% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Complex Differentiability} \begin{defi} Let $f: U \rightarrow \cmpln$, with $U \subset \cmpln$ open. $f$ is said to be complex differentiable in $z_0 \in U$ if \[ \limes{z}{z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \] exists. If $f$ is complex differentiable on all of $U$, $f$ is said to be holomorphic. A funciton that is holomorphic on all of $\cmpln$ is entire. An equivalent formulation wiould be \[ \forall \epsilon > 0 ~\exists \delta > 0: ~~\abs{z - z_0} < \delta \implies \abs{f(z) - f(z_0) - a(z - z_0)} < \epsilon \] In this case $a = f'(z_0)$. \end{defi} \begin{thm} \begin{enumerate}[(i)] \item $f$ complex differentiable in $z_0 \in \cmpln \implies f$ continuous in $z_0$ \item $f, g$ complex differentiable in $z_0$, then $f + g$ and $f \cdot g$ are complex differentiable in $z_0$, and \begin{align*} (f + g)'(z_0) &= f'(z_0) + g'(z_0) \\ (fg)'(z_0) &= f'(z_0)g(z_0) + f(z_0)g'(z_0) \end{align*} If $g(z_0) \ne 0$, then $\frac{f}{g}$ is complex differentiable and \[ \left(\frac{f}{g}\right)'(z_0) = \frac{g(z_0)f'(z_0) - g'(z_0)f(z_0)}{g(z_0)^2} \] \item Let $f: U \rightarrow \cmpln$, $U \subset \cmpln$ open and $C \subset \cmpln$ open with $f(U) \subset V$, and let $g: V \rightarrow \cmpln$. Then $g \circ f: U \rightarrow \cmpln$. If $f$ is complex differentiable in $z_0$, and $g$ is complex differentiable in $f(z_0)$, then $g \circ f$ is complex differentiable in $z_0$ with \[ (g \circ f)'(z_0) = g'(f(z_0)) f'(z_0) \] \item If $f$ is complex differentiable in $z_0$, $f'(z_0) \ne 0$ and if $\exists \delta > 0$ such that $f: \oball[\delta](z_0) \rightarrow U \subset \cmpln$ is bijective, then the inverse function $g$ is complex differentiable in $f(z_0)$, with \[ g'(f(z_0)) = \rec{f'(z_0)} \] \end{enumerate} \end{thm} \begin{proof} \reader \end{proof} \begin{rem}[Complex vs. Real Differentiability] Consider $f: U \rightarrow \cmpln$, $U \subset \cmpln$ open. Let \begin{align*} x = \Re z && y = \Im z \end{align*} and define \[ \tilde{U} _= \set[x + iy \in U]{(x, y) \in \realn^2} \] and \begin{align*} \tilde{f}: \tilde{U} &\longrightarrow \realn^2 \\ (x, y) &\longmapsto (\Re(f(x + iy)), \Im(f(x + iy))) =: (u(x, y), v(x, y)) \end{align*} Then $f$ is complex differentiable in $z = x + iy$. \begin{enumerate}[(i)] \item We have \begin{align*} f'(z) &= \limes{h}{0} \frac{f(z + h) - f(z)}{h} \\ &= \limes{h}{0} \frac{u(x + h, y) + iv(x, y + h) - u(x, y) - iv(x, y)}{h} \\ &= \limes{h}{0} \frac{u(x + h, y) - u(x, y)}{h} + i \limes{h}{0} \frac{v(x + h, y) - v(x, y)}{h} \\ &= \pdv{x} u(x, y) + i \pdv{x} v(x, y) \end{align*} \item And also \begin{align*} f'(z) &= \limes{h}{0} \frac{f(z + ih) - f(z)}{ih} \\ &= -i \limes{h}{0} \frac{u(x, y + h) + iv(x, y + h) - u(x, y) - iv(x, y)}{h} \\ &= -i \limes{h}{0} \frac{u(x, y + h) - u(x, y)}{h} + \limes{h}{0} \frac{v(x, y + h) - v(x, y)}{h} \\ &= - \pdv{y} u(x, y) + \pdv{y}(x, y) \end{align*} \end{enumerate} This results in the Cauchy-Riemann equations: \begin{align*} \pdv{x} u(x, y) &= \pdv{y} v(x, y) \\ \pdv{y} u(x, y) &= -\pdv{x} v(x, y) \end{align*} if $f$ is complex differentiable in $z = x + iy$. From the Cauchy-Riemann equations and the real differentiability of the function $\tilde{f}: \tilde{U} \rightarrow \realn^2$ follows \begin{align*} D\tilde{f}(x, y) = \begin{pmatrix} \partial_x u(x, y) & \partial_y u(x, y) \\ \partial_x v(x, y) & \partial_y v(x, y) \end{pmatrix} &= \begin{pmatrix} \partial_x u(x, y) & -\partial_x v(x, y) \\ \partial_x v(x, y) & \partial_x u(x, y) \end{pmatrix} \\ &=: \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \end{align*} and thus for $h = (h_1, h_2) \in \realn^2$ \begin{align*} \tilde{f}(x + h_1, y + h_2) - \tilde{f}(x, y) &= D\tilde{f}(x, y) h + \bigo(\abs{h}) \\ &= \begin{pmatrix} ah_1 - bh_2 \\ bh_1 + ah_2 \end{pmatrix} + \bigo(\abs{h}) \end{align*} A side calculation: \[ (a +ib)(h_1 + ih_2) = ah_1 - bh_2 + i(bh_1 + ah_2) \] \[ \implies \begin{pmatrix} ah_1 - bh_2 \\ bh_1 + ah_2 \end{pmatrix} + \bigo(\abs{h}) = \begin{pmatrix} \Re(a + ib)(h1 + ih_2) \\ \Im(a + ib)(h_1 + ih_2) \end{pmatrix} + \bigo(\abs{h}) \] So for $h = h_1 + ih_2$ we get \[ f(z + h) - f(z) = (a + ib)h + \bigo(\abs{h}) \] So $f$ is complex differentiable in $z$ with $f'(z) = a + ib$. In short, we have shown the following theorem. \end{rem} \begin{thm} Let $f: U \rightarrow \cmpln$ with $U \subset \cmpln$ open. $f$ is complex differentiable in $z \in U$ if and only if $\tilde{f}: \tilde{U} \rightarrow \realn^2$ is real differentiable in $(x, y) \in \tilde{U}$, and if the Cauchy-Riemann equations are satisfied. \end{thm} \begin{proof} Proof is in the previous remark. \end{proof} \begin{eg} \begin{enumerate}[(i)] \item Power series like \[ f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad (a_n) \subset \cmpln \] with convergence radius $\rho \in [0, \infty]$ are holomorphic on $\oball[\rho](0)$. The following holds \[ f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1} \] Especially, the funciton \[ f(z) = e^{\alpha z}, \quad \alpha \in \cmpln \] is holomorphic on all of $\cmpln$ with \[ f'(z) = \alpha e^{\alpha z} \] \item The function \[ f(z) = \frac{1}{z^n} \] is holomorphic $\cmpln \setminus \set{0}$ with \[ f'(z) = -n \rec{z^{n+1}} \] \item Functions that are not complex differentiable include \begin{align*} f(z) = \conj{z} && f(z) = z\conj{z} \\ (\partial_x u = 1 \ne \partial_y v = -1) && (\partial_x u = 2x^2 \ne \partial_y v = 0) \end{align*} \end{enumerate} \end{eg} \end{document}