finished chapter 11

This commit is contained in:
Robert 2021-07-30 00:32:15 +02:00
parent 2a8e0ef278
commit f58ec2bb68
6 changed files with 14030 additions and 12469 deletions

View file

@ -0,0 +1,12 @@
% !TeX root = ../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\chapter{Fourier Transform and Basics of Distribution Theory}
\vspace*{\fill}\par
\pagebreak
\subfile{sections/fourier_l1.tex}
\subfile{sections/fourier_l2.tex}
\subfile{sections/tempered_distributions.tex}
\end{document}

View file

@ -0,0 +1,248 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Fourier Transform on $L^1(\realn^d)$}
\begin{defi}
For $f \in L^1(\realn^d)$ the function
\begin{align*}
\hat{f}: \realn^d &\longrightarrow \cmpln \\
k &\longmapsto \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} e^{-ik \cdot x} f(x) \dd{x}
\end{align*}
is said to be the Fourier transform of $f$. Sometimes it is written as $(\mathcal{F}f)(k)$.
\end{defi}
\begin{rem}
\begin{enumerate}[(i)]
\item There are several alternative conventions regarding sign and phase of the transform.
\[
\hat{f}(k) = \int_{\realn^d} e^{-2\pi ik \cdot x} f(x) \dd{x}
\]
is also a valid definition in other scientific fields, however we will stick to the former definition throughout this script.
\item $k \cdot x = \innerproduct{k}{x} = \sum_{j=1}^d k_j x_j$
\item Because $\abs{e^{ik \cdot x}} = 1$, the integral exists for any $f \in L^1(\realn^d)$.
\end{enumerate}
\end{rem}
\begin{eg}\label{eg:1}
Consider the function
\[
f(x) = \rec{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \alpha)^2}{2\sigma^2}} \quad ,\alpha \in \cmpln, ~\sigma > 0
\]
The Fourier transform is
\begin{align*}
\hat{f}(k) = &\rec{2\pi\sigma} \int_{\realn} e^{-ikx} e^{-\frac{(x - \alpha)^2}{2\sigma^2}} \dd{x} \\
= &\rec{2\pi\sigma} e^{-ik\alpha} e^{-\frac{\sigma^2}{2} k^2} \int_{\realn} e^{-\frac{(x - \alpha + ik\sigma^2)^2}{2\sigma^2}} \dd{x} \\
= &\rec{2\pi\sigma} e^{-ik\alpha} e^{-\frac{\sigma^2 k^2}{2}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} \dd{x} \\
= &\rec{\sqrt{2\pi}} e^{-ik\alpha} e^{-\frac{\sigma^2 k^2}{2}}
\end{align*}
\end{eg}
\begin{eg}
The previous example can be generalized for higher dimensions:
\[
f(x) = \rec{(2\pi\sigma^2)^{\frac{d}{2}}} e^{-\frac{\abs{x}^2}{2\sigma^2}}, \quad x \in \realn^d
\]
With the Fourier transform
\[
\hat{f}(k) = \rec{(2\pi)^{\frac{d}{2}}} e^{-\frac{\sigma^2 \abs{k}^2}{2}}, \quad k \in \realn^d
\]
\end{eg}
\begin{eg}
Consider the indicator function
\[
\chi(x) = \begin{cases}
1, & \abs{x} \le a \\
0, & \abs{x} > a
\end{cases}, \quad x \in \realn
\]
It has the Fourier transform
\[
\hat{f}(k) = \rec{\sqrt{2\pi}} \int_{\realn} e^{-ikx} \chi(x) \dd{x} = \rec{\sqrt{2\pi}} \left[ \frac{e^{-ikx}}{-ik} \right]_{-a}^a = \sqrt{\frac{2}{\pi}} \frac{\sin(ka)}{k}
\]
\end{eg}
\begin{defi}
For $f \in L^1(\realn^d)$ the function
\[
\check{f}(x) := \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} f(k) e^{ikx} \dd{k}
\]
defines the inverse Fourier transform of $f$.
\end{defi}
\begin{eg}
Let's revisit \Cref{eg:1}, where we found that
\[
\hat{f}(k) = \rec{\sqrt{2\pi}} e^{-i\alpha k} e^{-\frac{\sigma^2 k^2}{2}}
\]
The inverse Fourier transform of that function is
\[
\check{\hat{f}}(k) = \rec{\sqrt{2\pi\sigma^2}} e^{-\rec{2\sigma^2} (x - \alpha)^2} = f(x)
\]
\end{eg}
\begin{thm}[Fourier inversion theorem]
Let $f, \hat{f} \in L^1(\realn^d)$. Then $\check{\hat{f}} = f$.
\end{thm}
\begin{proof}
To prove this theorem we will use \Cref{thm:10.42} and the following lemma:
\bigbreak
\begin{itshape}
If $f_n \conv{n \rightarrow \infty} f$, then there exists a subsequence $((f_n)_k)_{k \in \natn}$ with
\[
\lim_{k \rightarrow \infty} f_{n_k} (x) = f(x), \quad \forall x \in \realn^d
\]
\end{itshape}
\bigbreak
Heuristically this theorem can be proven by considering
\begin{equation}
\begin{split}
\check{\hat{f}}(x) = \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \hat{f}(k) e^{ikx} \dd{k}
&= \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \left( \int_{\realn^d} f(y) e^{-iky} \dd{y} \right) e^{ikx} \dd{k} \\
&= \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \int_{\realn^d} f(y) e^{-ik(y - x)} \dd{k} \dd{y}
\end{split}
\end{equation}
However, to show this rigorously we should first consider the inversion formula for $f * \delta_l$, with
\begin{equation}
\delta_l (x) = \left( \frac{l^2}{2\pi} \right)^{\frac{d}{2}} e^{-\frac{l^2 \abs{x}^2}{2}}, \quad l \in \natn
\end{equation}
The Fourier transform is
\begin{equation}
\hat{\delta_l} (k) = \left(\rec{2\pi}\right)^{\frac{d}{2}} e^{-\frac{\abs{k}^2}{2l^2}}
\end{equation}
We've already shown in a previous example that the inversion theorem applies to this function, so we can write
\begin{equation}
\begin{split}
(f * \delta_l)(x) &= \int_{\realn^d} f(y) \delta_l(x - y) \dd{y} = \int_{\realn^d} f(y) \check{\hat{\delta}}_l(x - y) \dd{y} \\
&= \int_{\realn^d} f(y) \left( \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} e^{ik(x - y)} \hat{\delta}_l (k) \dd{k} \right) \dd{y}\\
&= \int_{\realn^d} \left(\rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} f(y) e^{-iky} \dd{y} \right) e^{ikx} \hat{\delta_l} (k) \dd{k} \\
&= \int_{\realn^d} e^{ikx} \hat{f}(k) e^{-\frac{\abs{k}}{2l^2}} \frac{\dd{k}}{(2\pi)^{\frac{d}{2}}} =: \check{F}_l(x)
\end{split}
\end{equation}
Next we want to use the fact that $(\delta_l)_{l \in \natn}$ is a class of good kernels. This means that
\begin{equation}
\lim_{l \rightarrow \infty} \norm{\delta_l * f - f}_{L^1} = 0
\end{equation}
or in other words
\begin{equation}
\delta_l * f \conv{l \rightarrow \infty} f
\end{equation}
Now using the lemma above we can conclude that there exists a subsequence $(\delta_{l_j} * f)_{j \in \natn}$ that converges to $f(x)$ for almost every $x$.
We can apply the dominated convergence theorem to find that
\begin{equation}
\lim_{l \rightarrow \infty} \check{F}_l(x) = \int_{\realn^d} e^{ikx} \hat{f}(k) \lim_{l \rightarrow \infty} e^{-\frac{\abs{k}^2}{2l^2}} \frac{\dd{k}}{(2\pi)^{\frac{d}{2}}} = \check{\hat{f}}(x)
\end{equation}
Finally, this lets us conclude
\begin{equation}
f(x) = \lim_{j \rightarrow \infty} \delta_{l_j} * f(x) = \lim_{j \rightarrow \infty} \check{F}_{l_j} (x) = \check{\hat{f}}, \quad \text{for a.e. } x \in \realn^d
\end{equation}
\end{proof}
\begin{thm}[Algebraisation of the derivative]
Let $f \in C^n(\realn^d)$ and $\partial^{\alpha} f \in L^1(\realn^d)$ for all $\alpha \in \natn_0^d$ with $\abs{\alpha} < m$. Then
\[
\widehat{\partial^a f}(k) = (ik)^{\alpha}\hat{f}
\]
If $\alpha = (\alpha_1, \cdots, \alpha_d)$ and $\abs{\alpha} = \sum_{j=1}^d \alpha_j \le m$, then the interpretation of that is
\[
\mathcal{F}\left(\frac{\partial^{\abs{\alpha}}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} f\right)(k) = i^{\abs{\alpha}} \left(k_1^{\alpha_1} \cdots k_d^{\alpha_d}\right) \hat{f}(k)
\]
\end{thm}
\begin{proof}
We will only prove the one-dimensional statement. If $m = 1$ we receive via partial integration
\begin{equation}
\widehat{f'}(k) = \rec{\sqrt{2\pi}} \int_{\realn} f'(x) e^{-ikx} \dd{x} = \rec{\sqrt{2\pi}} \left[ \left(f(x) e^{-ikx}\right)_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x) \dv{x} \left(e^{-ikx}\right) \dd{x} \right]
\end{equation}
Since we assumed $f' \in L^1$, the limit $\lim_{x \rightarrow \pm\infty} f(x)$ exists. We can write
\begin{align}
f(x) &= f(0) + \int_0^x f'(t) \dd{t} \\
\implies \lim_{x \rightarrow \pm\infty} f(x) &= f(0) + \lim_{x \rightarrow \pm\infty} \int_0^x f'(t) \dd{t}
\end{align}
Furthermore this limit has to be equal to $0$, so
\begin{align}
\lim_{\abs{x} \rightarrow \infty} f(x) &= 0 \\
\implies \left[f(x) e^{-ikx}\right]_{-\infty}^{\infty} &= \lim_{x \rightarrow \infty} e^{-ikx} f(x) - \lim_{x \rightarrow \infty} f(x)e^{ikx} = 0
\end{align}
This leads us to
\begin{equation}
\widehat{f'}(k) = ik \rec{\sqrt{2\pi}} \int_{\realn} f(x) e^{-ikx} \dd{x} = ik\hat{f}(k)
\end{equation}
The proof for $m > 1$ can be found via induction.
\end{proof}
\begin{thm}
Let $f \in L^1(\realn^d)$ and $m \in \natn_0$. If
\[
x \longmapsto x^{\alpha} f(x) \in L^1(\realn^d), \quad \forall \alpha \in \natn_0^d, ~\abs{\alpha} \le m
\]
then $\hat{f} \in C^m(\realn^d)$ and
\[
\partial^{\alpha} \hat{f}(k) = \mathcal{F}\left[(-ix)^{\alpha} f(x)\right](k)
\]
\end{thm}
\begin{proof}
Again we will only consider the one-dimensional case. Assume $m = 1$ (the proof for $m > 1$ follows from induction).
We can write out the difference quotient for $\hat{f}$ at $k \in \realn$
\begin{equation}
\frac{\hat{f}(k + h) - \hat{f}(k)}{h} = \rec{h} \int_{\realn} f(x) \left(e^{-i(k + h)x} - e^{-ikx}\right) \frac{\dd{x}}{\sqrt{2\pi}}, \quad h \in \realn \setminus \set{0}
\end{equation}
However, because
\begin{equation}
\abs{\frac{e^{-ixh} - 1}{h}} \le \abs{x}, \quad \forall x \in \realn, ~h \ne 0
\end{equation}
and because we assumed that $xf \in L^1$, we can use the dominated convergence theorem to conclude
\begin{equation}
\begin{split}
\lim_{h \rightarrow 0} \frac{\hat{f}(k + h) - \hat{f}(k)}{h} &= \rec{\sqrt{2\pi}} \int_{\realn} f(x) e^{-ikx} \underbrace{\lim_{h \rightarrow 0} \left(\frac{e^{-ixk} - 1}{h}\right)}_{\dv{x} \left(e^{-ikx} \right) \big|_{x = 0}} \dd{x} \\
&= \rec{\sqrt{2\pi}} \int_{\realn} (-ixf(x)) e^{-ikx} \dd{x} = \widehat{-ixf}(k)
\end{split}
\end{equation}
\end{proof}
\begin{thm}
Let $f, g \in L^1(\realn^d)$. Then
\[
\widehat{f*g}(k) = (2\pi)^{\frac{d}{2}} \hat{f}(k) \hat{g}(k)
\]
\end{thm}
\begin{proof}
\noproof
\end{proof}
\begin{eg}[Solving inhomogeneous, linear ODEs]
We want to find the general solution of
\[
\ddot{x} - x = f, \quad f, \hat{f} \in L^1(\realn)
\]
The solution space of this equation is
\[
\mathcal{L} = \mathcal{L}_{\text{hom}} + x_s
\]
The space of homogeneous solutions $\mathcal{L}_{\text{hom}}$ is equal to $\spn\set{e^x, e^{-x}}$, and $x_s$ is \textit{one} solution of the inhomogeneous equation.
Let $\phi$ denote the Fourier transform of $x_s$, so
\[
\phi(k) = \rec{\sqrt{2\pi}} \int_{\realn} x_s(t) e^{-ikt} \dd{t}
\]
Then $\phi$ satisfies the equation
\[
-k^2 \phi(k) - \phi(k) = \hat{f}(k)
\]
Or rearraranged to solve for $\phi$
\[
\phi(k) = -\rec{1+k^2} \hat{f}(k), \quad k \in \realn
\]
We can then rewrite $\phi(k)$ as
\begin{align*}
\phi(k) = -\hat{g}(k) \hat{f}(k) && \text{with } \hat{g} = \rec{1 + k^2} \in L^1(\realn)
\end{align*}
and then use the previous theorems to conclude
\[
x_s(t) = \check{\phi}(t) = (2\pi)^{\frac{1}{2}} \inv{\mathcal{F}} \underbrace{\left[ \hat{f}\hat{g} (2\pi)^{\frac{1}{2}}\right]}_{\widehat{f*g}}(t) = -\rec{\sqrt{2\pi}}(f*g)(t)
\]
\end{eg}
\end{document}

View file

@ -0,0 +1,141 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Fourier Transform on $L^2(\realn^d)$}
\begin{defi}[Hilbert space]
For this section we introduce the Hilbert space of Lebesgue square-integrable functions
\[
L^2(\realn^d) := \set[\norm{f}_{L^2}^2 = \int_{\realn^d} \abs{f(x)}^2 \dd{x} < \infty]{f: \realn^d \rightarrow \cmpln \text{ measurable}}
\]
This space is also important in quantum mechanics, as wave functions are elements of $L^2$.
\end{defi}
\begin{defi}
The space $L^2(\realn^d)$ is a Hilbert space, i.e. a complete, normed vector space with an inner product
\[
\innerproduct{f}{g} := \int_{\realn^d} \conj{f(x)} g(x) \dd{x}
\]
that has the following properties:
\begin{enumerate}[(i)]
\item $\innerproduct{f}{f} \ge 0$ and $\innerproduct{f}{f} = 0 \iff f = 0$
\item $\innerproduct{f}{g} = \conj{\innerproduct{g}{f}}$
\item $\innerproduct{f}{g + \lambda h} = \innerproduct{f}{g} + \lambda\innerproduct{f}{h}$
\end{enumerate}
(ii) and (iii) imply
\[
\innerproduct{\lambda f}{g} = \conj{\lambda} \innerproduct{f}{g}
\]
The inner product induces a norm
\[
\norm{f}_{L^2}^2 = \innerproduct{f}{f} \left( = \int_{\realn} \underbrace{\conj{f(x)}f(x)}_{\abs{f(x)}^2} \dd{x} \right)
\]
Since the Fourier transform cannot directly be defined for $L^2(\realn^d)$, we will first consider the space of rapidly decreasing functions,
the so called \textit{Schwartz space} $\mathcal{S}(\realn^d)$.
\end{defi}
\begin{defi}[Schwartz space]
The Schwartz space $\mathcal{S}(\realn^d)$ is defined as the function space
\[
\mathcal{S}(\realn^d) := \set[x \mapsto x^{\beta} \partial^{\alpha} f \text{ bounded,} \quad \forall \alpha, \beta \in \natn_0^d]{f \in C^{\infty}(\realn^d)}
\]
\end{defi}
\begin{eg}
\begin{enumerate}[(i)]
\item Smooth functions with compact support $f \in C^{\infty}(\realn^d)$ are also elements of $\mathcal{S}(\realn^d)$, for example
\[
f(x) = \begin{cases}
\exp\left(-\sum_{j=1}^d \rec{1 - \abs{x_j}^2}\right), & \abs{x_j} < 1 \\
0, & \text{else}
\end{cases}
\]
\item For every polynomial $p(x)$, the function
\[
f(x) = p(x)e^{-\abs{x}^2}
\]
defines a function in $\mathcal{S}(\realn^d)$.
\end{enumerate}
\end{eg}
\begin{rem}
Because of the continuity and the rapid decrease towards infinity we can find that
\[
\mathcal{S}(\realn^d) \subset L^1(\realn^d) \cap L^2(\realn^d)
\]
and one can show that $\mathcal{S}(\realn^d)$ is dense in $L^2(\realn^d)$, i.e.
\[
\forall f \in L^2(\realn^d) ~\exists \anyseqdef[f]{\mathcal{S}(\realn^d)}: \quad \norm{f_n - f}_{L^2} \conv{n \rightarrow \infty} 0
\]
\end{rem}
\begin{thm}
Let $f \in \mathcal{S}(\realn^d)$. Then $\hat{f} \in \mathcal{S}(\realn^d)$ and the restriction of the Fourier transform to $\mathcal{S}(\realn^d)$
\[
\mathcal{F}_{\mathcal{S}}: \mathcal{S}(\realn^d) \longrightarrow \mathcal{S}(\realn^d)
\]
is an isomorphism. Furthermore
\[
\innerproduct{\hat{f}}{\hat{g}} = \innerproduct{f}{g}, \quad \forall f, g \in \mathcal{S}(\realn^d)
\]
with the inner product
\[
\innerproduct{f}{g} = \int_{\realn^d} \conj{f(x)}g(x) \dd{x}
\]
\end{thm}
\begin{proof}
To prove that $\hat{f} \in \mathcal{S}$ we use the fact that
\begin{equation}
k^{\beta} \partial^{\alpha} \hat{f}(k) = (-i)^{\abs{\alpha} + \abs{\beta}} \mathcal{F}_{\mathcal{S}} \left[ \partial^{\beta} x^{\alpha} f(k) \right], \quad k \in \realn^d, ~\forall \alpha, \beta \in \natn_0^d
\end{equation}
Next we want to prove that $\mathcal{F}_{\mathcal{S}}$ is an isomorphism. This is trivial however since
\begin{equation}
\forall f \in \mathcal{S}(\realn^d): \quad \inv{\mathcal{F}_{\mathcal{S}}}\mathcal{F}_{\mathcal{S}}(f) = f
\end{equation}
To prove the final statement we can explicitly calculate
\begin{equation}
\begin{split}
\innerproduct{\hat{f}}{\hat{g}} &= \int_{\realn^d} \conj{\hat{f}(k)} \hat{g}(k) \dd{k} \\
&= \int_{\realn^d} \conj{\left( \int_{\realn^d} f(x) e^{-ikx} \dd{x} \frac{\dd{x}}{(2\pi)^{\frac{d}{2}}} \right)} \hat{g}(x) \dd{k} \\
&= \int_{\realn^d} \left( \int_{\realn^d} \conj{f(x)} e^{ikx} \frac{\dd{x}}{(2\pi)^{\frac{d}{2}}} \right) \hat{g}(k) \dd{k} \\
&= \int_{\realn^d} \conj{f(x)} \underbrace{\left(\int_{\realn^d} \hat{g}(k) e^{ikx} \frac{\dd{k}}{(2\pi)^{\frac{d}{2}}}\right)}_{\check{\hat{g}}(x) = g(x)} \dd{x} \\
&= \int_{\realn^d} \conj{f(x)} g(x) \dd{x} = \innerproduct{f}{g}
\end{split}
\end{equation}
\end{proof}
\begin{rem}
Since not all functions $f \in L^2(\realn^d)$ are integrable, the limit
\[
\lim_{R \rightarrow \infty} \int_{\abs{x} < R} f(x) e^{-ikx} \frac{\dd{x}}{(2\pi)^{\frac{d}{2}}} = \hat{f}(k)
\]
doesn't converge for every $k \in \realn^d$, only for almost every.
\end{rem}
\begin{thm}
The Fourier transform $\mathcal{F}_{\mathcal{S}}$ can be uniquely and continuously continued on $L^2(\realn^d)$. The resulting mapping
\[
\mathcal{F}: L^2(\realn^d) \longrightarrow L^2(\realn^d)
\]
is linear and unitary, i.e. $\forall f, g \in L^2(\realn^d)$ we have
\[
\innerproduct{\mathcal{F}(f)}{\mathcal{F}(g)} = \innerproduct{f}{g}
\]
which is also known as the Plancherel identity.
\end{thm}
\begin{proof}
\noproof
\end{proof}
\begin{rem}
The continuiuty of $\mathcal{F}$ doesn't imply that $\hat{f}$ is continuous. Secondly, the Plancherel identity also yields
\[
\norm{f}_{L^2} = \sqrt{\innerproduct{f}{f}} = \sqrt{\innerproduct{\hat{f}}{\hat{f}}} = \norm{\hat{f}}_{L^2}
\]
\end{rem}
\end{document}

View file

@ -0,0 +1,48 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Outlook: Tempered Distributions}
\begin{defi}
A tempered distribution $f$ is a continuous, linear mapping
\begin{align*}
f: \mathcal{S}(\realn^d) &\longrightarrow \cmpln \\
\phi &\longmapsto f(\phi) = (f, \phi) \left( = \int f(x) \phi(x) \dd{x} \right)
\end{align*}
\end{defi}
\begin{thm}
Tempered distributions are linear, continuous mappings.
\end{thm}
\begin{proof}
To prove linearity, let $\phi, \psi \in \mathcal{S}(\realn^d)$ and $\lambda \in \cmpln$. Then
\begin{equation}
(f, \phi + \lambda\psi) = (f, \phi) + \lambda(f, \psi)
\end{equation}
For the continuity, we want to consider any sequence $\anyseqdef[\phi]{\mathcal{S}(\realn^d)}$ that converges to $\phi \in \mathcal{S}(\realn^d)$. I.e.
\begin{equation}
\lim_{n \rightarrow \infty} \sup_{x \in \realn^d} \abs{x^{\beta} \partial^{\alpha} (\phi_n(x) - \phi(x))} = 0, \quad \forall \alpha, \beta \in \natn_0^d
\end{equation}
Then we can conclude that
\begin{equation}
\lim_{n \rightarrow \infty} \abs{(f, \phi_n) - (f, \phi)} = 0
\end{equation}
\end{proof}
\begin{rem}
The space of all tempered distributions is denoted as $\mathcal{S}'(\realn^d)$.
\end{rem}
\begin{eg}
One important example is the Dirac deltra distribution:
\[
\delta: \mathcal{S}(\realn^d) \longrightarrow \cmpln
\]
It maps a function to its value at $0$.
\[
(\delta, \phi) = \int \delta(x) \phi(x) \dd{x} = \phi(0) \in \cmpln
\]
\end{eg}
\end{document}

26049
script.pdf

File diff suppressed because it is too large Load diff

View file

@ -191,5 +191,6 @@
\subfile{chapters/ode.tex}
\subfile{chapters/int_submanifold.tex}
\subfile{chapters/complex_analysis.tex}
\subfile{chapters/fourier_transform.tex}
\end{document}