% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Outlook: Tempered Distributions} \begin{defi} A tempered distribution $f$ is a continuous, linear mapping \begin{align*} f: \mathcal{S}(\realn^d) &\longrightarrow \cmpln \\ \phi &\longmapsto f(\phi) = (f, \phi) \left( = \int f(x) \phi(x) \dd{x} \right) \end{align*} \end{defi} \begin{thm} Tempered distributions are linear, continuous mappings. \end{thm} \begin{proof} To prove linearity, let $\phi, \psi \in \mathcal{S}(\realn^d)$ and $\lambda \in \cmpln$. Then \begin{equation} (f, \phi + \lambda\psi) = (f, \phi) + \lambda(f, \psi) \end{equation} For the continuity, we want to consider any sequence $\anyseqdef[\phi]{\mathcal{S}(\realn^d)}$ that converges to $\phi \in \mathcal{S}(\realn^d)$. I.e. \begin{equation} \lim_{n \rightarrow \infty} \sup_{x \in \realn^d} \abs{x^{\beta} \partial^{\alpha} (\phi_n(x) - \phi(x))} = 0, \quad \forall \alpha, \beta \in \natn_0^d \end{equation} Then we can conclude that \begin{equation} \lim_{n \rightarrow \infty} \abs{(f, \phi_n) - (f, \phi)} = 0 \end{equation} \end{proof} \begin{rem} The space of all tempered distributions is denoted as $\mathcal{S}'(\realn^d)$. \end{rem} \begin{eg} One important example is the Dirac deltra distribution: \[ \delta: \mathcal{S}(\realn^d) \longrightarrow \cmpln \] It maps a function to its value at $0$. \[ (\delta, \phi) = \int \delta(x) \phi(x) \dd{x} = \phi(0) \in \cmpln \] \end{eg} \end{document}