) Because ‘eik'ﬂ = 1, the integral exists for any f € L'(R%).
11.8 Exzample. Consider the function

1 _(z—a)?
252 ,aeC, o>0

The Fourier transform is

. 1 N C
f(k) /e_me 202 dx
R

2ro
1 . _ﬁ 2 _(ac—a+ika2)2
= haem Tk [ ¢ 202 dx
2o R
1 3 _02k2 o0 7&
= ¢ thag=% e 202 dzx
2ro o
2,2
_ 1 _ikae_o' 2k

flz) = e 2?2, reR?
(2%02)%
With the Fourier transform
; 1 _A2k? d
f(k) = —e , keR
(2m)5



267
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11.1.

11.5 Exzample. Consider the indicator function
1, |$| <a
T) = , r€R
(@) {o, 2] > a
It has the Fourier transform

ek (2) dr = 1 [emtk=]? _ \/55in(k:a)

2 | —ik | _, T k

=75 )

11.6 Definition. For f € L'(RY) the function
1 ikx
f(k)e"™ dk
R4

(2) == —
(2m)% Jr

defines the inverse Fourier transform of f
11.7 Example. Let’s revisit Example 11.3, where we found that
1 e—iake—#

f(k):ﬁ

= )

The inverse Fourier transform of that function is
1 =

ﬂk)zme

11.8 Theorem (Fourier inversion theorem). Let f, f € L'(R?). Then f = f
Proof. To prove this theorem we will use Theorem 10.58 and the following lemma

If fr, 2225 f, then there exists a subsequence ((fn)r)ren with
lim fp, () = f(z), Vre R¢
—00

(11.1)

Heuristically this theorem can be proven by considering
1 —ik ikx
f (y)e "™ dy dk

/ / 7lk (y—=x) dk dy
Rd JRd
(11.2)

However, to show this rigorously we should first consider the inversion formula for f * d;,

d
2 12‘56‘2
e 2 , leN

1 . )
(k)et*® dk = .
(2m )5

f(x) = (27_‘_)% "y

27r

l2

with
di(w) = <27T
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The Fourier transform is

. 1\% _uw2
k) = (5= ) e (11.3)

We've already shown in a previous example that the inversion theorem applies to this
function, so we can write

f#0)( / fly x—y)dy—édf(y)éz(w—y)dy

_ 1 oik(z—y) §

B /Rd ) ((QTr)g /Rd “olk) dk) W
_ 1 e—ik eikr g

B / ((2#)3 /d 1) ’ dy) oulk) de

kw2~ dE .
:/Rd ek f(k)e 22 7 = Fi(z)

2m)2

(11.4)

Next we want to use the fact that (0;);en is a class of good kernels. This means that

lim [|6; % f — fll;1 =0 (11.5)
l—00
or in other words
o % f L f (11.6)

Now using the lemma above we can conclude that there exists a subsequence (0;, * f) jen that
converges to f(x) for almost every . We can apply the dominated convergence theorem to

find that
. e 7,km ﬁ dk <
lim Fj(x) = f(k) hm e 22 - = f(z) (11.7)
l—o0 Rd (27r)5
Finally, this lets us conclude
f(z) = lim 0, x f(r) = lim Fl (x) = f, for a.e. z € R? (11.8)
j—o0 j—o00
O

11.9 Theorem (Algebraisation of the derivative). Let f € C™(R?) and 0°f € L' (R?) for all
a € N& with |a| < m. Then

0§ (k) = (ik)"f
If o= (a1, - ,0q) and o = Z?Zl a; < m, then the interpretation of that is

Hlel ol (e o\ F
f(ax?laxgdj) (k) =1 (k‘l kg )f(k)
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Proof. We will only prove the one-dimensional statement. If m = 1 we receive via partial
integration

(k) \/%/f Je~*7 dg = m{(f( *““E / flz dx ”“)dx] (11.9)

Since we assumed f’ € L', the limit lim, 4. f(7) exists. We can write

/ F(t)dt (11.10)
=l ) =10+ i [ (110
Furthermore this limit has to be equal to 0, so
lim f(z)= (11.12)
|| =00
—ikz | : —ikx . ikx
= [f(m)e } = lgn e " f(x) — 11_>m f(z)e™ =0 (11.13)
This leads us to !
(k) = ik x)e " dy = ik f(k 11.14
Py = ik —= [ f(a) k) (1.1
The proof for m > 1 can be found via induction. O

11.10 Theorem. Let f € L'(R?) and m € Ny. If
z+— 2°f(z) € L'(R?), VYaeNI, o/ <m
then f € C™(R?) and )
O f(k) = F[(—ix)* f(z)] (k)
Proof. Again we will only consider the one-dimensional case. Assume m = 1 (the proof for
m > 1 follows from induction). We can write out the difference quotient for f at ke R

f(k + h / el (k+h)x fikx> dz
—e —, heR\{0 11.15
o N SUSENNCIRE)
However, because
e—imh -1
h‘ <|z|, VzeR, h#0 (11.16)
and because we assumed that zf € L', we can use the dominated convergence theorem to
conclude
¢ ¢ —izk __
lim flk+h) = fk / e lim e dx
h—0 h T Vo h—0 h

(11.17)

dida: (e—ilcac) o

\/ﬁ/ —izf(z))e " dx = —/w?f(k:)
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11.11 Theorem. Let f,g € L*(R?). Then

Proof. Without proof. O
11.12 Ezample (Solving inhomogeneous, linear ODEs). We want to find the general solution of
i-x=f ffel'(R)
The solution space of this equation is
L= Lhom + Zs

The space of homogeneous solutions Ly is equal to span {e”,e™*}, and x5 is one solution
of the inhomogeneous equation. Let ¢ denote the Fourier transform of x4, so

b(k) = \/12? /R sa(t)e— ™ dt

—K*p(k) — ¢(k) = f(k)

Then ¢ satisfies the equation

Or rearraranged to solve for ¢

o(k) =~z (k). kER
We can then rewrite ¢(k) as
. 1
o(k) = —g(k)f(k) with § = =5 € LY(R)
and then use the previous theorems to conclude
_ ) Tr-1|f, 1 _ b
e5(t) = 0(1) = (2m)3F 7 [F3(2m)2] () = (7 = 9)(0)

fxg

11.2 Fourier Transform on L?(R?)

11.13 Definition (Hilbert space). For this section we introduce the Hilbert space of Lebesgue
square-integrable functions

L*(RY) = {f : RY — C measurable

12 = /R @) de < oo}

This space is also important in quantum mechanics, as wave functions are elements of L?.
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11.14 Definition. The space L?(R?) is a Hilbert space, i.e. a complete, normed vector space
with an inner product

= [ flz)g(x)d
(Flo) = [ Flgta) da
that has the following properties:

(i) (fIf) = 0and (f[f) =0 < f=0

(it) (flg) = (gl f)
(ii)) (flg +Ah) = (Flg) + A {f[h)
(i) and (iii) imply B
(Aflg) = A{flg)

The inner product induces a norm
1913 = f10) | = [ T@) @) s
R 2
|f ()]

Since the Fourier transform cannot directly be defined for L?(R?), we will first consider the
space of rapidly decreasing functions, the so called Schwartz space S(R?).

11.15 Definition (Schwartz space). The Schwartz space S(R?) is defined as the function space
S(RY) := {f e C®(RY) ‘ z +— 2°90° f bounded, Va,p € Ng}

11.16 Ezample. (i) Smooth functions with compact support f € C®°(R?) are also elements of
S(R%), for example

d
exp (— ijl m) 5 ’flj]‘ <1

0, else

flz) =

(ii) For every polynomial p(x), the function

defines a function in S(R?).
11.17 Remark. Because of the continuity and the rapid decrease towards infinity we can find that
S(RY) ¢ LY(RY) N L2 (RY)
and one can show that S(R%) is dense in L2(R%), i.e.

n—oo

Ve LXRY 3(fo) CS®RY 2 | fn— fllpz =250
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Then f € S(RY) and the restriction of the Fourier transform

11.18 Theorem. Let f € S(R?)
Fs : S(RY) — S(RY)

to S(R?)
1s an isomorphism. Furthermore
(Fla) = (flg), Vf.geS®Y
with the inner product
(o) = [T
R4

Proof. To prove that f € S we use the fact that
kP9 f (k) = (—i)lel+18l Fg [aﬁxaf(k)] . keRY Va,8eNd

Next we want to prove that Fs is an isomorphism. This is trivial however since
Fs ' Fs(f)=f

Vf e S(RY) :

To prove the final statement we can explicitly calculate

(1]a) = [, 50 ax
dx A
:/ ( Je~ikr dg (2ﬂ)g>g($)dk
:/< T g)A(k)dk
-/ f( ik dkd)dw
(2m)2
9(x)=g(x)
_/ F@)g(x)de = (f]g)

11.19 Remark. Since not all functions f € L*(R?) are integrable, the limit
d A
J(@)e ™ —— = f(k)
(2m)2

lim
R—o0 |z|<R

doesn’t converge for every k € R?, only for almost every.

(11.18)

(11.19)

(11.20)
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11.20 Theorem. The Fourier transform Fs can be uniquely and continuously continued on L*(R?).
The resulting mapping
F: L*(RY) — L*(RY)
is linear and unitary, i.e. Vf,g € L*(R?) we have

(F(NIF9) = (flg)

which is also known as the Plancherel identity.

Proof. Without proof. O

11.21 Remark. The continuiuty of F doesn’t imply that f is continuous. Secondly, the Plancherel

identity also yields
I1£1lze = V3T = [ (F]F) = |

11.3 Outlook: Tempered Distributions

L2

11.22 Definition. A tempered distribution f is a continuous, linear mapping
f:SRY —C
6 10) = (1.0 (= [ 10t ar)

11.23 Theorem. Tempered distributions are linear, continuous mappings.

Proof. To prove linearity, let ¢, € S(R?) and A € C. Then

(f, 0+ 2) = (f,0) + A, ¥) (11.21)

For the continuity, we want to consider any sequence (¢,) C S(R?) that converges to
¢ € S(RY). Te.

lim sup |270%(¢n(z) — ¢(z))| =0, Va,B e NI (11.22)

n—oo IERd

Then we can conclude that
i |(f,60) — (/,6)] =0 (11.23)
O

11.24 Remark. The space of all tempered distributions is denoted as S’ (Rd).

11.25 Ezample. One important example is the Dirac deltra distribution:
§:S(RY) — C

It maps a function to its value at 0.

(6.6) = / 5(2)d(z) dz = $(0) € C
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12.1 Linear Operators

Throughout this chapter X and Y will denote vector spaces over the same scalar field F.
Also, I want to quickly recap some normed vector spaces that we will use from here on out.

(i) The real numbers
X =R
2] =[], zeR
(ii) The euclidian space

X=R"
|ZL‘|| (Z£k> y L= 517"'7571)6Rn

(iii) The space of bounded sequences [*°

X =17 :={(&) C R| (&) bounded}
[][joe = sup €], == (&n) €17
keN

(iv) The space of converging sequences c

X =c={(&) C R| (&) is convergent }
. = Sup &kl @ =(n) €c

¢ can be considered a subspace of [°® because it is a subset of [*° and its norm is just
a restriction of |||,
(v) The space of bounded functions B(A)
X =B(A)={f: ACR — R|f bounded}
2]l =sup[f(t)l, f € B(A)
teA

(vi) The space of continuous functions C'(A)

X =C(A) ={f:A— R|f continuous}
lzlle = max[f(t)],  f € C(A)
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vii) Sequence spaces [P, p > 1
q P p

Xzzpz{@n)cR

> olal? < 00}

k=1
]l = (Z |€k|p> , w= (&) el
k=1

(viii) The space of Lebesgue measurable functions LP(A), p > 1
X=ILP(A) = {f:A%R’/ |f(t)|pdt<oo}
A
1
el = ([ 1r0r ) ser

12.1 Definition. A linear operator 7' is a mapping
T:DT)CcX —Y
such that
(i) The domain D(T') is a subspace of X
(ii) Yo,y e D(T), YVaeF: T(z+ay)=Tz+aTy
If Y =T, then T is said to be a linear functional.
12.2 Example. (i) Let X =R™ and Y = R™. If A € R™*™ then we can define

Tr = Az, zeR"

such that for x = (&1, -+ ,&,) we have
aipr -+ Qin & m
Te=| )=
am1 - Qmn n Im

Then D(T) = R™ and T is a linear operator.

(ii) Let X = C([a,b]) and Y = C([a,b]). Then

(T2)(t) = / o(s)ds, telab]

defines a linear operator with D(T") = C([a, b]).

276
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(iii) Comnsider X = C([a,b]) and Y = C([a,b]). We can define
(Tx)(t) =2'(t), tE€la,b]
T is a linear operator with C([a,b]) D D(T) = C([a, b]).

(iv) Let X = LP([a,b]) and Y = L4([a,b]). Choose a fixed measurable function ¢ : [a, b] —
R. Then

(Tz)(t) = o(t)x(t), ¢ € [a,b]

defines a linear operator. The domain in this case is

o) = { € ()| [ ottwtofa < o

(v) Consider X =1* and Y = R. Then
Tr = kli_g}ofk, x = (&) el™
is a linear functional with D(T") = c.
12.3 Definition. Let T : D(T) — Y, D(T) C X be a linear operator. If 3C > 0 such that
I Tz]| < ]

then T is said to be bounded. The number

[ Tz]]

7] = sup
zeD(T) ||':U||

z#0

is the operator norm of 7.

12.4 Example. Consider X =Y = C([0,1]). We can define the operator T as

(TF)(t) = / f(s)ds, feC(0,1])) =D(T)

T is a bounded operator. This can be shown by explicitely calculating the norm

/Ot f(s)ds

max /Ot |f(s)|ds
t

ITf] = max
te(0,1]

IN

te(0,1]

< d
<0 ), ey Mle)lds

t
— |I7]) max / ds = ||f]| max t = ||/
c te€[0,1]

t [0,1} 0
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Thus we have shown that ||T']| < 1. We can further show that ||7’|| = 1. To do that, assume
f = 1. Trivially, this results in || f|| = 1 and further

(Tf)(t):/o lds =t

This gives us

T
1Tl =1 = oy 2 1A

i
This implies ||T|| = 1.
12.5 Ezample. Again, consider X =Y = C([0,1]). This time we look at
(TF)(t) = f'(t), D(T)=C([0,1)

T is an unbounded operator. To prove this take f,(t) =t € C([0,1]), n > 1. We compute

Ifoll = max [*] =1, [|Tfn] = max [nt""!|=n
tE[O,l] te[(),l]
Then T
| fall

So there doesn’t exist a C' > 0 such that n < C, thus T' cannot be bounded.

12.6 Theorem. Let X be a finite-dimensional normed space. If T is a linear operator on X,
then T is bounded.

Proof. Without proof. O

12.7 Definition. Let T : D(T') — Y be a linear operator. T is said to be continuous in xg € D(T)
if
Ve>0,30>0: |lz—zol| <0 = ||[Tx—Txol| <e, VzeDT)

12.8 Theorem. Let T : D(T) — Y be a linear operator. Then
(1) T is continuous <= T is bounded
(ii) If T is continuous in a single point, then it is continuous everwhere

Proof. To prove the first statement, we want to consider 7' # 0 (since 7" = 0 is trivial).
This implies that ||T]| # 0. Assume 7T is bounded, and take zg € D(T'). Now let € > 0 and
6 = gy such that |z — xol| <9, x € D(T'). Then

€

|Tx — Tao| = | T(z — z0)|| < |Tl||lz — zoll < ||T)|6 = || T i

€ (12.1)
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Thus proving that 7" is continuous. Now inversely, let 7" be continuous in z¢ € D(T). If we
choose € = 1, then we can find a § such that

|z —x0l| <9 = ||Tz —Txo|| <e=1 (12.2)

If we now take any y # 0 from D(T") and set x = z¢ + ﬁy, then we can show

5
|z — xol] =3 <0 = |[|[Tex—Txo|| <e=1 (12.3)
Therefore we have
1> [T — Taol = |T(x — a0)] HT 0 H O iy (12.4)
r — 1LXg| = Tr — X = —Yll = = y .
2|yl 2|ly||
Thus 5 5
Tyl <1 = || Tyl < <yl (12.5)
2]ly|| J

Since y € D(T') was chosen arbitrarily, this implies that T is bounded. The second statement
follows trivially from the first one, as we have shown that if 7" is continuous in one point
Tg, it is bounded and if it is bounded then it is continuous everywhere. O

12.9 Corollary. Let T be a bounded linear operator. Then
(i) For xy,,x € D(T) we have z,, - v = Tx, — Tx
(ii) The set ker(T) = {x € D(T)| Tz = 0} is a null set and closed in X
Proof. Left as an exercise for the reader. O

12.10 Theorem. Let T : Z?(T) — Y be a bounded linear operator, with Y a Banach space. Then
T has an extension T : D(T) — Y where T is a bounded linear operator and |T|| = ||T.

Proof. In this proof we only want to show how such a T can be constructed. Let z € (T).
Then there is a sequence x,, € D(T) such that x,, = x. Since T is linear and bounded, we
can find

n,M—00
—

1T 2n = Tm|| < T(xn — zm) || < [Tlll2n — 2w 0 (12.6)

So (Txn)nen is a Cauchy sequence in Y. Because Y is a Banach space there exists some
y € Y such that T, converges to y. Now we define Tz := y, and show that Tz is well-
defined. If (2,)nen C D(T) is another sequence converging to x, then Tz, — y'. Now
consider the sequence

(Un)nen = (21, 21, T2, 22, X3, 23, * - ) (12.7)

This sequence also converges to z, and Tv,, — y”. However we can also find
Tvaksr —y =y Tvgy, —y =y" (12.8)

Thus y = ¥/. O



12.2. DUAL SPACES 280

12.2 Dual Spaces

12.11 Definition (Normed spaces of Operators). Let X,Y be normed spaces and T: X — Y a
bounded linear operator. Then B(X,Y) is the set of all such bounded linear operators. If
we define for z € X, a € F

(Tl +T2)(l’) =Tz +Thx, 11,15 € B(X,Y)
(aT)(z) = aT'z, T e B(X,Y)
then B(X,Y) is a vector space.

12.12 Theorem. The vector space B(X,Y) is a normed space with the operator norm

Tz
7= sup 12— s e
x#0 H'CCH [|z||=1
Proof. Left as an exercise for the reader. O

12.13 Theorem. IfY is a Banach space, then B(X,Y') is also a Banach space.

Proof. Let (T,,) C B(X,Y) be a Cauchy sequence. We need to show that there exists some
T € B(X,Y) such that 7;, = T. Let z € X and define

Tr = lim T,x (12.9)

n—oo

Consider the sequence T, z. It is possible to show that this is a Cauchy sequence
| Toz = Tz = [Ty = T)z|l = | T = Tl 2] =50 (12.10)

Since Y is complete, there exists some y € Y such that T,z — y := Tx. Thus we have
shown that T is indeed mapping X to Y. We now need to prove that T is linear and
bounded (and thus element of B(X,Y)).

T(ax + pz) = nlggo Tn(ox + B2)

lim (T2 + fT,%) (12.11)
n—oo

=q lim Thx + B lim Tz =aTlx+ BTz

This shows that 7T is linear. Now let ¢ > 0. Then

AINEN: [T — Tl < % Vn,m > N (12.12)
If we let n > N we can use this to show

| Thx — Tzl = ‘

Thxr — lim meH
m—r0o0

= lim ||Thz — Tzl (12.13)
m—0o0

. g
Tim [T, = T2l < Szl < elal
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Thus showing that 7" is bounded. This also implies that T,, — T', proving that B(X,Y) is
a Banach space. O

12.14 Definition (Dual Spaces). The set of all bounded linear functionals f : X — F with the

norm
11 = sup LN g (7))

x#0 ||33H |z||=1

is said to be the dual space of X, and is written as X' = B(X,F).
12.15 Theorem. The dual space X' of a normed space X is a Banach space.
Proof. Without proof. O

12.16 Definition. Let X, X be normed spaces. A bijective linear operator 7' : X — X that
perserves the norm (i.e. ||Tz| = ||z||, Yo € X) is said to be an isomorphism. If such an
isomorphism exists, then X and X are called isomorphic normed spaces.

12.17 Example. (i) The dual space of I}, is
2y =19 ! + ! =1, 1<p<oo
P oq 7

So let f € (I5) be a bounded linear functional. We can define a basis

61:(1>O>"' 70)

en:<07'”7071)

This lets us express elements of I5 in the following way

n
T = ngek S lg
k=1

We can then write out f as

fla)=f <Z m) = &f(er) =D e = (ulz)
k=1 k=1 k=1

where v = (v, , W), % = f(ex), k = 1,--- ,n. To compute the norm of f we
want to use Holder’s inequality

D lwruel < (D lwel®) (Do lwl ) . —+-=1
el p 9

k=1 k=1
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With this we can write

<)l < <Z Imq> (Z |€k|p> = [lullol|]lp, Vo€ lf
k=1 k=1

This implies || f|| < ||ull;q- Now let z = (£ |77 - £ where we use + is
v, > 0, and — otherwise. Then

[f(@)] = () Z|’Yk|q
=1

1 1—
n P n q
2 = (Z mr@—l”’) = (Z mr’)
k=1 k=1

Using these two steps we can write

n n % n 1*%
Y el = (z w) (z w) ~ il
k=1 k=1 k=1

thus proving || f|| = ||ul|. As a result, this shows that f is an isomorphism of (1)’ to
I%. In other words, any bounded linear function f canm be written as

n

= >

k=1

and

=

2) =Y e = (ulz), u=(mw)CH

(iv) (1Y) =1
(v) ¢ =(c) =1"
(vi) (LP(A)) = LU(A) and (L'(A))" = L®(4)

(vii) (C(A))" = "functions of bounded variation”

12.18 Definition. Let w : [a,b] — R be a function. w is said to be of bounded variation on [a, b]
if its total variation

Var(w) = sup Z lw(t;) —w(tj—1)|

is finite. The supremum is taken over all partitions a =ty <t < --- < t, = b.



12.3. HILBERT SPACES 283

12.19 Ezample. If w is non-decreasing, then w has bounded variation. This can be explicitly
shown

Var(w) = sup Y _ |w(t;) — w(t;—1)| =sup > _(w(t;) — w(t;—1)) = w(b) — w(a)
j=1 j=1

12.20 Remark. A functio w has bounded variation if it can be written as a difference of two
non-decreasing functions. L.e. Jwi, ws : [a,b] — R non-decreasing, such that w = w; — wa.

12.21 Lemma. Let BV ([a,b]) be the set of all functions on [a,b] that have bounded variation. It
is obvious that BV ([a,b]) is a vector space over R, if we define the norm

|lw] = |w(a)| + Var(w), w € BV([a,b])
BV ([a,b]) is a Banach space

12.22 Remark. Let x € C([a,b]) and w € BV ([a,b]). Then one can see that the Riemann-Stieltjes

integral
n

b
/ duw(t) = lim > 2(&) (w(ty) - witx—1)

k=1
exists, with A = max [t — t;_1|, & € [tk—1,tx). If w € CY([a,b]) then

/ " w(t) duw(t) = / " ety (1) dt
12.23 Theorem. Every f € (C((a,B]))’ can be capressed as a Riemann-Stieltjes integral
f@ = [ () du)
with ||| = Var(u)
12.3 Hilbert Spaces

12.24 Definition. A mapping (:|-) : X x X — F with the properties

z+ylz) = (z]2) + (yl2)

zlx) >0, (z|z)=0 <= =0

is called an inner product on X. A vector space X with an inner product is said to be an
inner product space.
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12.25 Example. Examples of inner product spaces are

(i) Euclidean space R"
(xly) = &om + -+ &ann

(ii) Unitary space C"
(xly) = & + -+ + &l

(iii) Sequence space 2 = {x =(&,) CF ‘ Sl < oo}

(zly) = Z kTl
k=1

(iv) Space of square-integrable functions L?(A) = {f A>T ‘ N |F()[2dt < oo}
= g(t)d
(wli) = [ g

12.26 Definition. Define ||z|| = /(z|z), * € X. This ||| is a norm on X. A space X with a
norm induced by the inner product is called a normed space.

12.27 Lemma. The Cauchy-Schwarz inequality holds
Ve,y e X0 [(zly)| < [lllllyl
as well as the triangle inequality
Ve,ye X oo lz+yll < lzf + llyll
Proof. Without proof. O
12.28 Remark. Consider the parallelogram equality
Iz +yl1* + llz = ylI* = 2(|=1* + lly[I*)

The norm ||z|| = y/(z|z) satisfies this equality (without proof). This implies that [P, LP(A)
and C(A) are not inner product spaces (for p # 2). This can be shown explicitly for IP.
Consider the sequences

$:(171,0,0,"‘) y:(]-v_]-aoaoﬂ)

Then ||z|| = |ly|| = 27 and |z + y|| = || — y|| = 2. Thus the parallelogram equality doesn’t
hold , )
lz +ylI* + llz — yl* = 2% + 2% # 2(27 + 27) = 2(]|z|* + |yI|*)

unless p = 2.
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12.29 Lemma. Let x, — x and y, — y in X. Then (zy|yn) — (x|y).
Proof.

[(@nlyn) — (@y)| = [({Znlyn) = (2aly)) + (@nly) = (2|y))]

|
< wnlyn) — (Tnly)| + [znly) — (z]y)] (12.14)
= [znlyn — )| + {20 — 2|y)|
< Mznlllyn = yll + lzn — z[|ly[| —— 0
O

12.30 Definition. An inner product space X that is complete in the norm generated by the inner
product is said to be a Hilbert space.
A Hilbert space is a Banach space. A subspace Y or an inner product space X is defined
to be a vector subspace of X, with the inner product restricted to Y x Y.

12.31 Theorem. Let Y be a subspace of a Hilbert space H. Then
(i) Y is complete <= Y is closed in H
(ii) Y is finite-dimensional = Y is complete
(ii) H is separable <= Y is separable
(A set X is separable if IM C X such that M is dense in X )
Proof. Without proof. O

12.32 Definition. An element = € X is said to be orthogonal to an element y € X if (z|y) = 0.

One also says that x and y are orthogonal in that case, and it is denoted as x 1 y. Similarly,
let A,B C X. Then

1l A < VacA: zla
Al B < VYac€cAVbeB: albd

Let M be a non-empty subset of X, then the distance between z and M is defined as
0= inf ||z —
inf [lo =]
A subset M C X is said to be convex if
Ve,ye MVa€[0,1]: (az+(1—a)y) € M

12.33 Theorem. Let X be an inner product space and M a non-empty, complete, convex subset
of X. Then for every x € X there exists a unique y € M such that

0= inf ||z —9g| = ||z —
nf llz =gl = llz =yl
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Heuristic Proof. Consider a sequence (y,) C M such that 6, = ||z — yn|| ——= . If we can

show that this is a Cauchy sequence in M, then we can be sure that such a y € M exists
and yy, ey Y. O

12.34 Corollary. If M =Y, where Y is a complete subspace of X and x € X 1is fized, then
z=u1x —y 1s orthogonal to Y .

12.35 Definition. Let H be a Hilbert space and Y a closed subspace of H. Then the set
Yt={2€H|z1Y}
is the orthogonal complement of Y, which is a vector subspace of H.
12.36 Theorem. Let Y be a complete subspace of X. Then
VeeX3AyeY,zeYt: z=y+=z

Proof. The existence of y and z are ensured by Theorem 12.33 and Corollary 12.34, if we
choose a y € Y such that
inf ||z —g|| = ||z — 12.15
inf [lo = 51| =l — (12.15)

and z =2 —y. Then z € Y1, so
r=y+r—y=y+=z (12.16)

To show that y and z are unique, assume that * = y + z = y; + 21 with y,y1 € Y and
z, 21 evYt Then Y >y — 1 =z1—zeYtand

(y—wyilzr —2) =y —wmly —y) =0 (12.17)
since Y L Y. This implies y; = y, and also z; = z. O
12.37 Definition. A vector space X is said to be adirect sum of two subspaces Y and Z of X, if
Vee X dyeY,zeZ: xz=y+z
It is notated as X =Y ¢ Z.

12.38 Remark. Let Y be a closed subspace. Then X =Y ¢ Y.

12.39 Definition. An orthogonal set M in X is a subset of X whose elements are pairwise

orthogonal
Vo,ye M, z£y: (zly) =0

An orthogonal set M is said to be orthonormal if

)L z=y
<MM—{Q o
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12.40 Ezample. (i) The sets
M ={(1,0,0),(0,1,0),(0,0,1)}

() G oo

are orthonormal in X = R?

(ii) Let X = [?. Then the set M = {e, |n > 0} (with e; = (1,0,0,---),es = (0,1,0,---)
and so on) is an orthonormal set

(iii) Let X = L?([0,27]). Then the sets M = {e,, |n > 0} with

1 cosnt
eo(t) = Wors en(t) = T
and M = {e, |n > 0} with
. (t) sinnt
n ﬁ

are orthonormal sets
12.41 Remark. Let M = {e;,--- ,e,} be a basis in X. Then
Vee X Aag, - ,an: T=aie1+- -+ anen
If M is orthonormal, i.e. (ex|e;) = i, then
(xlek) = (a1e1 + -+ + agep + -+ + apeplex)
= oy (e1lex) + -+ + ag (exlex) + - - + an {enlex) = ag

12.42 Remark. The idea of the previous remark can be extended to infinite-dimensional inner
product spaces. Let {e1, -+, e,} be an orthonormal set in an infinite-dimensional space X.
With some x € X, consider

n
Z (xleg) ek, z:=z—y
k=1

By applying the Pythagorean theorem we get

3 Glerte >

k=1
2 2 2
) {xler) ZII (lex) exl|” Z|<xlek>| —Zl(fﬂ\ewl lerl” =
k=1 k=1

Again, by using the Pythagorean theorem it appears that

n 2

D (alew)e

k=1

(zly) = (x — yly) (z]y) — (yly) = <x

n

k=1

n
2 2 2 2 2
] = Nlyll® + =17 = llylI* = > Kelex)|
k=1
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12.43 Theorem (Bessel Inequality). Let {ey|k > 0} be an orthonormal sequence in an inner
product space X. Then

o0
vee X ) |alen) < llz)®
k=1

12.44 Remark. Let {z, |n > 0} be linearly independent. We want to construct a set {e, |n > 0}
with the property

Vn>0: span{zy,---,x,} =span{er, - - ,x,}

This can be achieved using the Gram-Schmidt procedure:

X1
el = ——
1|
(%)
Vg 1= T2 — <$2|€1>€1, €2 1= ||712H

and in general
n—1

Vp = Ty — Z (xnlek) ek, en:

k=1

(%0

e

12.45 Theorem. Let {e} |k > 0} be an orthonormal set in a Hilbert space H. Then the series

o
Zakek, ap € F
k=1

converges in H if and only if
[e.e]

> el < oo

k=1

If the initial sequence converges and

oo
T = E Qg
k=1

then oy, = (zleg). For every x € H the series

> (alex) e

k=1

converges, but not necessarily to x.
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Proof. Proving that the sequence in question converges if and only if >~7 |oz;€|2 converges
is equivalent to proving that S, = aije; + -+ + anpe, is Cauchy sequence if and only if
Ry = |oa)® + - 4 |a|? is a Cauchy sequence. We can compute for n < m

| S — SnH2 = lantient1 + -+ amem”2 = |O‘n+1‘2 +oee ]ozm]2 =R, - R, (12.18)

This does prove that (.Sy,) is a Cauchy sequence in H if and only if (R,,) is a Cauchy sequence
in R.

Now we want to prove the second statement. For this, let € > 72, ager. We can
compute for £ < n that (S,|lex) = ax. Since S, AL by the continuity of the inner
product, it follows that

n—

ok = (Suler) 2225 (aley) (12.19)

The final statement follows from the Bessel inequality:

oo oo o, ¢]
> Haler)? < llol* = > Haler)* < oo = Y (xlex) ex < o0 (12.20)
k=1 k=1 k=1

O

12.46 Definition (Total Orthonormal Sets). A set M C X is said to be a total orthonormal set,

if span M = X. Or in other words if span M is dense in X. A total orthonormal family in
X is called an orthonormal basis.

12.47 Theorem. In every Hilbert space H there exists a total orthonormal set.

Proof. Without proof. O

12.48 Theorem (Parseval Equality). Let M be an orthonormal set in a Hilbert space H. Then

M is total in H if and only if

VoeeH: > [alep) = ||z
k

Proof. Without proof. O

12.49 Theorem. Let H be a Hilbert space. Then

(i) If H is separable, then every orthonormal set in H is countable

(ii) If H contains a total orthonormal sequence, then H is separable

12.50 Example (Examples of Orthonormal bases). (i) Legendre Polynomials

Consider the space L?([—1,1]), which is separable and is the space of all real-valued
functions = with the domain [—1, 1], such that

1
/ lo(t)? dt < o

-1
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We want to find an orthonormal basis of functions for this space. For that we will
consider the linearly independent set of polynomials M = {x,, | n > 0}, where z,,(t) =
t", t € [~1,1]. Then span M = L?*([-1,1]), so M is a total set. However it is not
orthonormal because

1 1
(x| zr) —/ it dt —/ thtl £ 0
-1 -1

if k41 is even. However we can use the Gram-Schmidt procedure to find an orthonor-
mal set with the same span:

0 + 1 1 d®,, \n
n() =1/ Pu(t), Pu(t)=——— (2 =1
en(t) 5 In(t) (t) = gy g (= 1)

These P,(t) are called the (unassociated) Legendre polynomials. The set {e, |n > 0}
constructed in this way is an orthonormal basis in L?([—1,1]):

o0

x = Z (z]en) en, Va € L*([—1,1])
n=0
Hermite Polynomials

Consider L?(R). We can see that t" ¢ L?(R) because

/ t"|? dt = oo
R

Instead, consider M = {x,, | n > 0} with

2
Tn(t) = e~z teR
After normalizing these functions we find

1 t2 dm
en(t) = ————e 2 Hy(t), Hp(t) = (-1)"" —e "’

vV 2mnl/n
where H,(t) are the Hermite polynomials. The set {e,|n > 0} is an orthonormal
basis in L?(R).

Laguerre Polynomials
Consider L?([0,00)) and M = {x,, |n > 0} with

+2

xp(t)=tle 2, t>0

Then we can find

ent) = e S Lo(t), Lu(t) = & O (1met)
’ n! dt»
where L, (t) are called the Laguerre polynomials. The set {e, |n > 0} is an orthonor-
mal basis in L?(]0, 00))
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12.4 Adjoint Operators

Theorem (Riesz Representation Theorem). Let H be a Hilbert space. Then every bounded
linear functional f on H can be written as an inner product
f(z) = (z]z)
where z is a uniquely determined element of H, and || f| = ||z||-
Proof. Without proof. O

Definition. Let H; and Hs be Hilbert spaces, and T : H; — Hs a bounded linear operator.
Then the adjoint operator T™* of T' is the operator T* : Hy — H; such that

Vee Hy,y € Hy: (Tzly) = (x|T"y)
Theorem. The adjoint operator T* of T' exists, is unique, and is bounded with ||T*|| = ||T||

Proof. The existence of T* follows from Theorem 12.51. Specifically, consider for a fixed
y € Hy the map
f(z) = (Tzly), z€H (12.21)

Then f: Hy — [F is a bounded linear functional with
@) = (T2l < T2yl < T2l Iyl = Clal (12.22)
By Theorem 12.51, there exists a z € Hj such that f(z) = (x|z). Then we can just set
Ty =z (12.23)
O

Theorem. Let Hi and Hs be Hilbert spaces, and T, S : Hy — Ho bounded linear operators.
Then

(i) (T"y|z) = (y|Tz), =€ Hi, y€e Hy
(ii) (S +T)* = S* +T*

(iii) (oT)* =aT*, acF

(iv) (T*)* =T
(0) 7T = | TT*| = |7

(i) T"T =0 < T =0

(vii) (ST)* = T*S* (if Hy = H;)

12.55 Definition. A bounded linear operator T': H — H on a Hilbert space H is said to be
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e self-adjoint if T* =T
e unitary if 7" is bijective and 7% = T~}
e normal if TT* =T*T
If T is self-adjoint or unitary, then it is also normal. The inverse is not generally true.

12.56 Ezample. Consider T' = 2¢I, where I is the identity operator. Then T* = —2{I. We can
see that TT* = T*T, but T* # T~ = —2il and T # T*.

12.57 Example. Consider C™ with the inner product

@ly) =&k == (&), y=(m)
k=1

Any bounded linear operator T': C" — C™ can be represented by a square matrix Mp. Or
in other words, y = T'x can be expressed as

m air - Glp &1

) \am o am) \&
If M7 is the matrix of T, then My« (the matrix of T%) is the conjugate transpose of Mry.
12.58 Theorem. Let H be a Hilbert space and T : H — H a bounded linear operator. Then
(i) If T is self-adjoint, then (T'z|x) is real for all x € H
(ii) If H is complex (F = C) and (Txz|x) is real, then T is self-adjoint

Proof. To prove the first statement, assume 7' is self-adjoint. Then

(Tx|z) = (z|Tx) = (T"x|z) = (Tx|z) = (Tx|z) €R (12.24)

For the second statement, assume (T'x|z) to be real. This means

(Tx|z) = (Tz|z) = (x|T*x) = (T"z|x) (12.25)

Thus
0= Tzlx) — (T"z|z) = Tex — T 'zlz) =(T —T")z|x) = T =T~ (12.26)
0

12.59 Theorem. (i) The product of two bounded, self-adjoint operators S and T is self-adjoint,
if and only if ST =TS.
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(i) Let (T,) be a sequence of self-adjoint operators on a Hilbert space H, such that

n—o0

T, —— T in B(H,H). Then T is self-adjoint.
Proof. We will only prove the second statement. We need to show that T'= T*. Consider

Ty =T = (T = T)*|| = | T = T|| === 0 (12.27)

So T* ™= T* and since T, = T* this also means that T}, == T*. This implies

T=1T". O
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13.1 Spectral Theory of Bounded Linear Operators

In this chapter all spaces are assumed to be complex.

13.1 Definition. Assume X # @ is a complex normed space and consider the operators

T:D(T) — X
T—M:D(T) — X

where Iz = z and )\ € C. If it exists, denote
Ry = Ry(T) = (T = AI)™!
Note that R) is a linear operator.
13.2 Definition. A regular value of T is a complex number A such that
(i) RA(T) exists
(ii) Rx(T') is bounded
(iii) RA(T') is defined on a dense subset of X

The resolvent set p(T") is the set of all regular values of T'. Furthermore we define o(7T") =
C\ p(T) as the spectrum of T'. A value A € o(T) is called a spectral value of T'.

13.3 Definition. The spectrum o(7') is partitioned into three disjoint sets:

e The point spectrum or discrete spectrum o,(7") is the set of values for which R (T")
does not exist

e The continuous spectrum o.(7") is the set of values for which R)(T") exists and is
defined on a dense subset of X, but is unbounded

e The residual spectrum o,.(T") is the set of values for which R)(T') exists but the domain
of R)\(T') is not dense in X

13.4 Remark. These sets are disjoint and o(T") = 0,(T") U 0(T') U 0,(T"). Also note that Rx(T)
does not exist if and only if T'— Al is not injective, i.e.

Jx#£0: (T—-MN)z=Tz—dx=0

Then A € 0p(T') <= Fxr #0: Tz — Az =0, and the vector x is called an eigenvector of
T. If X is finite dimensional, then
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13.5 Ezample. Consider X = [? and define T : [? — [? such that

T$:(07£17§2,£3’-~')7 J’i:(fk)
T is called a right-shift operator and D(T') = I2. We have

o0
2 2 2
Tz =) l&l* = ll=|* = |7l =1
k=1

Now consider the case where A = 0. Then we have Ry = T~ ! defined on the domain
D(T ) ={y = (m) |m =0}, and

T 'y =(n,m3,-), yeDTH

Rg does exist, but D(T~!) is not dense in X. Thus A = 0 is part of the residual spectrum
of T.

13.6 Remark. Let X be a complete Banach space and take 7' € B(X,X) and A € p(T"). Then
R)(T) is defined on the entire set X and is bounded.

13.7 Theorem. Take T € B(X,X), where X is a Banach space. If |T|| < 1, then (I —T) "
exists, belongs to B(X,X) and

o0
I-T)"'=> TF=14+T+T"+.-.
k=0
where the series converges on B(X, X).

Proof. Firstly, note that ||T%|| < |T||*. Since |T|| < 1 we can find that

o0 [e.e]
3 HT’“H <3 IT|* < o0 (13.1)
k=0 k=0
This implies that the series
o0
S = ZTk (13.2)
k=0

converges. Then we can compute
I-TYT+T+T*+- - 4+T) = +T+T?*+-- - +THI-T)=1-T""" (13.3)

Since ||T"H| < |T|"*" =% 0, we get (I —T)S = S(I —T) = I and thus finally
S=I-T)"" O

13.8 Theorem. The resolvent set p(T') of T € B(X, X) on a complex Banach space X is open.
Hence the spectrum o(T) is closed.
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Proof. Without proof. O

13.9 Theorem. The spectrum o(T) of T € B(X,X) on a complex Banach space X is compact
and lies in the disk |\| < ||T|.

Proof. Take X\ # 0 and denote 6 = % Using Theorem 13.7 we obtain

[e'e) 1 [e'e) 1 k
Ry=(T-MN)"'=—-0I-0T)"'=-0) (0T)F =< ~T 13.4
A= (=D = o - om) =03 0T = - 3 (5 (13.4)
k=0 k=0
where the series converges on
1 1]
“T|l=-—x<1 13.5
|7~ < 19
So by Theorem 13.7 Ry € B(X,X). Since o(T) is closed by Theorem 13.8 and bounded,
we have that o(T") is compact. O

13.10 Theorem. Let X be a Banach space and T € B(X,X). Then for every A\g € p(T) the
resolvent Ry(T') has the representation

RA(T) =D (A= Xo)"RE
k=0

where the series converges absolutely for \ in the open disk

1
A= o] <7
[Riow|

in the complex plane.
Proof. Without proof. O

13.11 Definition. The spectral radius r,(T") of T € B(X, X) is the radius

ro(T) = sup |T]|
Ao (T)

One can show that

To(ry = lim /|77

n—oo

13.12 Theorem (Resolvent Equation, Commutativity). Let X be a complete Banach space and
take T € B(X,X) and A\, u € p(T'). Then

(i) Ry — Rx= (p— A)RuR\
(i) Ry commutes with any S € B(X, X) which commutes with T

(iii) RaR, = R,R)
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Proof. To prove the first statement, we can simply compute

R, — Ry = R,I — IR,
=R, ((T = M)R)) — (Ru(T — pI)) Ry
= Ru(T — M =T + uI)R)
= Ru(p — N By = (1 — ARy Ry

(13.6)

The second statement assumes that 7S = ST'. This implies (T"— AI)S = S(T'— AI). Thus

R)\S = R\S(T — MI)Ry = R\(T — M\)SR) = SR (13.7)

The third statement follows directly from the second. O

13.13 Theorem. Let X be a complex Banach space. Consider T € B(X, X) and the polynomial
p(A) = ap\" + AN P ag, an£0

Then
o(p(T)) = p(o(T))
where p(T) = a,T™ + a1 T L+ -+ T and p(o(T)) = {p(\) € C| X € o(T)}

Proof. Without proof. O

13.14 Theorem. The eigenvectors {x1, -+ ,x,} corresponding to different eigenvalues A1, - , Ay
of a linear operator T' on a vector space X are linearly independent.

Proof. Without proof. O

13.2 Spectral Theorem for Bounded Self-Adjoint Operators

In this section we assume that H is a complex Hilbert space, and T': H — H is a bounded,
linear operator.

13.15 Example. Consider the Hilbert space H = L?[0,1] and the operator
(Tx)(t) = ta(t), te]0,1], =z € L*[0,1]

T is self-adjoint. This can be seen explicitly

1 L T
(Toly) = [ tapiar = [ awim@ar = =1y

We want to find the spectrum and resolvent sets. Consider the operator T) := T — AI. We
can compute

(Tha)(t) = (Tx — Az)(t) = ta(t) — Ae(t) = (¢t = N (t) = y(t)
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Then we can find the operator R)

(Rap)(t) = (), te0,1]

There are now two cases to consider. Firstly, if A € C\ [0, 1], then % is bounded, so

1 1
1 2 1 2 1 2
HRAyIIQZ/ ly(t)[”dt < sup / ly(t)]"dt < sup y]l
o |t— AP tefo.] [t — AP Jo tefo.1] [t — A”

Thus, R) is a bounded linear operator on all of L?[0, 1], implying A € p(T).
Now let A € [0,1], then X5 is not bounded and R, is not defined on all of L?[0,1].

Consider the function y(t) = vt — Al 1y(t), t € [0,1]. Then

Vit— A 1
Ryy(t) = ﬁl[)\,l] (t)dt = ﬁl[M] (t)

and the norm is

L | |
R 2:/ Try 1(t dt:/ — dt=
[l 0 VI () L E—A e

if A < 1. So R, is only defined on

D(R)) = {y e L*[0,1]

1 ‘ 2
y(®)]
dt < o0
/0 |t = Al
One can prove that D(R)) is dense in L?[0,1], so A € o.(T). Additionally o.(T) = [0, 1],
5p(T) = 0(T) = 0 and p(T) = C\ [0, 1]

13.16 Theorem. Let H be a complex Hilbert space and T : H — H a bounded self-adjoint
operator. Then

(i) All eigenvalues of T (if they exist) are real.
(ii) Eigenvectors corresponding to different eigenvalues of T' are orthogonal.
Proof. Without proof. O

13.17 Theorem (Resolvent Set). Let H be a complex Hilbert space and T : H — H a bounded
self-adjoint operator. Then \ € p(T) if and only if 3C > 0:

| Tz — Az|| > C|lz||, VYeeH

Proof. Without proof. O
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13.18 Theorem (Spectrum). Let H be a complex Hilbert space and T : H — H a bounded self-
adjoint operator. Then the spectrum o(T') of T is real and belongs to the interval [m, M]

m = inf (Tz|x) M = sup (Tx|z)
lzll=1 |lz||=1

m and M are spectral values of T.
Proof. Without proof. O

13.19 Theorem (Residual Spectrum). The residual spectrum o,(T) of a bounded self-adjoint
operator T : H — H on a complex Hilbert space H is empty.

Proof. Without proof. O

13.20 Definition. We introduce a partial order ”<” on the set of self-adjoint operators on H. If
T is a self-adjoint operator, then we know that (T'z|x) is real.

e Let 77,175 : H — H be bounded self-adjoint operators. We write 77 < T if

(Thz|z) < (Thzlz), VeeH

e A bounded self-adjoint operator T is said to be positive if T' > 0, that is

(Tx|x) >0, VYxeH

We remark that the sum of positive operators is positive.

13.21 Theorem. FEvery positive bounded self-adjoint oplemtor T : H — H on a complex Hilbert
space H has a positive square root T2, that is (T'2)? = T, which is unique. This operator
commutes with every bounded linear operator on H that commutes with T'.

Proof. Without proof. O

13.22 Definition. Let H be a Hilbert space and Y a closed subspace of H. Previously we have
shown that H =Y @ Y. This meant

Vee HIyeY, zeYt: z=y+z
We defined y as the minimizer of the function Y 3 § — ||z — 7|, i.e.
x—vy||=inf ||z —g
lz =yl = Inf [l — 7]

We define the operator P : H — H such that Pz := y. This is called an orthogonal
projection on H. More specificailly, P is said to be the projection of H onto Y.
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13.23 Remark. If P is the projection of H onto Y, then
PH)={Pzx|lzeH}=Y
and ker P =Y.

13.24 Theorem. A bounded linear operator P : H — H on a Hilbert space H is a projection on
H if and only if P* = P and P? = P, or in other words if it is self-adjoint and idempotent.

Proof. Assume that P is a projection. Take x € H, then
Pr=y+z=Px+0 (13.8)

where y € Y and z € YL, Thus P(Px) = Px. Now take x1 = y1 + z1 and z9 = yo + 29,
where y1,y2 € Y and 21,29 € Y+, Then

(Pzilx2) = (y1ly2 + 22) = (Y1ly2) + (Y1l22) = (y1ly2) (13.9)

and
(x1]Px2) = (Y1 + 21ly2) = (Y1ly2) + (21ly2) = (y1ly2) (13.10)

This implies P* = P. Conversely assume P* = P? = P is given. Set Y := P(H). We need
to prove that if x =y + 2z, with y € Y and z € Y+, then y = Pz. We write

r=Pr+x— Px (13.11)
and check that # — Pz € Y. Take u € P(H) <= u = Pz, v € H. Compute
(ulz — Pz) = (Pvlz — Pz) = (Pv|z) — (Pv|Pz) = (Pv|z) — (P*v|z) =0 (13.12)
OJ
13.25 Example. Consider H = L?([0,1]). Define for A € [0, 1]

x(t), t<A\

(P)(t) = L ()z(t) = {0 t> A

We want to check that P is a projection. According to Theorem 13.24 we need to prove
that P? = P* = P. It is clear that P? = P. So we compute

1
<P£IT1|J/‘2>:/O (P:El)(t)mclt

1
- /0 10,0 (B2 (£)72(0)

1 e —
:/ Cl?l(t)]l[o’)\}(t)l‘g(t) dt = (x1|Pz2)
0
This implies that P is a projection on H. We define
Y = P(H) = {z € L*([0,1]) |z(t) = 0, t € (\, 1]}
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13.26 Definition. Assume H is a Hilbert space and P;, P>, P are projections on H. Denote
Y;=PF(H)=ImP,and Y = P(H) = Im P. Then

(i) P is positive and (Pz|z) = |Pz|?.
(ii) Py P» is a projection if and only if Py P, = P,P;. Then P, P, projects H onto Y7 N Ya.

(iii) P; + P, is a projection on H if and only if Y7 L Y5. In this case P; + P, projects H
onto Y7 @ Ys.

(iv) P, — Py is a projection on H if ans only if Y] C Y5.
13.27 Theorem (Partial Order). The following statements are equivalent
(i) PPy = PP =P
(i) Y1 C Ys
(iii) ker P; D ker P,
() || Pra|| < || Py
(v) P, < Py (P, — P is positive)
Proof. Without proof. O

13.28 Definition. Let H be a complex Hilbert space. A real spectral family is a family { E) | A € R}
of projections Ey on H such that

(i) Bx<E, YA<p
(i) EAx)‘_)—_(X; 0, Exx Ao, x, VreH
(ili) Exyor :=lim,xi0 Eyr = Exx, Vo e H

{Ex| X € R} is called a spectral family on an interval [a, b] if

A
By = 0, <a
I, \>b
We define a spectral family for a bounded self-adjoint operator T': H — H. For this, fix

A € R and consider T\ = T — AI. Define the positive operator By = (Tf)% Remark that
B, is the unique positive self-adjoint operator such that B? = Tf. Define T;r = %(BA +T)).

15.29 Example. Let H = L?([0,1]) and take (T'x)(t) = tz(t). We want to construct the projections
FE,. For this compute

(Taz)(t) = (Tx)(t) — Ax(t) = (¢ — Nz(t), tel0,1]
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Then we can calculate
(TR2)(t) = (t — \)x(t)

and
(Baz)(t) = v/ (t — N)2z(t) = |t — Mz(t), te€]0,1]

So the positive part of T is
(T 2)(t) = 5 ((Baz)(t) + (Taz)(t))

(|t = Az(t) + (¢t = Nz(t) = (t - N)Tz(t), te]l0,1]

N~ N

where

I s, §>0
S =
0, s<0

So this results in
z(t), t>A\

(T3e) (1) = {0 )

This lets us calculate the kernel
ker TV ={x e H|Tf2z =0} ={zx € H|z(t) =0, t > \}
From Example 13.25 we know that the projection Ey of H onto ker T; is defined as
(Exz)(t) = Ly x(t)z(t)

13.30 Theorem. The family {Ey | A € R}, where E is the projection of H onto T;r, 1s the spectral
family of the interval [m, M| which is the smallest interval containing the spectrum of T.

Proof. Without proof. O

13.31 Theorem (Spectral Theorem for Bounded Self-Adjoint Linear Operators). LetT : H — H
be a bounded self-adjoint linear operator on a complex Hilbert space H. Then

0o M
T:/ )\dEA:/ AAE)

where Ey is the spectral family associated with T. In particular

00 M
(Taly) = [ Ad(Esaly) = [ Ad(Baly). Voyen
13.32 Ezample. Coming back to (T'z)(t) = tx(t), we can compute

(T2)(t) = / T AdEsa(t) = /0 AdTg y (£)z(t)

— 00

1
- J:(t)/o Ay (t) = a(t) - -1 = ta(t)
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13.3 Compact & Unbounded Linear Operators

13.33 Definition. Let X be a normed space. F' C X is compact in X if every open cover of
F contains a finite subcover, that is, for every family {G,} of open sets in X such that
F c |, Gq there exists {Gq,,- -+ ,Ga,} C {Ga} such that F' C |J;_; Ga, -

13.34 Theorem. F' is compact in X if and only if every sequence (x,) C F has a subsequence
that is convergent in F.

Proof. Without proof. O

13.35 Definition. A set F' C X is said to be relatively compact if F' is compact. Every bounded
set in a finite-dimensional normed space is relatively compact.

13.36 Definition. Let X and Y be normed spaces. An operator T : X — Y is called a compact
linear operator if 7" is linear and if for every bounded subset M C X the image T'(M) is
relatively compact.

13.37 Theorem (Compactness Criterion). Let X and Y be normed spaces and T : X — Y a
linear operator. Then T is compact if and only if it maps every bounded sequence (x,) C X
onto a sequence (T'xy,) CY that has a convergent subsequence, that is

k—o0

V(zp) C X 3(Txp,)CY: Tzxp, —yeY
Proof. Without proof. O

13.38 Theorem. If T : X — Y is bounded and ImT = T(X) is finite-dimensional, then T is
compact.

13.39 Example. Consider X =Y = [? over the field F. The operator T defined by

Tx = (251762763 +§470707O" )

for x = (&) is compact. Indeed the set

T(X) = {(771777277737070707 te ) |n1a7727n3 S F}

is a three-dimensional subspace of [?. By Theorem 13.38 T is compact.

13.40 Theorem. Let (T},) be a sequence of compact linear operators from a normed space X to
a Banach space Y. If T, = T in B(X,Y) then T is compact.

Proof. Without proof. O

13.41 Example. Consider X =Y = [? and the operator

Tx = <§1)§227£33’”')
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We can prove that T is compact if we take the sequence

Tn:z:<§1,£2£3 '%”00 )

Then T, is bounded and dim (7,,(X)) = n. So by Theorem 13.38 every element of the
sequence is compact. Now we compute

2

gnJrl £n+2
T —T,)
I H<°O %anw
Z = Ve Z S
k= n+1 k=n-+1
n—oo

Thus ||T' — T,|| < —— 0. By Theorem 13.40 T is compact.

n—i—l

13.42 Theorem. Let T : H — H be a bounded linear operator on a separable Hilbert space H.
The following statements are equivalent.

(i) T is compact.
(i) T* is compact.
(iii) If (znly) =2 (z|y), Yy € H then Tz, =% Tx in H.

n—0o0

(iv) There exists a sequence of T,, of operators of finite rank such that ||T — T,| —— 0.
Proof. Without proof. O
13.43 Theorem (Hilbert-Schmidt Theorem). Let T be a self-adjoint compact operator. Then

(i) There exists an orthonormal basis consisting of eigenvectors of T.

(ii) All eigenvalues of T are real and for every eigenvalue N # 0 the corresponding
etgenspace is finite dimensional.

(iii) Two eigenvectors of T' that correspond fo different eigenvalues are orthogonal.

n—0o0

() If T has a countable set of eigenvalues {\,|n > 1} then A\, —— 0.

Proof. Without proof. O

13.44 Corollary. Let T be a compact self-adjoint operator on a complex Hilbert space H. Then
there exists an orthonormal basis {ey |k > 1} such that

o0
Tz = Z)\n (x|en) en, x€H

n=1

Proof. Without proof. O
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13.45 Ezample (Unbounded Linear Operators). Take H = L?(—oc, 00). Conisder the first multi-
plication operator

(Tz)(t) =tz(t), te R, DT)= {:17 € L?*(—o0, ) ‘ / lzt))? dt < oo}
It should be noted that D(T') # L?(—o0,c0). Indeed

2(t) = {1’ P2l 1200, 00)

9 00 1
qu2=/ \xmr?dt:/l Lot

[ee] (e}
| T2 :/ t2|x(t)]2dt:/ 1dt = o0
—00 1

Let us recall the definition for boundedness of linear operators. An operator T': D(T') — H
is bounded if

because

IC >0Ve € D(T): ||Tx|| <Oz
Consider the sequence

ITp =

{L n<t<n+l

0, else

This sequence has the norm

o) n+1
\\an:/ rmn@)\?dt:/ dt =1

[e%} n+1
Tz :/ t2|xn(t)|2dt:/ £2dt > n?
—0 n

So ||Tx,||* > n2||2n||, ¥n > 1, hence T is unbounded. The differentiation operator

but

(Tz)(t) =iz’ (t), D(T)C L*(—o0,c0)

is also unbounded. We will not discuss what D(T") is at this point, however we will do so
later. Here we will only remark that all continuously differentiable functions with compact
support and Hermite polynomials belong to D(T).

13.46 Example. Let H be a complex Hilbert space. Let T : D(T') — H be a densely defined linear
operator. The adjoint operator T* : D(T*) — H of T is defined as follows. The domain
D(T™) of T* consists of all y € H such that Jy* € H satisfying

(Tzly) = (zly*), Vo eD(T)
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For each such y € D(T*) define T*y := y*. Remark that D(T™) is not necessarily equal to
H. Since D(T) is dense in H, for every y € D(T*) there exists a unique y* satisfying the
above equation. Before we discuss the properties of adjoint operators, we will first take a
look at the extension of a linear operator. Consider again the differentiation operator

(Ty2)(t) =i/ (t)
We can define T3 only for functions from
D(Ty) = Cy(R) = {f € C'(R) | f = 0 outside some interval }

Now let
B =0, D) ={fec®| [~ ifar<oe, [ |1 ar<oo

T) and T are different operators, but D(7y) C D(T») and 11 = TQ"D(Tl).

13.47 Definition. An operator 75 is said to be an extension of another operator 17 if D(T1) C
D(T,) and T1 = Ta|p(r,)- In this case we write T1 C Tb.

13.48 Theorem. Let T : D(T) — H be a linear operator, where D(T) C H. Then

(i) T is closed if and only if x,, — x, x, € D(T) and Tz, — y imply x € D(T) and
Tx =y.

(ii) If T is closed and D(T) is closed, then T is bounded.
(iii) Let T be bounded. Then T is closed if and only if D(T) is closed.

Proof. Without proof. O
13.49 Theorem. Let T be a densely defined operator on H. Then the adjoint operator T* is

closed.

Proof. Without proof. O

13.50 Definition. If a linear operator 7" has an extension 77 which is a closed linear operator,
then T is said to be closable. If T is closable, then there exists a minimal closed operator
T satisfying T' C T. The operator T is said to be the closure of T.

13.51 Theorem. Let T : D(T) — H be a densely defined linear operator. If T is symmetric, its
closure T exists and is unique.

Proof. Without proof. O
13.52 Theorem. LetU : H — H be a unitary operator. Then there exists a spectral family {Ep} ..

on [—m, | such that
U= / e dE,

—T

where the integral is understood in the sense of uniform operator convergence.
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Heuristic Proof. One can show that there exists a bounded self-adjoint linear operator S
with o(S) C [—m, 7] such that
U=¢e" =cosS +isins (13.13)
Let {Ep} be a spectral family for S on [—m,7]. Then
K
S = 0 dEy

—T

Hence - - -
U:ew:/ cosOdEngi/ SianEgz/ e dE,

O

13.53 Definition. Let T': D(T') — H be a self-adjoint linear operator, where D(T') is dense in
H and T may be unbounded. Define a new operator

U= (T —il)(T+il)™?

called the Cayley transform of T'. It is defined on the entire Hilbert space since we know
that —i € o(7") C R. One can also check that it is unitary and

T=iI+U)I-U)"!

13.54 Theorem (Spectral Representation for Unbounded Self-Adjoint Operators). LetT : D(T) —
H be a self-adjoint linear operator and let D(T') be dense in H. Let U be the Cayley trans-
form of T and {Eg} a spectral family in the spectral representation for —U. Then

s 9 - o0
T:/ tan — dEjy :/ AdE)
- 2 —00
where Ey = EzarctanA, A€ R.
Proof. Without proof. O

13.55 Remark. We remark that T =i(I + U)(I — U)~! = f(=U), where f(0) = il_g. Let

176
—U = / e dF,

Then
T " 5 T 1_€i9 _
T = "VdEy = —— dFE,
/,rf(e ) dEs /,r11+el€ o

:/Wi(l—COSQ)—’L:S%DedEG
_r (14 cosf)+isind

T —2isinf -
= ————— dFE
/_ Z2—1—26039 0

0 -
= tan — dE
/_7r an2 0

35
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13.56 Example (Spectral Representation of the Multiplication Operator). Consider the space H =
L?(—00, 00) which is to be taken over C and take

(Tx)(t) = ta(t), t e R, D(T) = {m € L?(—00,0) ‘ /_Z ) dt < oo}

Then T is self-adjoint and the spectral family associated with T is

x(t), t<A

(Fe)(t) = {0 o
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