% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Linear Differential Equation Systems} \begin{defi} Let $I$ be an open interval, and $A: I \rightarrow \realn^{n \times n}$, $b: I \rightarrow \realn^n$. Then the ODES \[ y' = A(x)y + b(x) \] is said to be a linear differential equation system. If $b$ is the zero function, then the system is homogeneous (otherwise it's inhomogeneous). If $A(x) = \const.$, then the system is said to have constant coefficients. \end{defi} \begin{rem} \begin{enumerate}[(i)] \item By using substitution we can transform the equation \[ y^{(n)} = a_{n-1}(x) y^{(n-1)} + a_{n-2}(x) y^{(n-2)} + \cdots + a_0 y + b(x) \] into the system \begin{align*} y_{n-1}' &= a_{n-1}(x) y_{n-2} + a_{n-2}(x) y_{n-3} + \cdots + a_0 y + b(x) \\ y_1 &= y' \\ y_2 &= y_1' \\ &~~\vdots \\ y_{n-1} &= y_{n-2}' \end{align*} \item Let $y, z$ be solutions of $y' = A(x) y + b(x)$, then $y - z$ is the solution of the related homogeneous equation $y' = A(x)y$. This follows from \begin{align*} (y - z)'(x) &= A(x)y(x) + b(x) - (A(x)z(x) + b(x)) \\ &= A(x) (y - z)(x) \end{align*} \end{enumerate} \end{rem} \begin{lem}[Grönwall's Lemma] Let $I$ be an open interval, $x_0 \in I$, $y: I \rightarrow [0, \infty)$ continuous, $a, b \ge 0$ and \[ y(x) \le a + b \abs{\int_{x_0}^x y(t) \dd{t}} \] Then \[ y(x) \le a e^{b\abs{x - x_0}} \] \end{lem} \begin{proof} Here we only prove $x > x_0$, but the proof for $x \le x_0$ works analogously. Let $\epsilon > 0$ be arbitrary and choose \begin{equation} z(x) := a + \epsilon + b \int_{x_0}^x y(t) \dd{t} \end{equation} Then \begin{equation} z'(x) = by(x) \le bz(x) ~~\forall x \in I \end{equation} And since \begin{equation} z(t) \ge a + \epsilon > 0 \end{equation} we get \begin{align} \int_{x_0}^x \frac{z'(t)}{z(t)} \dd{t} &\le b(x - x_0) \\ \int_{x_0}^x \frac{z'(t)}{z(t)} \dd{t} &= \ln(x) - \ln(z) \end{align} Due to the monotony of the exponential function \begin{equation} z(x) \le z(x_0) e^{b(x - x_0)} = (a + \epsilon) e^{b(x - x_0)} \end{equation} So \begin{equation} y(x) \le z(x) \le (a + \epsilon) e^{b(x - x_0)} \le a e^{b(x - x_0)} ~~\forall x \in I \end{equation} \end{proof} From now on $I$ will always be an open interval, and \begin{align*} A: I &\rightarrow \realn^{n \times n} \\ b: I &\rightarrow \realn^n \end{align*} are continuous, $x_0 \in I$ and $y_0 \in \realn$. \begin{cor} The IVP \begin{align*} y' = A(x)y + b(x) && y(x_0) = y_0 \end{align*} has a unique maximal solution that is defined on all of $I$. \end{cor} \begin{proof} \begin{equation} \begin{split} f: I \times \realn^n &\longrightarrow \realn^n \\ (x, y) &\longmapsto A(x) y + b(x) \end{split} \end{equation} We need to show that $f$ fulfils a local Lipschitz condition in $y$. Let $(x_1, y_1) \in I \times \realn^n$. Choose a compact $I_1$ such that $x_1 \in I_1 \subset I$. Then $A(x)$ is bounded on $I_1$, i.e. \begin{equation} \exists L > 0: ~~\norm{A(x)} \le L ~~\forall x \in I_1 \end{equation} And then $\forall (x, y), (x, z) \in I_1 \times \realn^n$ \begin{equation} \norm{f(x, y) - f(x, z)} = \norm{A(x)(y - z)} \le \norm{A(x)}\norm{y - z} \le L \norm{y - z} \end{equation} So $f$ fulfils a local Lipschitz condition, and thus there exists a unique maximal solution. Let $a, b \in \realn \cup \set{-\infty, \infty}$ such that $y: (a, b) \rightarrow \realn^n$ is the maximal solution. Assume $b \in I$ (so $y$ isn't defined on all of $I$). Then there exists $M, K > 0$ such that $\norm{A(x)} \le M$ and $\norm{b(x)} \le K$ and $[x_0, b]$ and \begin{equation} \begin{split} \norm{y(x)} = \norm{y_0 + \int_{x_0}^x y'(t) \dd{t}} &= \norm{y_0 + \int_{x_0}^x A(t)y(t) + b(t) \dd{t}} \\ &\le \norm{y_0} + \int_{x_0}^x \norm{A(t)}\norm{y(t)} \dd{t} + \int_{x_0}^x \norm{b(t)} \dd{t} \\ &\le \norm{y_0} + K(b - x_0) + M\int_{x_0}^x \norm{y(t)} \dd{t} \end{split} \end{equation} Applying Grönwall's Lemma onto $\norm{y(t)}$ yields \begin{equation} \norm{y(x)} \le \left(\norm{y_0} + K(b - x_0)\right) e^{M\abs{x - x_0}} \le \left(\norm{y_0} + K(b - x_0)\right) e^{M(b - x_0)} \end{equation} and thus $y$ is bounded on $[x_0, b)$. So none of the conditions from \Cref{thm:837} are satisfied, and therefore $b \notin I$. This mean that $y$ is defined up to the right boundary of $I$. \end{proof} \begin{rem} One can show that for linear systems, the Picard iteration leads to a solution that converges on all of $I$. This would lead to an alternative proof. \end{rem} \begin{cor} Let $y, z: I \rightarrow \realn^n$ be solutions of the ODES \[ y' = A(x)y + b(x) \] Then the following are equivalent \begin{enumerate}[(i)] \item $y(x) = z(x) ~~\forall x \in I$ \item $y(x_0) = z(x_0)$ \item $y(x) = z(x) ~~\text{ for some } x \in I$ \end{enumerate} \end{cor} \begin{proof} $(i) \implies (ii)$, $(ii) \implies (iii)$ is trivial. To prove $(iii) \implies (i)$, let $x_1 \in I$ such that $y_1 = y(x_1) = z(x_1)$. Then $y, z$ are solutions to the IVP \begin{align} y' = A(x)y + b(c) && y(x_1) = y_1 \end{align} Since this problem has unique solutions \begin{equation} y = z \end{equation} must hold. \end{proof} \begin{thm} The solution set of the homogeneous ODES \[ y' = A(x)y \] so \[ V := \set[y'(x) = A(x) y(x) ~~\forall x \in I]{y: I \rightarrow \realn^n} \] is an $n$-dimensional linear subspace of $C^1(I, \realn^n)$. \end{thm} \begin{proof} Proving that $V$ is a vector space is trivial. So let $e_1, \cdots, e_n$ be a basis of $\realn^n$ and let $y_i$ be the unique solutions of the initial value problem \begin{align*} y' = A(x) y && y(x_0) = e_i ~~i \in \set{1, \cdots, n} \end{align*} Then $y_1, \cdots, y_n$ is a basis of $V$. To prove their linear independence, let $\alpha_1, \cdots, \alpha_n \in \realn$ such that \begin{equation} \alpha_1 y_1 + \cdots + \alpha_n y_n = 0 \end{equation} then \begin{equation} \alpha_1 y_1(x_0) + \cdots + \alpha_n y_n(x_0) = \alpha_1 e_1 + \cdots + \alpha_n e_n = 0 \end{equation} Since the $e_1, \cdots, e_n$ are linear independent \begin{equation} \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \end{equation} To prove that the $y_1, \cdots, y_n$ span $V$, set $z \in V$ and choose $\alpha_1, \dots, \alpha_n \in \realn$ such that \begin{equation} \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n = z(x_0) \end{equation} Then the $z$ and $\alpha_1 y_1 + \cdots + \alpha_n y_n$ are maximal solutions of the ODES that are equal in $x_0$. Thus \begin{equation} z = \alpha_1y_1 + \cdots + \alpha_n y_n \end{equation} \end{proof} \begin{defi} A basis $y_1, \cdots, y_n$ of $V$ is said to be a fundamental system of the ODES \[ y' = A(x) y \] Analogously, $n$ linearly independent solutions of the equation \[ y^{(n)} = a_{n-1}(x) y^{(n-1)} + a_{n-2}(x) y^{(n-2)} + \cdots + a_0 y \] are said to be a fundamental system. \end{defi} \begin{eg} Consider the inhomogeneous equation \[ y' = \sin(x)y + \sin(x)\cos(x) \] First, find the solutions to the homogeneous equation \[ \frac{y'}{y} = \sin(x) \] This can be done via integration \begin{align*} \int \frac{y'(t)}{y(t)} \dd{t} &= -\cos(x) + c \\ \ln y + c &= -\cos(x) + c \end{align*} Then the solution is \[ y = K e^{-\cos(x)} \] The fundamental system in this case is $e^{-\cos x}$. We can use a technique called "variation of the constant" to find a solution of the inhomogeneous equation. Define \[ y(x) = C(x) e^{-\cos(x)} \] Deriving this gives \[ y'(x) = C'(x) e^{-\cos(x)} - C(x) \sin(x) e^{-\cos(x)} \] Resubstituting this into the initial equation yields \begin{align*} C'(x) e^{-\cos(x)} + \cancel{C(x)\sin(x)e^{-\cos(x)}} &= \cancel{C(x)\sin(x)e^{-\cos(x)}} + \sin(x)\cos(x) \\ C'(x) e^{-\cos(x)} &= \sin(x)\cos(x) \\ C'(x) &= \sin(x)\cos(x)e^{\cos(x)} \\ C(x) &= (1 - \cos(x))e^{\cos(x)} \end{align*} So the general solution to the ODE is \[ y(x) = 1 - \cos(x) + K e^{-\cos(x)} \] \end{eg} \begin{thm} Let $y_1, \cdots, y_n$ be a fundamental system for $y' = A(x) y$. Define an $n \times n$-matrix \[ W(x) := (y_1(x), y_2(x), \dots, y_n(x)) \] Then $W(x)$ is invertible $\forall x \in I$ and \begin{align*} z: I &\longrightarrow \realn^n \\ x &\longmapsto W(x) \int_{x_0}^x \inv{W(t)}b(t) \dd{t} \end{align*} is a solution to the inhomogeneous system \[ y' = A(x)y + b(x) \] \end{thm} \begin{proof} According to the prerequisites the $y_1, \cdots, y_n$ are linearly independent, so the $y_1(x), \dots, y_n(x)$ are also linearly independent in $\realn^n$. Thus \begin{equation} \det W(x) \ne 0 \implies W(x) \text{ invertible} \end{equation} Deriving this yields \begin{equation} W'(x) = A(x)W(x) \end{equation} which means the $i$-th column of this equation is $y_i'(x) = A(x)y_i(x)$. Deriving $z$ gives us \begin{equation} \begin{split} z'(x) &= W'(x) \int_{x_0}^x \inv{W(t)} b(t) \dd{t} + W(x)\inv{W(x)} b(x) \\ &= A(x) z(x) + b(x) \end{split} \end{equation} To apply the fundamental theorem, $W(t)b(t)$ should be continuous. The mapping $A \mapsto \inv{A}$ is continuous on $Gl(n)$ (space of invertible matrices). \end{proof} \begin{eg} Consider the system \begin{align*} u' = v + \sin(x) && v' = -u + \cos(x) \end{align*} The homogeneous system in this case is \[ \begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \] The fundamental system is \begin{align*} y_1(x) = \begin{pmatrix} \sin \\ \cos \end{pmatrix}(x) && y_2 = \begin{pmatrix} \cos \\ -\sin \end{pmatrix}(x) \end{align*} Then define \begin{align*} z(x) &= C_1(x)y_1(x) + C_2(x)y_2(x) \\ &= \underbrace{\begin{pmatrix} \sin(x) & \cos(x) \\ \cos(x) & -\sin(x) \end{pmatrix}}_{W(x)} \begin{pmatrix} C_1(x) \\ C_2(x) \end{pmatrix} \end{align*} Deriving this yields \begin{align*} z'(x) &= C_1'(x)y_1(x) + \cancel{C_1(x)y_1'(x)} + C_2'(x)y_2(x) + \cancel{C_2(x)y_2'(x)} \\ &= \cancel{C_1(x)Ay_1(x)} + \cancel{C_2(x)Ay_2(x)} + b(x) \\ &= b(x) \end{align*} This can be explicitly solved \begin{align*} C_1'(x)\sin(x) + C_2'(x)\cos(x) &= \sin(x) \\ C_1'(x)\cos(x) - C_2'(x)\sin(x) &= \cos(x) \end{align*} Leading to \begin{align*} C_1'(x) &= C_1'(x)(\sin^2(x) + \cos^2(x)) = \sin^2(x) + \cos^2(x) = 1 \\ C_2'(x) &= C_2'(x)(\cos^2(x) - \sin^2(x)) = 0 \end{align*} Thus \begin{align*} C_1(x) &= x \\ C_2(x) &= 0 \end{align*} So the general solution of the homogeneous equation is \[ y_h = \begin{pmatrix} x \sin(x) \\ x \cos(x) \end{pmatrix} \] Our next goal is to find a solution of $y' = Ay$ with $A \in \realn^{n \times n}$ constant. In one dimension the solution would be \[ y = Ce^{Ax} \] Does this also hold for $n > 1$? \end{eg} \begin{rem} Let $A \in \realn^{n \times n}$ \[ e^{Ax} = \sum_{k=0}^{\infty} \rec{k!}(Ax)^k = \sum_{k=0}^{\infty} \rec{k!} A^k x^k \] We have \[ \sum_{k=0}^{\infty} \rec{k!} \norm{A^k x^k} \le \sum_{k=0}^{\infty} \frac{\abs{x}^k}{k!} \norm{A}^k = e^{\norm{x}\norm{A}} < \infty \] Thus, $e^{Ax}$ is defined $\forall A \in \realn^{n \times n}, ~\forall x \in \realn$. Deriving this yields \[ \dv{x}e^{Ax} = \sum_{k=1}^{\infty} \rec{k!} A^k x^{k-1} = A \sum_{k=1}^{\infty} \rec{(k-1)!} A^{k-1} x^{k-1} = Ae^{Ax} \] \end{rem} \begin{thm} Let $A \in \realn^{n \times n}$. The IVP \begin{align*} y' = Ay && y(x_0) = y_0 \end{align*} is solved exactly by \[ y(x) = e^{A(x - x_0)}y_0 \] \end{thm} \begin{proof} Without proof. \end{proof} \begin{rem} \begin{enumerate}[(i)] \item The problem of solving IVPs can be reduced to a problem of calculating a matrix exponential. \item The following does NOT generall hold \begin{align*} \dv{t}e^{A(x)} &= A'(x) e^{A(x)} \\ e^{A + B} &= e^A e^B \end{align*} \item Let $v$ be an eigenvector of $A$ to the eigenvalue $\lambda$. Then \begin{align*} e^{Ax} v = \left(\sum_{k=0}^{\infty} \rec{k!} A^k x^k\right) v &= \sum_{k=0}^{\infty} \frac{x^k}{k!} A^k v \\ &= \left(\sum_{k=0}^{\infty} \frac{x^k}{k!} \lambda^k\right) v = e^{\lambda x} v \end{align*} \end{enumerate} \end{rem} \begin{eg} Consider the IVP \begin{align*} \begin{pmatrix} y \\ z \end{pmatrix}' = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_A \begin{pmatrix} y \\ z \end{pmatrix} && y_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{align*} This $A$ is diagonalizable and has the eigenvalues \begin{align*} \lambda_1 = -1 && \lambda_2 = 1 \end{align*} and the eigenvectors \begin{align*} v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} && v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{align*} So we can solve this ODES by calculating \begin{align*} e^{Ax} y_0 = e^{Ax} \cdot \frac{1}{2}(v_1 + v_2) &= \frac{1}{2}\left(e^{\lambda_1 x} v_1 + e^{\lambda_2 x} v_2\right) \\ &= \frac{1}{2} \left(e^x v_1 + e^{-x} v_2\right) \end{align*} And thus \begin{align*} y(x) = \frac{1}{2} \left(e^x + e^{-x}\right) && z(x) = \frac{1}{2} \left(e^x - e^{-x}\right) \end{align*} \end{eg} \begin{rem} Often the process above is formulated as follows: Start by defining \[ y(x) = c \cdot e^{\lambda x} v ~~c, \lambda \in \field \text{ and } v \in \realn \] Insert this into the ODE \[ c\lambda e^{\lambda x} = c e^{\lambda x} Av \] So $\lambda$ is an eigenvalue of $A$ to the eigenvector $v$. \end{rem} \begin{thm} Let $A \in \realn^{n \times n}$ be diagonalizable, and $v_1, \cdots, v_n$ is a basis of eigenvectors to the eigenvalues $\lambda_1, \cdots, \lambda_n$. Then the functions \[ y_i(x) = e^{\lambda_i x} v_i ~~i \in \set{1, \cdots, n} \] are a fundamental system to the ODES \[ y' = Ay \] \end{thm} \begin{proof} We have \begin{equation} e^{Ax} v_i = e^{\lambda_i x} v_i \end{equation} In $x = 0$ the \begin{equation} y_1(0) = v_1, ~y_2(0) = v_2, ~\cdots, ~y_n(0) = v_n \end{equation} are linearly independent, so the $y_1, \cdots, y_n$ are also linearly independent. \end{proof} \begin{rem} \begin{enumerate}[(i)] \item There is a special case, where $A \in \realn^{n \times n}$ is not diagonalizable in the real number space, but in the complex number space. Let $\lambda = \lambda_r + \lambda_i$ be the eigenvalue to the eigenvector $v = v_r + v_i$. Then \begin{gather*} e^{\lambda_r x} (v_r \sin(\lambda_i x) + v_i \cos(\lambda_i x)) \\ e^{\lambda_r x} (v_r \cos(\lambda_i x) + v_i \sin(\lambda_i x)) \end{gather*} be linearly independent, real-valued solutions. To solve the IVP \begin{align*} y(x) = C e^{\lambda x} v && y(0) = y_0 \end{align*} we want to transform it into an eigenvalue problem and find a solution to that. Doing that gives us \[ y(x) = C_1 e^{\lambda_1 x} v_1 + \cdots + C_n e^{\lambda_n x} v_n \] By inserting the initial condition we can find \[ C_1 v_1 + C_2 v_2 + \dots + C_n v_n = y_0 \] Finding the $C_1, \cdots, C_n$ shows us that the solution is automatically real. \item If $A$ is not diagonalizable one can try and bring $A$ into Jordan normal form. \end{enumerate} \end{rem} \begin{eg} Consider the IVP \begin{align*} \begin{pmatrix} y \\ z \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} && y_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{align*} The eigenvalues and eigenvectors are \begin{align*} \lambda_1 &= i & \lambda_2 &= -i \\ v_1 &= \begin{pmatrix} 1 + i \\ -1 + i \end{pmatrix} & v_2 &= \begin{pmatrix} 1 - i \\ -1 - i \end{pmatrix} \end{align*} Thus we have the general solution \[ C_1 e^{ix} v_1 + C_2 e^{-ix} v_2 \] which expands to \begin{align*} (i + 1) C_1 \cancel{e^{i0}} + (1 - i)C_2 \cancel{e^{-i0}} &= 1 \\ (i - 1) C_1 \cancel{e^{i0}} + (-1 - i)C_2 \cancel{e^{-i0}} &= 0 \end{align*} and solves to \begin{align*} C_1 = \frac{1}{4} (1 - i) && C_2 = \frac{1}{4} (1 + i) \end{align*} So the solution to the IVP is \begin{align*} y(x) = \cos(x) && z(x) = -\sin(x) \end{align*} \end{eg} \begin{thm} Let $a_1, \cdots, a_{n-1} \in \cmpln$. Let $\lambda_1, \cdots, \lambda_k$ be the roots of the polynomial \[ a_0 + a_1 \lambda + \cdots + a_{n-1} \lambda^{n-1} + \lambda^n \] and $\nu_1, \cdots, \nu_k$ their multiples. Then the functions \[ x \longmapsto x^l e^{\lambda_i x} ~~i \in \set{1, \cdots, k}, l \in \set{0, \cdots, \nu_{i_1}} \] form a fundamental system for \[ a_0 y + a_1 y' + \cdots + a_{n-1} y^{(n-1)} + y^{(n)} \] \end{thm} \end{document}