From cfdd230ca84b315e0f314a5cecd39e0823ceeca8 Mon Sep 17 00:00:00 2001 From: Robert Date: Tue, 23 Mar 2021 00:25:22 +0100 Subject: [PATCH] first commit --- .gitignore | 7 + README.md | 88 +++ chapters/FaN.tex | 11 + chapters/linear_algebra.tex | 10 + chapters/real_analysis_1.tex | 11 + chapters/sections/conv_of_series.tex | 500 ++++++++++++++++ chapters/sections/elem_ineqs.tex | 84 +++ chapters/sections/logic.tex | 95 +++ chapters/sections/matrices.tex | 107 ++++ chapters/sections/numbers.tex | 478 +++++++++++++++ chapters/sections/seq_and_lims.tex | 714 +++++++++++++++++++++++ chapters/sections/sets_and_functions.tex | 309 ++++++++++ chapters/sections/vector_spaces.tex | 346 +++++++++++ script.pdf | Bin 0 -> 437507 bytes script.tex | 113 ++++ 15 files changed, 2873 insertions(+) create mode 100644 .gitignore create mode 100644 README.md create mode 100644 chapters/FaN.tex create mode 100644 chapters/linear_algebra.tex create mode 100644 chapters/real_analysis_1.tex create mode 100644 chapters/sections/conv_of_series.tex create mode 100644 chapters/sections/elem_ineqs.tex create mode 100644 chapters/sections/logic.tex create mode 100644 chapters/sections/matrices.tex create mode 100644 chapters/sections/numbers.tex create mode 100644 chapters/sections/seq_and_lims.tex create mode 100644 chapters/sections/sets_and_functions.tex create mode 100644 chapters/sections/vector_spaces.tex create mode 100644 script.pdf create mode 100644 script.tex diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..4414c36 --- /dev/null +++ b/.gitignore @@ -0,0 +1,7 @@ +*.aux +*.fdb* +*.fls +*.log +*.out +*.gz +*.toc \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000..d4d7790 --- /dev/null +++ b/README.md @@ -0,0 +1,88 @@ +# Mathematics + +This is my attempt at digitalizing (and translating) my math notes from uni. It's not finished yet, I'll update it bit by bit when I feel like it + +The topics covered in this script will be: +1. Fundamentals and Notation + 1.1 Logic + 1.2 Sets and Functions + 1.3 Numbers + +2. Analysis: Part 1 + 2.1 Elementary Inequalities + 2.2 Sequences and Limits + 2.3 Convergence of Series + +3. Linear Algebra + 3.1 Vector spaces + 3.2 Matrices and Gaussian elimination + 3.3 The Determinant + 3.4 Scalar Product + 3.5 Eigenvalue problems + +4. Analysis: Part 2 + 4.1 Limits of Functions + 4.2 Differential Calculus + +5. Topology in Metric spaces + 5.1 Metric and Normed spaces + 5.2 Sequences, Series and Limits + 5.3 Open and Closed Sets + 5.4 ???? + 5.5 Continuiuty + 5.6 Convergence of Function Sequences + +6. Differential Calculus for Functions with multiple Variables + 6.1 Partial and Total Differentiability + 6.2 Higher Derivatives + 6.3 Function Sequences and Differentiability + 6.4 The Banach Fixed-Point Theorem and the Implicit Function Theorem + +7. Measures and Integrals + 7.1 Contents and Measures + 7.2 Integrals + 7.3 Integrals over the real numbers + 7.4 ???? + 7.5 Product Measures and the Fubini Theorem + 7.6 The Transformation Theorem + +8. Ordinary Differential Equations + 8.1 Solution Methods + 8.2 The Picard-Lindelöf Theorem + 8.3 Linear Differential Equation Systems + +9. Integration over Submanifolds + 9.1 Line Integrals + 9.2 Surface Integrals + 9.3 Ingegral Theorems + +10. Elements of Complex Analysis + 10.1 Complex Differentiability + 10.2 Complex Line Integrals + 10.3 Identity Theorems and Analytic Continuation + 10.4 Laurent Series + 10.5 Residue Theorem + 10.6 Application: Potential Theory + +11. Fourier Transform and Basics of Distribution Theory + 11.1 Fourier Transform on L¹(ℝᵈ) + 11.2 Fourier Transform on L²(ℝᵈ) + 11.3 Tempered Distributions + +12. Operator Theory + 12.1 Linear Operators + 12.2 Dual Spaces + 12.3 Hilbert Spaces + 12.4 Orthonormal Sets + 12.5 Adjoint Operators + +13. Spectral Theory + 13.1 Spectral Theory of Bounded Linear Operators + 13.2 Spectral Representation of Bounded Self-Adjoint Operators I + 13.3 Spectral Representation of Bounded Self-Adjoint Operators II + 13.4 Compact Linear Operators + 13.5 Unbounded Linear Operators + 13.6 Spectral Representation of Unbounded Self-Adjoint Operaotrs + +14. Curves in ℝ³ +15. Differentiable Manifolds \ No newline at end of file diff --git a/chapters/FaN.tex b/chapters/FaN.tex new file mode 100644 index 0000000..cd69aa1 --- /dev/null +++ b/chapters/FaN.tex @@ -0,0 +1,11 @@ +\documentclass[../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} + \chapter{Fundamentals and Notation} + + \subfile{sections/logic.tex} + \subfile{sections/sets_and_functions.tex} + \subfile{sections/numbers.tex} +\end{document} \ No newline at end of file diff --git a/chapters/linear_algebra.tex b/chapters/linear_algebra.tex new file mode 100644 index 0000000..0615dd9 --- /dev/null +++ b/chapters/linear_algebra.tex @@ -0,0 +1,10 @@ +\documentclass[../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} + \chapter{Linear Algebra} + + \subfile{sections/vector_spaces.tex} + \subfile{sections/matrices.tex} +\end{document} \ No newline at end of file diff --git a/chapters/real_analysis_1.tex b/chapters/real_analysis_1.tex new file mode 100644 index 0000000..48b6069 --- /dev/null +++ b/chapters/real_analysis_1.tex @@ -0,0 +1,11 @@ +\documentclass[../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} + \chapter{Real Analysis: Part I} + + \subfile{sections/elem_ineqs.tex} + \subfile{sections/seq_and_lims.tex} + \subfile{sections/conv_of_series.tex} +\end{document} \ No newline at end of file diff --git a/chapters/sections/conv_of_series.tex b/chapters/sections/conv_of_series.tex new file mode 100644 index 0000000..468830d --- /dev/null +++ b/chapters/sections/conv_of_series.tex @@ -0,0 +1,500 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Convergence of Series} +\begin{defi} +Let $\rcseqdef{x}$. Then the series +\[ + \series{k} x_k +\] +is the sequence of partial sums $\seq{s}$: +\[ + s_n = \series[n]{k} x_k +\] +If the series converges, then $\series{k}$ denotes the limit. +\end{defi} + +\begin{thm}\label{thm:seriesnull} +Let $\rcseqdef{x}$. Then +\[ + \series{n} x_n \text{ converges} \implies \seq{x} \text{ null sequence} +\] +\end{thm} +\begin{proof} +Let $s_n = \series{n} x_n$. This is a Cauchy series. Let $\epsilon > 0$. Then +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~|s_{n+1} - s_n| = |x_{n+1}| < \epsilon +\end{equation} +\end{proof} + +\begin{eg}[Geometric series] +Let $x \in \realn$ (or $\cmpln$). Then +\[ + \series{k} x^k +\] +converges if $|x| < 1$. (Why?) +\end{eg} + +\begin{eg}[Harmonic series] +This is a good example of why the inverse of \Cref{thm:seriesnull} does not hold. Consider +\[ + x_n = \frac{1}{n} +\] +This is a null sequence, but $\series{k}\frac{1}{k}$ does not converge. (Why?) +\end{eg} + +\begin{lem} +Let $\rcseqdef{x}$. Then +\[ + \series{k} x_n \text{ converges} \iff \sum_{k=N}^{\infty} x_n \text{ converges for some } N \in \natn +\] +\end{lem} +\begin{proof} +\reader +\end{proof} + +\begin{thm}[Alternating series test]\label{thm:alttest} +Let $\seq{x} \subset [0, \infty)$ be a monotonic decreasing null sequence. Then +\[ + \series{k} (-1)^k x_k +\] +converges, and +\[ + \left| \series{k} (-1)^k x_k - \series[N]{k} (-1)^k x_k \right| \le x_{N+1} +\] +\end{thm} +\begin{proof} +Let $s_n = \series[n]{k} (-1)^k x_n$, and define the sub sequences $a_n = s_{2n}$, $b_n = s_{2n+1}$. Then +\begin{equation} + a_{n+1} = s_{2n} - \underbrace{(x_{2n+1} - x_{2n+2})}_{\ge 0} \le s_{2n} = a_n +\end{equation} +Hence, $\seq{a}$ is monotonic decreasing. By the same argument, $\seq{b}$ is monotonic decreasing. Let $m, n \in \natn$ such that $m \le n$. Then +\begin{equation}\label{eq:act} + b_m \le b_n = a_n - x_{2n+1} \le a_n \le a_m +\end{equation} +Therefore $\seq{a}$, $\seq{b}$ are bounded. By \Cref{thm:monotone}, these sequence converge +\begin{align} + \seq{a} &\convinf a & \seq{b} &\convinf b +\end{align} +Furthermore +\begin{equation} + b_n - a_n = -x_{2n+1} \convinf 0 \implies a = b +\end{equation} +From \cref{eq:act} we know that +\begin{equation} + b_m \le b = a \le a_m +\end{equation} +So therefore +\begin{align} + |s_{2n} - a| &= a_n - a \le a_n - b_n = x_{2n+1} \\ + |s_{2n+1} - a| &= b - b_n \le a_{m+1} - b_n = x_{2n+2} +\end{align} +\end{proof} + +\begin{eg}[Alternating harmonic series] +\[ +\begin{split} + s = \series{k} (-1)^{k+1} \rec{k} &= 1 - \rec{2} + \rec{3} - \rec{4} + \rec{5} - \cdots \\ + &= \left(1 - \rec{2}\right) - \rec{4} + \left(\rec{3} - \rec{6}\right) - \rec{8} + \left(\rec{5} - \rec{10}\right) - \rec{12} + \cdots \\ + &= \rec{2} - \rec{4} + \rec{6} - \rec{8} + \rec{10} - \rec{12} + \cdots \\ + &= \rec{2}\left(1 - \rec{2} + \rec{3} - \rec{4} + \rec{5} - \rec{6} + \cdots\right) \\ + &= \rec{2}s +\end{split} +\] +But $s \in \left[\rec{2}, 1\right]$, this is an example on why rearranging infinite sums can lead to weird results. +\end{eg} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item The convergence behaviour does not change if we rearrange finitely many terms. + + \item Associativity holds without restrictions + \[ + \series{k} x_k = \series{k} (x_{2k} + x_{2k-1}) + \] + + \item Let $I$ be a set, and define + \begin{align*} + I &\longrightarrow \realn \\ + i &\longmapsto a_i + \end{align*} + Consider the sum + \[ + \sum_{i \in I} a_i + \] + If $I$ is finite, there are no problems. However if $I$ is infinite then the solution of that sum can depend on the order of summation! +\end{enumerate} +\end{rem} + +\begin{defi} +Let $\rcseqdef{x}$. The series $\series{k} x_k$ is said to converge absolutely if $\series{k} |x_k|$ converges. +\end{defi} + +\begin{rem} +Let $\seq{x} \subset [0, \infty)$. Then the sequence +\[ + s_n = \series[n]{k} x_k +\] +is monotonic increasing. If $\seq{s}$ is bounded it converges, if it is unbounded it diverges properly. The notation for absolute convergence is +\[ + \series{k} |x_k| < \infty +\] +\end{rem} + +\begin{lem}\label{lem:absolutebounded} +Let $\series{k} x_k$ be a series. Then the following are all equivalent +\begin{enumerate}[(i)] + \item + \[ + \series{k} x_k \text{ converges absolutely} + \] + + \item + \[ + \set[I \subset \natn \text{ finite}]{\sum_{k \in I} |x_k|} \text{ is bounded} + \] + + \item + \[ + \forall \epsilon > 0 ~\exists I \subset \natn \text{ finite} ~\forall J \subset \natn \text{ finite}: ~~\sum_{k \in J \setminus I} |x_k| < \epsilon + \] +\end{enumerate} +\end{lem} +\begin{proof} +To prove the equivalence of all of these statements, we will show that (i) $\implies$ (ii) $\implies$ (iii) $\implies$ (i). This is sufficient. First we prove (i) $\implies$ (ii). Let +\begin{equation} + \series{n} |x_n| = k \in [0, \infty) +\end{equation} +Let $I \subset \natn$ be a finite set, and let $N = \max I$. Then +\begin{equation} + \sum_{n \in I} |x_n| \le \series[N]{n} |x_n| \leexpl{Monotony of the partial sums} \series{n} |x_n| +\end{equation} +Now to prove (ii) $\implies$ (iii), set +\begin{equation} + K := \set[I \subset \natn \finite]{\sum_{k \in I} |x_k|} +\end{equation} +Let $\epsilon > 0$. Then by definition of $\sup$ +\begin{equation} + \exists I \subset \natn \finite: ~~\sum_{k \in I} |x_k| > k - \epsilon +\end{equation} +Let $J \subset \natn \finite$. Then +\begin{equation} + k - \epsilon < \sum_{k \in I} |x_k| \le \sum_{k \in I \cup J} |x_k| \le K +\end{equation} +Hence +\begin{equation} + \sum_{k \in J \setminus I} |x_k| = \sum_{k \in I \cup J} |x_k| - \sum_{k \in I} |x_k| \le \epsilon +\end{equation} +Finally we show that (iii) $\implies$ (i). Choose $I \subset \natn \finite$ such that +\begin{equation} + \forall J \subset \natn \finite: ~~\sum_{k \in J \setminus I} |x_k| < 1 +\end{equation} +Then $\forall J \subset \natn \finite$ +\begin{equation} + \sum_{k \in J} |x_k| \le \sum_{k \in J \setminus I} |x_k| + \sum_{k \in I} |x_k| \le \sum_{k \in I} |x_k| + 1 +\end{equation} +Therefore $\series[n]{k} |x_k|$ is bounded and monotonic increasing, and hence it is converging. So $\series{k} |x_k| < \infty$. +\end{proof} + +\begin{thm} +Every absolutely convergent series converges and the limit does not depend on the order of summation. +\end{thm} +\begin{proof} +Let $\series{k} x_k$ be absolutely convergent and let $\epsilon > 0$. Choose $I \subset \natn \finite$ such that +\begin{equation} + \forall J \subset \natn: ~~\sum_{k \in I} |x_k| < \epsilon +\end{equation} +Choose $N = \max I$. Define the series +\begin{equation} + s_n = \series[n]{k} x_k +\end{equation} +Then for $n \le m \le N$ +\begin{equation} + |s_n - s_m| \le \sum_{k=m+1}^n |x_k| \le \sum_{k \in \set{1, \cdots, n} \setminus I} |x_k| < \epsilon +\end{equation} +Hence $s_n$ is a Cauchy sequence, so it converges. Let $\phi: \natn \rightarrow \natn$ be a bijective mapping. According to \Cref{lem:absolutebounded} the series $\series{k} x_{\phi(n)}$ converges absolutely. Let $\epsilon > 0$. According to the same Lemma +\begin{equation} + \exists I \subset \natn \finite ~\forall J \subset \natn \finite: ~~\sum_{k \in J \setminus I} |x_k| < \frac{\epsilon}{2} +\end{equation} +Choose $N \in \natn$ such that +\begin{equation} + I \subset \set{1, \cdots, N} \cap \set{\phi(1), \phi(2), \cdots, \phi(n)} +\end{equation} +Then for $n \ge N$ +\begin{equation} +\begin{split} + \left|\series{k} x_k - \series[n]{k} x_{\phi(k)}\right| &= \left| \sum_{k \in \set{1, \cdots, N} \setminus I} x_k - \sum_{k \in \set{\phi(1), \cdots, \phi(n)} \setminus I} x_k \right| \\ + &\le \sum_{k \in \set{1, \cdots, N} \setminus I} |x_k| + \sum_{k \in \set{\phi(1), \cdots, \phi(n)} \setminus I} |x_k| < \epsilon +\end{split} +\end{equation} +Therefore +\begin{equation} + \limn\left( \series[n]{k} x_k - \series[n]{k} x_{\phi(k)} \right) = 0 +\end{equation} +\end{proof} + +\begin{thm} +Let $\series{k} x_k$ be a converging series. Then +\[ + \left| \series{k} x_k \right| \le \series{k} |x_k| +\] +\end{thm} +\begin{proof} +\reader +\end{proof} + +\begin{thm}[Direct comparison test] +Let $\series{k} x_k$ be a series. If a converging series $\series{k} y_k$ exists with $|x_k| \le y_k$ for all sufficiently large $k$, then $\series{k} x_k$ converges absolutely. If a series $\series{k} z_k$ diverges with $0 \le z_k \le x_k$ for all sufficiently large $k$, then $\series{k} x_k$ diverges. +\end{thm} +\begin{proof} +\begin{equation} + \series[n]{k} |x_k| \le \series[n]{k} y_k \implies \series[n]{k} x_k \text{ bounded} \implbl{\cref{lem:absolutebounded}} \series{k} |x_k| < \infty +\end{equation} +\begin{equation} + \series[n]{k} z_k \le \series[n]{k} x_k \implies \series{k} x_k \text{ unbounded} +\end{equation} +\end{proof} + +\begin{cor}[Ratio test] +Let $\seq{x}$ be a sequence. If $\exists q \in (0, 1)$ such that +\[ + \left| \frac{x_{n+1}}{x_n} \right| \le q +\] +for a.e. $n \in \natn$, then $\series{k} x_k$ converges absolutely. If +\[ + \left| \frac{x_{n+1}}{x_n} \right| \ge 1 +\] +then the series diverges. +\end{cor} +\begin{proof} +Let $q \in (0, 1)$ and choose $N \in \natn$ such that +\begin{equation} + \forall n \ge N: ~~\left|\frac{x_{n+1}}{x_n}\right| \le q +\end{equation} +Then +\begin{equation} + |x_{N+1}| \le q|x_N|, ~|x_{N+2}| \le q|x_{N+1}| \le q^2|x_N|, ~\cdots +\end{equation} +This means that +\begin{equation} + \series{k} |x_k| \le \series[N]{k} |x_k| + \sum_{k=N+1}^\infty q^{k-N} \cdot |x_N| < \infty +\end{equation} +Hence, $\series{k} x_k$ converges absolutely. Now choose $N \in \natn$ such that +\begin{equation} + \forall n \ge N: ~~\left|\frac{x_{n+1}}{x_n}\right| > 1 +\end{equation} +However this means that +\begin{equation} + |x_{n+1}| \ge |x_{n}| ~~\forall n \ge N +\end{equation} +So $\seq{x}$ is monotonic increasing and therefore not a null sequence. Hence $\series{k} x_k$ diverges. +\end{proof} + +\begin{cor}[Root test] +Let $\seq{x}$ be a sequence. If $\exists q \in (0, 1)$ such that +\[ + \sqrt[n]{|x_n|} \le q +\] +for a.e. $n \in \natn$, then $\series{k} x_k$ converges absolutely. If +\[ + \sqrt[n]{|x_n|} \ge 1 +\] +for all $n \in \natn$ then $\series{k} x_k$ diverges. +\end{cor} +\begin{proof} +\reader +\end{proof} + +\begin{rem} +The previous tests can be summed up by the formulas +\begin{align*} + \limn \left|\frac{x_{n+1}}{x_n}\right| &< 1 & \limn \sqrt[n]{|x_n|} &< 1 \\ + \limn \left|\frac{x_{n+1}}{x_n}\right| &> 1 & \limn \sqrt[n]{|x_n|} &> 1 +\end{align*} +for convergence and divergence respectively. If any of these limits is equal to $1$ then the test is inconclusive. +\end{rem} + +\begin{eg} +Let $z \in \cmpln$. Then +\[ + \exp(z) := \sum_{k=0}^\infty \frac{z^k}{k!} +\] +converges. To prove this, apply the ratio test: +\[ + \frac{|z|^{k+1} k!}{(k+1)! |z|^k} = \frac{|z|}{k+1} \conv{} 0 +\] +The function $\exp: \cmpln \rightarrow \cmpln$ is called the exponential function. +\end{eg} + +\begin{rem}[Binomial coefficient] +The binomial coefficient is defined as +\begin{align*} + {n\choose 0} &:= 1 & {n\choose k+1} &= {n\choose k} \cdot \frac{n-k}{k+1} +\end{align*} +and represents the number of ways one can choose $k$ objects from a set of $n$ objects. Some rules are +\begin{enumerate}[(i)] + \item \[{n\choose k} = 0 ~~\text{ if } k > n\] + \item \[k \le n: ~~{n\choose k} = \frac{n!}{k!(n-k)!}\] + \item \[{n\choose k} + {n\choose k-1} = {n+1\choose k}\] + \item \[\forall x, y \in \cmpln: ~~(x+y)^n = \series[n]{k} {n\choose k} x^ky^{n-k}\] +\end{enumerate} +\end{rem} + +\begin{thm} +\[ + \forall u, v \in \cmpln: ~~\exp(u+v) = \exp(u)\cdot\exp(v) +\] +\end{thm} +\begin{proof} +\begin{equation} +\begin{split} + \exp(u)\cdot\exp(v) = \left(\sum_{n=0}^{\infty} \frac{u^n}{n!} \right) \cdot \left(\sum_{m=0}^{\infty} \frac{v^m}{m!} \right) &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{u^nv^m}{n!m!} \\ + &= \sum_{l=0}^{\infty} \sum_{k=0}^{l} \frac{u^kv^{l-k}}{k!(l-k)!} \\ + &=\sum_{l=0}^{\infty} \frac{(u+v)^l}{l!} \\ + &= \exp(u+v) +\end{split} +\end{equation} +\end{proof} + +\begin{rem} +We define Euler's number as +\[ + e := \exp(1) +\] +We will also take note of the following rules $\forall x \in \cmpln, n \in \natn$ +\[ + \exp(0) = \exp(x)\exp(-x) = 1 \implies \exp(-x) = \frac{1}{\exp(x)} +\] +\[ + \exp(nx) = \exp(x + x + x + \cdots + x) = \exp(x)^n +\] +\[ + \exp(x)^{\frac{1}{n}} = \exp(\frac{x}{n}) +\] +Alternatively we can write +\[ + \exp(z) = e^z +\] +\end{rem} + +\begin{thm} +Let $x, y \in \realn$. +\begin{enumerate}[(i)] + \item + \[ + x < y \implies \exp(x) < \exp(y) + \] + + \item + \[ + \exp(x) > 0 ~~\forall x \in \realn + \] + + \item + \[ + \exp(x) \ge 1 + x ~~\forall x \in \realn + \] + + \item + \[ + \limn \frac{n^d}{\exp(n)} = 0 ~~\forall d \in \natn + \] +\end{enumerate} +\end{thm} +\begin{proof}\leavevmode +\begin{enumerate}[(i)] + \item \reader + + \item For $x \ge 0$ this is trivial. For $x < 0$ + \begin{equation} + \exp(x) = \frac{1}{\exp(-x)} > 0 + \end{equation} + + \item For $x \ge 0$ this is trivial. For $x < 0$ + \begin{equation} + \sum_{k=0}^{\infty} \frac{x^k}{k!} + \end{equation} + is an alternating series, and therefore the statement follows from \Cref{thm:alttest}. + + \item Let $d \in \natn$. Then $\forall n \in \natn$ + \begin{equation} + 0 < \frac{n^d}{\exp(n)} < \frac{n^d}{\sum_{k=0}^{d+1} \frac{n^k}{k!}} \convinf 0 + \end{equation} +\end{enumerate} +\end{proof} + +\begin{defi} +Define +\[ + \sin, \cos: \realn \longrightarrow \realn +\] +as +\begin{align*} + \sin(x) &:= \Im(\exp(ix)) \\ + \cos(x) &:= \Re(\exp(ix)) +\end{align*} +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item Euler's formula + \[ + \exp(ix) = \cos(x) + i\sin(x) + \] + + \item $\forall z \in \cmpln: ~~\overline{\exp(z)} = \exp(\bar{z})$ + \[ + |\exp(ix)|^2 = \exp(ix) \cdot \overline{\exp(ix)} = \exp(ix) \cdot \exp(-ix) = 1 + \] + Also: + \[ + 1 = \cos^2(x) + \sin^2(x) + \] + On the symmetry of $\cos$ and $\sin$: + \[ + \cos(-x) + i\sin(-x) = \exp(-ix) = \overline{\exp(ix)} = \cos(x) - i\sin(x) + \] + + \item From + \[ + \exp(ix) = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} ~~~(i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1, \cdots) + \] + follow the following series + \begin{align*} + \sin(x) &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} & \cos(x) &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} + \end{align*} + + \item For $x \in \realn$ + \[ + \begin{split} + \exp(i2x) &= \cos(2x) + i\sin(2x) \\ + &= (\cos(x) + i\sin(x))^2 \\ + &= \cos^2(x) - \sin^2(x) + 2i\sin(x)\cos(x) + \end{split} + \] + By comparing the real and imaginary parts we get the following identities + \begin{align*} + \cos(2x) &= \cos^2(x) - \sin^2(x) \\ + \sin(2x) &= 2\sin(x)\cos(x) + \end{align*} + + \item Later we will show that $\cos$ as exactly one root in the interval $[0, 2]$. We define $\pi$ as the number in the interval $[0, 4]$ such that $\cos(\frac{\pi}{2}) = 0$. + \[ + \implies \sin(\frac{\pi}{2}) = \pm 1 + \] + $\cos$ and $\sin$ are $2\pi$-periodic. +\end{enumerate} +\end{rem} + +\begin{thm} +$\forall z \in \cmpln$ +\[ + \limn \left(1 + \frac{z}{n}\right)^n = \limn \left(1 - \frac{z}{n}\right)^{-n} = \exp(z) +\] +\end{thm} +\begin{proof} +Without proof. +\end{proof} +\end{document} \ No newline at end of file diff --git a/chapters/sections/elem_ineqs.tex b/chapters/sections/elem_ineqs.tex new file mode 100644 index 0000000..f87d1d1 --- /dev/null +++ b/chapters/sections/elem_ineqs.tex @@ -0,0 +1,84 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Elementary Inequalities} +\begin{eg}\leavevmode +\begin{itemize} + \item $x \in \realn \implies x^2 \ge 0$ + \item $x^2 - 2xy + y^2 = (x - y)^2 \ge 0 ~~\forall x, y \in \realn$ + \item $x^2 + y^2 \ge 2xy$ +\end{itemize} +\end{eg} + +\begin{thm}[Absolute inequalities]\label{thm:abs} +Let $x \in \realn$, $c \in [0, \infty)$. Then +\begin{enumerate}[(i)] + \item $-|x| \le x \le |x|$ + \item $|x| \le c \iff -c \le x \le c$ + \item $|x| \ge c \iff x \le -c \vee c \le x$ + \item $|x| = 0 \iff x = 0$ +\end{enumerate} +\end{thm} + +\begin{thm}[Triangle inequality]\label{thm:triangle} +Let $x, y \in \realn$. Then +\[ + |x + y| \le |x| + |y| +\] +\end{thm} +\begin{proof} +From \Cref{thm:abs} follows $x \le |x|$ and $y \le |y|$. +\begin{equation} + \implies x + y \le |x| + |y| +\end{equation} +However, from the same theorem follows $-|x| \le x$ and $-|y| \le y$. +\begin{align} + &\implies -|x|-|y| = x + y \\ + &\implies |x + y| \le |x| + |y| +\end{align} +\end{proof} + +\begin{cor} +$n \in \natn$, $x_1, \cdots, x_n \in \realn$. Then +\[ + \left| \sum_{i=1}^n x_i \right| \le \sum_{i=1}^n |x_i| +\] +\end{cor} +\begin{proof} +Proof by induction. Let $n = 1$: +\begin{equation} + |x_1| \le |x_1| +\end{equation} +This statement is trivially true. Now assume the corollary holds for $n \in \natn$. Then +\begin{equation} +\begin{split} + \left| \sum_{i=1}^{n+1} x_i \right| = \left| \sum_{i=1}^n x_i + x_{n+1} \right| &\le \left| \sum_{i=1}^n x_n \right| + |x_{n+1}| \\ + &\le \sum_{i=1}^n |x_i| + |x_{n+1}| \\ + &= \sum_{i=1}^{n+1} |x_i| +\end{split} +\end{equation} +\end{proof} + +\begin{thm}[Bernoulli inequality]\label{thm:bernoulli} +Let $x \in [-1, \infty)$ and $n \in \natn$. Then +\[ + (1 + x)^n \ge 1 + nx +\] +\end{thm} +\begin{proof} +Proof by induction. Let $n = 1$: +\begin{equation} + 1 + x \ge 1 + 1\cdot x +\end{equation} +This is trivial. Now assume the theorem holds for $n \in \natn$. Then +\begin{equation} +\begin{split} + (1 + x)^{n+1} = (1+x)^n (1+x) &\ge (1 + nx)(1 + x) \\ + &= 1 + (n+1)x + nx^2 \\ + &\ge 1 + (n+1)x +\end{split} +\end{equation} +\end{proof} +\end{document} \ No newline at end of file diff --git a/chapters/sections/logic.tex b/chapters/sections/logic.tex new file mode 100644 index 0000000..30507c8 --- /dev/null +++ b/chapters/sections/logic.tex @@ -0,0 +1,95 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Logic} +\begin{defi}[Statements] +A statement is a sentence (mathematically or colloquially) which can be either true or false. +\end{defi} + +\begin{eg} +Statements are +\begin{itemize} + \item Tomorrow is Monday + \item $x > 1$ where $x$ is a natural number + \item Green rabbits grow at full moon +\end{itemize} +No statements are +\begin{itemize} + \item What is a statement? + \item $x + 20y$ where $x, y$ are natural numbers + \item This sentence is false +\end{itemize} +\end{eg} + +\begin{defi}[Connectives] +When $\Phi, \Psi$ are statements, then +\begin{enumerate}[(i)] + \item $\neg\Phi$ (not $\Phi$) + \item $\Phi \wedge \Psi$ ($\Phi$ and $\Psi$) + \item $\Phi \vee \Psi$ ($\Phi$ or $\Psi$) + \item $\Phi \implies \Psi$ (if $\Phi$ then $\Psi$) + \item $\Phi \iff \Psi$ ($\Phi$ if and only if (iff.) $\Psi$) +\end{enumerate} +are also statements. We can represent connectives with truth tables +\begin{center} +\begin{tabular}{ c|c||c|c|c|c|c } + $\Phi$ & $\Psi$ & $\neg\Phi$ & $\Phi \wedge \Psi$ & $\Phi \vee \Psi$ & $\Phi \implies \Psi$ & $\Phi \iff \Psi$ \\ + \hline + t & t & f & t & t & t & t\\ + t & f & f & f & t & f & f\\ + f & t & t & f & t & t & f\\ + f & f & t & f & f & t & t\\ +\end{tabular} +\end{center} +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item $\vee$ is inclusive + \item $\Phi \implies \Psi$, $\Phi \impliedby \Psi$, $\Phi \iff \Psi$ are NOT the same + \item $\Phi \implies \Psi$ is always true if $\Phi$ is false (ex falso quodlibet) +\end{enumerate} +\end{rem} + +\begin{defi}[Hierarchy of logical operators] +$\neg$ is stronger than $\wedge$ and $\vee$, which are stronger than $\implies$ and $\iff$. +\end{defi} + +\begin{eg}\leavevmode +\begin{align*} + \neg\Phi \wedge \Psi ~&\cong~ (\neg\Phi) \wedge \Psi \\ + \neg\Phi \implies \Psi ~&\cong~ (\neg\Phi) \wedge \Psi \\ + \Phi \wedge \Psi \iff \Psi ~&\cong~ (\Phi \wedge \Psi) \iff \Psi \\ + \neg\Phi \vee \neg\Psi \implies \neg\Psi \wedge \Psi ~&\cong~ ((\neg\Phi) \vee (\neg\Psi)) \implies ((\neg\Psi) \wedge \Psi) +\end{align*} +We avoid writing statements like $\Phi \wedge \Psi \vee \Theta$. A statement that is always true is called a tautology. Some important equivalencies are +\begin{align*} + \Phi ~&\text{equiv.}~ \neg(\neg\Phi)) \\ + \Phi \implies \Psi ~&\text{equiv.}~ \neg\Psi \implies \neg\Phi \\ + \Phi \iff \Psi ~&\text{equiv.}~ (\Phi \implies \Psi) \wedge (\Psi \implies \Phi) \\ + \Phi \vee \Psi ~&\text{equiv.}~ \neg(\neg\Phi \wedge \neg\Psi) +\end{align*} +Logical operators are commutative, associative and distributive. +\end{eg} + +\begin{defi}[Quantifiers] +Let $\Phi(x)$ be a statement depending on $x$. Then $\forall x ~\Phi(x)$ and $\exists x ~\Phi(x)$ are also statements. The interpretation of these statements is +\begin{itemize} + \item $\forall x ~\Phi(x)$: "For all $x$, $\Phi(x)$ holds." + \item $\exists x ~\Phi(x)$: "There is (at least one) $x$ s.t. $\Phi(x)$ holds." +\end{itemize} +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item $\forall x ~x \ge 1$ is true for natural numbers, but not for integers. We must specify a domain. + \item If the domain is infinite the truth value of $\forall x ~\Phi(x)$ cannot be algorithmically determined. + \item $\forall x ~\Phi(x)$ and $\forall y ~\Phi(y)$ are equivalent. + \item Same operators can be exchanged, different ones cannot. + \item $\forall x ~\Phi(x)$ is equivalent to $\neg\exists x ~\neg\Phi(x)$. +\end{enumerate} +\end{rem} + +\end{document} \ No newline at end of file diff --git a/chapters/sections/matrices.tex b/chapters/sections/matrices.tex new file mode 100644 index 0000000..fd1ffb5 --- /dev/null +++ b/chapters/sections/matrices.tex @@ -0,0 +1,107 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Matrices and Gaussian elimination} +\begin{defi} +Let $a_{ij} \in \field$, with $i \in \set{1, \cdots, n}$, $j \in \set{1, \cdots, m}$. Then +\[ +\begin{pmatrix} + a_{11} & a_{12} & \cdots & a_{1m} \\ + a_{21} & a_{22} & \cdots & a_{2m} \\ + \vdots & \vdots & \ddots & \vdots \\ + a_{n1} & a_{n2} & \cdots & a_{nm} +\end{pmatrix} +\] +is called an $n \times m$-matrix. $(n, m)$ is said to be the dimension of the matrix. An alternative notation is +\[ + A = (a_{ij}) \in \field^{n \times m} +\] +$\field^{n\times m}$ is the space of all $n \times m$-matrices. The following operations are defined for $A, B \in \field^{n \times m}$, $C \in \field^{m \times l}$: +\begin{enumerate}[(i)] + \item Addition + \[ + A + B = + \begin{pmatrix} + a_{11} + b_{11} & \cdots & a_{1m} + b_{1m} \\ + \vdots & \ddots & \vdots \\ + a_{n1} + b_{n1} & \cdots & a_{nm} + b_{nm} + \end{pmatrix} + \] + + \item Scalar multiplication + \[ + \alpha \cdot A = + \begin{pmatrix} + \alpha a_{11} & \cdots & \alpha a_{1m} \\ + \vdots & \ddots & \vdots \\ + \alpha a_{n1} & \cdots & \alpha a_{nm} + \end{pmatrix} + \] + + \item Matrix multiplication + \[ + A \cdot C = + \begin{pmatrix} + a_{11}c_{11}+a_{12}c_{21}+\cdots+a_{1m}c_{m1} & \cdots & a_{11}c_{1l}+a_{12}c_{2l}+\cdots+a_{1m}c_{ml} \\ + \vdots & \ddots & \vdots \\ + a_{n1}c_{11}+a_{n2}c_{21}+\cdots+a_{nm}c_{m1} & \cdots & a_{n1}c_{1l}+a_{n2}c_{2l}+\cdots+a_{nm}c_{ml} + \end{pmatrix} + \] + or in shorthand notation + \[ + (AC)_{ij} = \series[m]{k} a_{ik}c_{kj} + \] + + \item Transposition + + The transposed matrix $A^T \in \field^{m \times n}$ is created by writing the rows of $A$ as the columns of $A^T$ (and vice versa). + + \item Conjugate transposition + \[ + \conj{A} = \left(\overline{A}\right)^T + \] +\end{enumerate} +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item $\field^{n \times m}$ (for $n, m \in \natn$) is a vector space. + + \item $A \cdot B$ is only defined if $A$ has as many columns as $B$ has rows. + + \item $\field^{n \times 1}$ and $\field^{1 \times n}$ can be trivially identified with $\field^n$. + + \item Let $A, B, C, D, E$ matrices of fitting dimensions and $\alpha \in \field$. Then + \begin{align*} + (A + B) C &= AC + BC \\ + A(B + C) &= AB + AC \\ + A(CE) &= (AC)E \\ + \alpha (AC) &= (\alpha A) C = A (\alpha C) + \end{align*} + \begin{align*} + (A + B)^T &= A^T + B^T & \conj{(A + B)} &= \conj{A} + \conj{B} \\ + (\alpha A)^T &= \alpha (A)^T & \conj{(\alpha A)} &= \overline{A} \conj{A} \\ + (AC)^T &= C^T \cdot A^T & \conj{(AC)} &= \conj{C} \conj{A} + \end{align*} + \begin{proof}[Proof of associativity] + Let $A \in \field^{n \times m}, C \in \field^{m \times l}, E \in \field^{l \times p}$. Furthermore let $i \in \set{1, \cdots, n}, j \in \set{1, \cdots, p}$. + + \begin{equation} + \begin{split} + \left((AC)E\right)_{ij} &= \sum_{k=1}^l (AC)_{ik} E_{kj} = \sum_{k=1}^l \left(\sum_{\tilde{k} = 1}^m a_{i\tilde{k}} c_{\tilde{k}k}\right) \cdot e_{kj} \\ + &= \sum_{k=1}^l \sum_{\tilde{k} = 1}^m a_{i\tilde{k}} \cdot c_{\tilde{k}k} \cdot e_{kj} \\ + &= \sum_{\tilde{k} = 1}^m a_{i\tilde{k}} \left( \sum_{k=1}^l c_{\tilde{k} k} e_{kj}\right) \\ + &= \sum_{\tilde{k} = 1}^m a_{i \tilde{k}} \cdot (CE)_{\tilde{k}j} \\ + &= (A(CE))_{ij} + \end{split} + \end{equation} + + \begin{equation} + \implies A(CE) = A(CE) + \end{equation} + \end{proof} +\end{enumerate} +\end{rem} +\end{document} \ No newline at end of file diff --git a/chapters/sections/numbers.tex b/chapters/sections/numbers.tex new file mode 100644 index 0000000..a34f6e5 --- /dev/null +++ b/chapters/sections/numbers.tex @@ -0,0 +1,478 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Numbers} +\begin{defi} +The real numbers are a set $\realn$ with the following structure +\begin{enumerate}[(i)] + \item Addition + \begin{align*} + +: \realn \times \realn \longrightarrow \realn + \end{align*} + \item Multiplication + \begin{align*} + \cdot: \realn \times \realn \longrightarrow \realn + \end{align*} + Instead of $+(x, y)$ and $\cdot(x, y)$ we write $x+y$ and $x \cdot y$. + \item Order relations + + $\le$ is a relation on $\realn$, i.e. $x \le y$ is a statement. +\end{enumerate} +\end{defi} + +\begin{defi}[Axioms of Addition]\leavevmode +\begin{enumerate}[label=A\arabic*:] + \item Associativity + \[ + \forall a, b, c \in \realn: ~~(a + b) + c = a + (b + c) + \] + \item Existence of a neutral element + \[ + \exists 0 \in \realn ~\forall x \in \realn: ~~x + 0 = x + \] + \item Existence of an inverse element + \[ + \forall x \in \realn ~\exists (-x) \in \realn: ~~ x + (-x) = 0 + \] + \item Commutativity + \[ + \forall x, y \in \realn: ~~x + y = y + x + \] +\end{enumerate} +\end{defi} + +\begin{thm}\label{thm:addition} +$x, y \in \realn$ + +\begin{enumerate}[(i)] + \item The neutral element is unique + \item $\forall x \in \realn$ the inverse is unique + \item $-(-x) = x$ + \item $-(x + y) = (-x) + (-y)$ +\end{enumerate} +\end{thm} +\begin{proof}\leavevmode + \begin{enumerate}[(i)] + \item Assume $a, b \in \realn$ are both neutral elements, i.e. + \begin{equation} + \forall x \in \realn: x + a = x = x + b + \end{equation} + This also implies that $a + b = a$ and $b + a = b$. + \begin{equation} + \implies b = b + a \stackrel{\text{A4}}{=} a + b = a + \end{equation} + Therefore $a = b$. + + \item Assume $c, d \in \realn$ are both inverse elements of $x \in \realn$, i.e. + \begin{equation} + x + c = 0 = x + d + \end{equation} + \begin{equation} + c = 0 + c = x + d + c \stackrel{\text{A4}}{=} x + c + d = 0 + d = d + \end{equation} + Therefore $c = d$. + + \item \reader + + \item + \begin{equation} + \begin{split} + x + y + ((-x) + (-y)) &= x + y + (-x) + (-y) \\ + &\eqlbl{A4} x + (-x) + y + (-y) = 0 + \end{split} + \end{equation} + Therefore $(-x) + (-y)$ is the inverse element of $(x+y)$, i.e. $-(x + y) = (-x) + (-y)$. + \end{enumerate} +\end{proof} + +\begin{defi}[Axioms of Multiplication]\leavevmode +\begin{enumerate}[label=M\arabic*:] + \item $\forall x, y, z \in \realn: ~~(xy)z = x(yz)$ + \item $\exists 1 \in \realn ~\forall x \in \realn: ~~x1 = x$ + \item $\forall x \in \realn \setminus \{0\} ~\exists \inv{x} \in \realn: ~~x\inv{x} = 1$ + \item $\forall x, y \in \realn: ~~xy = yx$ +\end{enumerate} +\end{defi} + +\begin{defi}[Compatibility of Addition and Multiplication]\leavevmode +\begin{enumerate}[label=R\arabic*:] + \item Distributivity + \[ + \forall x, y, z \in \realn: ~~ x\cdot(y + z) = (x \cdot y) + (x \cdot z) + \] + \item $0 \ne 1$ +\end{enumerate} +\end{defi} + +\begin{thm} +$x, y \in \realn$ + +\begin{enumerate}[(i)] + \item $x \cdot 0 = 0$ + \item $-(x \cdot y) = x \cdot (-y) = (-x) \cdot y$ + \item $(-x) \cdot (-y) = x \cdot y$ + \item $\inv{(-x)} = -(\inv{x}) ~~(\text{only for } x \ne 0)$ + \item $xy = 0 \implies x = 0 \vee y = 0$ +\end{enumerate} +\end{thm} +\begin{proof}\leavevmode +\begin{enumerate}[(i)] + \item $x \in \realn$ + \begin{equation} + x \cdot 0 \eqlbl{A2} x \cdot (0 + 0) \eqlbl{R1} x \cdot 0 + x \cdot 0 + \end{equation} + \begin{equation} + \stackrel{\text{A3}}{\implies} 0 = x \cdot 0 + \end{equation} + + \item $x,y \in \realn$ + \begin{equation} + xy + (-(xy)) \eqlbl{A3} 0 \eqlbl{(i)} x \cdot 0 = x(y + (-y)) \eqlbl{R1} xy + x(-y) + \end{equation} + \begin{equation} + \stackrel{\text{A3}}{\implies} -(xy) = x\cdot(-y) + \end{equation} + + \item \reader + + \item $x \in \realn$ + \begin{equation} + x \cdot (-\inv{(-x)}) \eqlbl{(ii)} -(x \cdot \inv{(-x)}) \eqlbl{(ii)} (-x) \cdot \inv{(-x)} \eqlbl{M3} 1 \eqlbl{M3} x \cdot \inv{x} + \end{equation} + \begin{equation} + \stackrel{\text{M3}}{\implies} -\inv{(-x)} = \inv{x} \stackrel{\ref{thm:addition} (iii)}{\implies} \inv{(-x)} = -(\inv{x}) + \end{equation} + + \item $x, y \in \realn$ and $y \ne 0$. Then $\exists \inv{y} \in \realn$: + \begin{equation} + xy = 0 \implies xy\inv{y} \eqlbl{M3} x \cdot 1 \eqlbl{M2} x = 0 = 0 \cdot \inv{y} + \end{equation} +\end{enumerate} +\end{proof} + +\begin{rem} +A structure that fulfils all the previous axioms is called a field. We introduce the following notation for $x, y \in \realn, ~y \ne 0$ +\[ + \frac{x}{y} = x\inv{y} +\] +\end{rem} + +\begin{defi}[Order relations]\leavevmode +\begin{enumerate}[label=O\arabic*:] + \item Reflexivity + \[ + \forall x \in \realn: ~~x \le x + \] + + \item Transitivity + \[ + \forall x, y, z \in \realn: ~~x \le y \wedge y \le z \implies x \le z + \] + + \item Anti-Symmetry + \[ + \forall x, y \in \realn: ~~x \le y \wedge y \le x \implies x = y + \] + + \item Totality + \[ + \forall x, y \in \realn: ~~x \le y \vee y \le x + \] + + \item + \[ + \forall x, y, z \in \realn: ~~x \le y \implies x + z \le y + z + \] + + \item + \[ + \forall x, y \in \realn: ~~0 \le x \wedge 0 \le y \implies 0 \le x \cdot y + \] +\end{enumerate} +We write $x < y$ for $x \le y \wedge x \ne y$ +\end{defi} + +\begin{thm} +$x, y \in \realn$ +\begin{enumerate}[(i)] + \item $x \le y \implies -y \le -x$ + \item $x \le 0 \wedge y \le 0 \implies 0 \le xy$ + \item $0 \le 1$ + \item $0 \le x \implies 0 \le \inv{x}$ + \item $0 < x \le y \implies \inv{y} \le \inv{x}$ +\end{enumerate} +\end{thm} +\begin{proof}\leavevmode +\begin{enumerate}[(i)] + \item + \begin{equation} + \begin{split} + x \le y &\implbl{O5} x + (-x) + (-y) \le y + (-x) + (-y) \\ + &\iff -y \le -x + \end{split} + \end{equation} + + \item With $y \le 0 \implbl{(i)} 0 \le -y$ and $x \le 0 \implbl{(i)} 0 \le -x$ follows from O6: + \begin{equation} + 0 \le (-x)(-y) = xy + \end{equation} + + \item Assume $0 \le 1$ is not true. From O4 we know that + \begin{equation} + 1 \le 0 \implbl{(ii)} 0 \le 1 \cdot 1 = 1 + \end{equation} + + \item \reader + + \item + \begin{equation} + 0 \le \inv{x} \wedge 0 \le \inv{y} \implbl{O6} 0 \le \inv{x}\inv{y} + \end{equation} + From $x \le y$ follows $0 \le y - x$ + \begin{align} + &\implbl{O6} 0 \le (y - x)\inv{x}\inv{y} \eqlbl{R1} y\inv{x}\inv{y} - x\inv{x}\inv{y} = \inv{x} - \inv{y} \\ + &\implbl{O5} \inv{y} \le \inv{x} + \end{align} +\end{enumerate} +\end{proof} + +\begin{rem} +A structure that fulfils all the previous axioms is called an ordered field. +\end{rem} + +\begin{defi} +Let $A \subset \mathbb{R}$, $x \in \realn$. +\begin{enumerate}[(i)] + \item $x$ is called an upper bound of $A$ if $\forall y \in A: ~y \le x$ + + \item $x$ is called a maximum of $A$ if $x$ is an upper bound of $A$ and $x \in A$ + + \item $x$ is called supremum of $A$ is $x$ is an upper bound of $A$ and if for every other upper bound $y \in \realn$ the statement $x \le y$ holds. In other words, $x$ is the smallest upper bound of $A$. +\end{enumerate} +$A$ is called bounded above if it has an upper bound. Analogously, there exists a lower bound, a minimum and an infimum. We introduce the notation $\sup A$ for the supremum and $\inf A$ for the infimum. +\end{defi} + +\begin{defi} +$a, b \in \realn$, $a < b$. We define +\begin{itemize} + \item $(a, b) := \{x \in \realn \setvert a < x \wedge x < b\}$ + + \item $[a, b] := \{x \in \realn \setvert a \le x \wedge x \le b\}$ + + \item $(a, \infty) := \{x \in \realn \setvert a < x\}$ +\end{itemize} +\end{defi} + +\begin{eg} + $(-\infty, 1)$ is bounded above ($1$, $2$, $1000$, $\cdots$ are upper bounds), but has no maximum. $1$ is the supremum. +\end{eg} + +\begin{defi}[Completeness of the real numbers] +Every non-empty subset of $\realn$ with an upper bound has a supremum. +\end{defi} + +\begin{defi} +A set $A \subset \realn$ is called inductive if $1 \in A$ and +\[ + x \in A \implies x + 1 \in A +\] +\end{defi} + +\begin{lem} +Let $I$ be an index set, and let $A_i$ be inductive sets for every $i \in I$. Then $\bigcap_{i \in I} A_i$ is also inductive. +\end{lem} +\begin{proof} +Since $A_i$ is inductive $\forall i \in I$, we know that $1 \in A_i$. Therefore +\begin{equation} + 1 \in \bigcap_{i \in I} A_i +\end{equation} +Now let $x \in \bigcap_{i \in I} A_i$, this means that $x \in A_i ~~\forall i \in I$. +\begin{equation} + \implies x + 1 \in A_i ~~\forall i \in I \implies x + 1 \in \bigcap_{i \in I} A_i +\end{equation} +\end{proof} + +\begin{defi} +The natural numbers are the smallest inductive subset of $\realn$. I.e. +\[ + \bigcap_{A \text{ inductive}} A =: \natn +\] +\end{defi} + +\begin{thm}[The principle of induction] +Let $\Phi(x)$ be a statement with a free variable $x$. If $\Phi(1)$ is true, and if $\Phi(x) \implies \Phi(x + 1)$, then $\Phi(x)$ holds for all $x \in \natn$. +\end{thm} +\begin{proof} +Define $A = \{x \in \realn \setvert \Phi(x)\}$. According to the assumptions, $A$ is inductive and therefore $\natn \subset A$. This means that $\forall n \in \natn: ~~\Phi(n)$. +\end{proof} + +\begin{cor} +$m, n \in \natn$ +\begin{enumerate}[(i)] + \item $m + n \in \natn$ + \item $mn \in \natn$ + \item $1 \le n ~~\forall n \in \natn$ +\end{enumerate} +\end{cor} +\begin{proof} +We will only proof (i). (ii) and (iii) are left as an exercise for the reader. Let $n \in \natn$. Define $A = \{m \in \natn \setvert m + n \in \natn\}$. Then $1 \in A$, since $\natn$ is inductive. Now let $m \in A$, therefore $n + m \in \natn$. +\begin{align} + &\implies n + m + 1 \in \natn \\ + &\iff m + 1 \in A +\end{align} +Hence $A$ is inductive, so $\natn \subset A$. From $A \subset N$ follows that $\natn = A$. +\end{proof} + +\begin{thm} +$n \in \natn$. There are no natural numbers between $n$ and $n + 1$. +\end{thm} +\begin{hproof} +Show that $x \in \natn \cap (1, 2)$ implies that $\natn \setminus \{x\}$ is inductive. Now show that if $\natn \cap (n, n+1) = \varnothing$ and $x \in \natn \cap (n + 1, n + 2)$ then $\natn \setminus \{x\}$ is inductive. +\end{hproof} + +\begin{thm}[Archimedian property] +\[ + \forall x \in \realn ~\exists n \in \natn: ~~x x$. +\end{proof} + +\begin{cor}\label{cor:minimum} +Every non-empty subset of $\natn$ has a minimum, and every non-empty subset of $\natn$ that is bounded above has a maximum. +\end{cor} +\begin{proof} +Let $A \subset \natn$. Propose that $A$ has no minimum. Define the set +\begin{equation} + \tilde{A} := \{n \in \natn \setvert \forall m \in A: ~n < m\} +\end{equation} +$1$ is a lower bound of $A$, but according to the proposition $A$ has no minimum, so therefore $1 \notin A$. This implies that $1 \in \tilde{A}$. +\begin{equation} + n \in \tilde{A} \implies n < m ~\forall m \in A +\end{equation} +But since there exists no natural number between $n$ and $n+1$, this means that $n+1$ is also a lower bound of $A$, and therefore +\begin{equation} + n+1 \le m ~\forall m \in A \implies n+1 \in \tilde{A} +\end{equation} +So $\tilde{A}$ is an inductive set, hence $\tilde{A} = \natn$. Therefore $A = \varnothing$. +\end{proof} + +\begin{defi} +We define the following new sets: +\begin{align*} + &\intn := \{x \in \realn \setvert x \in \natn_0 \vee (-x) \in \natn_0\}\\ + &\ratn := \left\{\frac{p}{q} \setvert p, q \in \intn \wedge q \ne 0\right\} +\end{align*} +$\intn$ are called integers, and $\ratn$ are called the rational numbers. $\natn_0$ are the natural numbers with the $0$ ($\natn_0 = \natn \cap \{0\}$). +\end{defi} + +\begin{rem} +\begin{align*} + x, y \in \intn &\implies x+y, x\cdot y, (-x) \in \intn \\ + x, y \in \ratn &\implies x+y, x\cdot y, (-x) \in \ratn \text{ and } \inv{x} \in \ratn \text{ if } x \ne 0 +\end{align*} +The second statement implies that $\ratn$ is a field. +\end{rem} + +\begin{cor}[Density of the rationals] +$x, y \in \realn, ~x < y$. Then +\[ + \exists r \in \ratn: ~~x < r < y +\] +\end{cor} +\begin{proof} +This proof relies on the Archimedian property. +\begin{equation} + \exists q \in \natn: ~~ \frac{1}{y-x} < q \left( \iff \frac{1}{q} < y - x \right) +\end{equation} +Let $p \in \intn$ be the greatest integer that is smaller than $y \cdot q$. The existence of $p$ is ensured by corollary \Cref{cor:minimum}. Then $\frac{p}{q} < y$ and +\begin{equation} + p + 1 \ge y \cdot q \implies y \le \frac{p}{q} + \frac{1}{q} < \frac{p}{q} + (y - x) +\end{equation} +\begin{equation} + \implies x < \frac{p}{q} < y +\end{equation} +\end{proof} + +\begin{defi}[Absolute values] +We define the following function +\begin{align*} + |\cdot|: \realn &\longrightarrow [0, \infty) \\ + x &\longmapsto + \begin{cases} + x &, x \ge 0 \\ + -x &, x < 0 + \end{cases} +\end{align*} +\end{defi} + +\begin{thm} +\[ + x, y \in \realn \implies |xy| = |x||y| +\] +\end{thm} +\begin{proof} +\reader +\end{proof} + +\begin{defi}[Complex numbers] +Complex numbers are defined as the set $\cmpln = \realn^2$. Addition and multiplication are defined as mappings $\cmpln \times \cmpln \rightarrow \cmpln$. Let $(x, y), (\tilde{x}, \tilde{y}) \in \cmpln$. +\begin{align*} + (x, y) + (\tilde{x}, \tilde{y}) &:= (x + \tilde{x}, y + \tilde{y}) \\ + (x, y) \cdot (\tilde{x}, \tilde{y}) &:= (x\tilde{x} - y\tilde{y}, x\tilde{y} + \tilde{x}y) +\end{align*} +$\cmpln$ is a field. Let $z = (x, y) \in \cmpln$. We define +\begin{align*} + \real(z) = \Re(z) = x& ~~\text{ the real part} \\ + \imag(z) = \Im(z) = y& ~~\text{ the imaginary part} +\end{align*} +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item We will not prove that $\cmpln$ fulfils the field axioms here, this can be left as an exercise to the reader. However, we will note the following statements + \begin{itemize} + \item Additive neutral element: $(0, 0)$ + \item Additive inverse of $(x, y)$: $(-x, -y)$ + \item Multiplicative neutral element: $(1, 0)$ + \item Multiplicative inverse of $(x, y) \ne (0, 0)$: $\left( \frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2} \right)$ + \end{itemize} + + \item Numbers with $y = 0$ are called real. + + \item The imaginary unit is defined as $i = (0, 1)$ + \[ + (0, 1) \cdot (x, y) = (-y, x) + \] + Especially + \[ + i^2 = (0, 1)^2 = (-1, 0) = -(1, 0) = -1 + \] +\end{enumerate} +We also introduce the following notation +\[ + (x, y) = (x, 0) + i\cdot(y, 0) = x + iy +\] +\end{rem} + +\begin{thm}[Fundamental theorem of algebra] +Every non-constant, complex polynomial has a complex root. I.e. for $n \in \natn$, $\alpha_0, \cdots, \alpha_n \in \cmpln$, $\alpha_n \ne 0$ there is some $x \in \cmpln$ such that +\[ + \sum_{i = 0}^n \alpha_i x^i = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \cdots + \alpha_n x^n = 0 +\] +\end{thm} +\begin{proof} +Not here. +\end{proof} +\end{document} \ No newline at end of file diff --git a/chapters/sections/seq_and_lims.tex b/chapters/sections/seq_and_lims.tex new file mode 100644 index 0000000..525a247 --- /dev/null +++ b/chapters/sections/seq_and_lims.tex @@ -0,0 +1,714 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Sequences and Limits} +\begin{defi} +Let $M$ be a set (usually $M$ is $\realn$ or $\cmpln$). A sequence in $M$ is a mapping from $\natn$ to $M$. The notation is $(x_n)_{n \in \natn} \subset M$ or $(x_n) \subset M$. $x_n$ is called element of the sequence at $n$. +\end{defi} +\newpage +\begin{eg} +Some real sequences are +\begin{itemize} + \item $x_n = \frac{1}{n} ~~~\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right)$ + + \item $x_n = \sum_{k=1}^n k ~~~\left(1, 3, 6, 10, 15, \cdots\right)$ + + \item $x_n =$ "smallest prime factor of $n$" $~~~(*, 2, 3, 2, 5, 2, 7, 2, 3, 2, \cdots)$ +\end{itemize} +\end{eg} + +\begin{defi}[Convergence] +Let $(x_n) \subset \realn$ be a sequence, and $x \in \realn$. Then +\[ + (x_n) \text{ converges to } x \iff \forall \epsilon > 0 ~\exists N \in \natn: ~~|x_n - x| < \epsilon ~~\forall n \ge N +\] +A complex sequence $(z_n) \subset \cmpln$ converges to $z \in \cmpln$ if the real and imaginary parts of $(z_n)$ converge to the real and imaginary parts of $z$. $x$ (or $z$) is called the limit of the sequence. Common notation: + +\noindent\begin{minipage}{0.3\textwidth} +\[ + x_n \longrightarrow x +\] +\end{minipage} +\begin{minipage}{0.3\textwidth} +\[ + x_n \convinf x +\] +\end{minipage} +\begin{minipage}{0.3\textwidth} +\[ + \lim_{n \rightarrow \infty} x_n = x +\] +\end{minipage} + +\noindent If a sequence converges to $0$ it is called a null sequence. +\end{defi} + +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item $x \in \realn$, $x_n = x$ (constant sequence). This sequence converges to $x$. To show this, let $\epsilon > 0$. Then for $N = 1$: + \[ + |x_n - x| = |x - x| = 0 < \epsilon + \] + + \item $x_n = \frac{1}{n}$ is a null sequence. Let $\epsilon > 0$. By the Archimedean property: + \[ + \exists N \in \natn: ~~\frac{1}{\epsilon} < N + \] + Then for $n \ge N$: + \[ + |x_n - 0| = |x_n| = \frac{1}{n} \le \frac{1}{N} < \epsilon + \] + + \item The sequence + \[ + x_n = + \begin{cases} + 1 &, n \text{ even} \\ + -1 &, n \text{ odd} + \end{cases} + \] + does not converge. +\end{enumerate} +\end{eg} + +\begin{rem} +A property holds for almost every (a.e.) $n \in \natn$ if it doesn't hold for only finitely many $n$. (e.g. $n < 10$ is true for a.e. $n \in \natn$) +\end{rem} + +\begin{thm} +A sequence $(x_n) \subset \realn$ (or $\cmpln$) has at most one limit. +\end{thm} +\begin{proof} +Propose that $x, \tilde{x}$ are different limits of $(x_n)$. Without loss of generality (w.l.o.g.) we can write $x < \tilde{x}$. Now define $\epsilon = \frac{1}{2}(\tilde{x} - x) > 0$. +\begin{align} + x_n \longrightarrow x &\iff \exists N_1: ~~x_n \in (x - \epsilon, x + \epsilon) = \left(x - \epsilon, \frac{x + \tilde{x}}{2}\right) \\ + x_n \longrightarrow \tilde{x} &\iff \exists N_2: ~~x_n \in (\tilde{x} - \epsilon, \tilde{x} + \epsilon) = \left(\frac{x + \tilde{x}}{2}, x + \epsilon\right) +\end{align} +Since these intervals are disjoint, the proposition led to a contradiction. +\end{proof} + +\begin{thm} +Let $(x_n) \subset \realn$ (or $\cmpln$) be sequence with limit $x \in \realn$. Then for $m \in \natn$ +\[ + \lim_{n \rightarrow \infty} x_{n+m} = x +\] +\end{thm} +\begin{proof} +\reader +\end{proof} + +\begin{defi} +The sequence $(x_n) \subset \realn$ is bounded above if $\{x_n \setvert n \in \natn \}$ is bounded above. A number $K \in \realn$ is an upper bound if $\forall n \in \natn: ~x_n \le K$. +\end{defi} + +\begin{thm} +Every convergent sequence is bounded. +\end{thm} +\begin{proof} +Let $(x_n) \subset \realn$ converge to $x \in \realn$. For $\epsilon = 1$ we trivially know that +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~|x_n - x| < \epsilon = 1 +\end{equation} +Let +\begin{equation} + K = \max \{x_1, x_2, \cdots, x_N, |x| + 1\} +\end{equation} +Then +\begin{equation} + |x_n| \le K ~~\forall n \in \natn +\end{equation} +This is trivial for $n \le N$. For $n > N$ we can use the triangle inequality: +\begin{equation} + |x_n| = |(x_n - x) + x| \le |x_n - x| + |x| \le |x| + 1 +\end{equation} +\end{proof} + +\begin{thm}\label{215} +If $(x_n) \subset \realn$ bounded and $(y_n) \subset \realn$ null sequence, then $(x_n) \cdot (y_n)$ is also a null sequence. +\end{thm} +\begin{proof} +If $(x_n)$ is bounded, this means that $\exists K \in (0, \infty)$ such that +\begin{equation} + |x_n| \le K ~~\forall n \in \natn +\end{equation} +Since $(y_n)$ is a null sequence we know that +\begin{equation} + \forall \epsilon > 0 ~\exists N \in \natn ~\forall n \ge N: ~~|y_n| < \epsilon +\end{equation} +Now let $\epsilon > 0$, then $\exists N \in \natn$ such that +\begin{equation} + \forall n \ge N: ~~|y_n| < \frac{\epsilon}{K} +\end{equation} +\begin{equation} + |x_n \cdot y_n| = |x_n||y_n| \le K \frac{\epsilon}{K} = \epsilon +\end{equation} +Therefore $(x_n)(y_n)$ is a null sequence. +\end{proof} + +\begin{thm}[Squeeze theorem] +Let $(x_n), (y_n), (z_n) \subset \realn$ be sequences such that +\[ + x_n \le y_n \le z_n +\] +for a.e. $n \in \natn$, and let $x_n \rightarrow x$, $z_n \rightarrow x$. Then +\[ + \lim_{n \rightarrow \infty} y_n = x +\] +\end{thm} +\begin{proof} +Let $\epsilon > 0$. Then $\exists N_1, N_2, N_3 \in \natn$ such that +\begin{align} + &\forall n \ge N_1: ~~x_n \le y_n \le z_n \\ + &\forall n \ge N_2: ~~|x_n - x| < \epsilon \\ + &\forall n \ge N_3: ~~|z_n - x| < \epsilon +\end{align} +Choose $N = \max \{N_1, N_2, N_3\}$. Then +\begin{equation} + \forall n \ge N: ~~-\epsilon < x_n - x \le y_n - x \le z_n - x < \epsilon +\end{equation} +Therefore $|y_n - x| < \epsilon$ +\end{proof} + +\begin{eg} +$\forall n \in \natn: ~~n \le n^2$ (why?). +\[ + \implies 0 \le \frac{1}{n^2} \le \frac{1}{n} \implies \lim_{n \rightarrow \infty} \frac{1}{n^2} = 0 +\] +\end{eg} + +\begin{thm} +Let $(x_n), (y_n) \subset \realn$ and $x_n \rightarrow x$, $y_n \rightarrow y$. Then $x \le y$. +\end{thm} +\begin{proof} +\reader +\end{proof} + +\begin{rem} +If $x_n < y_n ~~\forall n \in \natn$, then $x=y$ can still be true. +\end{rem} + +\begin{lem}\label{220} +Let $(x_n) \in \realn$ and $x \in \realn$. +\[ + (x_n) \longrightarrow x \iff (|x_n - x|) \text{ is null sequence} +\] +Especially: +\[ + (x_n) \text{ null sequence} \iff |x_n| \text{ null sequence} +\] +\end{lem} +\begin{proof} +\begin{equation} + ||x_n - x| - 0| = |x_n - x| +\end{equation} +\end{proof} + +\begin{thm}\label{thm:lims} +Let $(x_n), (x_n) \subset \realn$ (or $\cmpln$) with $x_n \rightarrow x$, $y_n \rightarrow y$ ($x, y \in \realn$). Then all of the following are true: +\begin{enumerate}[(i)] + \item + \[ + \limn x_n + y_n = x + y = \limn x_n + \limn y_n + \] + + \item + \[ + \limn x_n y_n = xy = \limn x_n \cdot \limn y_n + \] + + \item If $y \ne 0$: + \[ + \limn \frac{x_n}{y_n} = \frac{x}{y} = \frac{\limn x_n}{\limn y_n} + \] +\end{enumerate} +\end{thm} +\begin{proof}\leavevmode +\begin{enumerate}[(i)] + \item Let $\epsilon > 0$. Then $\exists N_1, N_2 \in \natn$ such that + \begin{align} + &\forall n \ge N_1: ~~|x_n - x| < \frac{\epsilon}{2} \\ + &\forall n \ge N_2: ~~|y_n - y| < \frac{\epsilon}{2} + \end{align} + Now choose $N = \max \{N_1, N_2\}$. Then $\forall n \ge N$: + \begin{equation} + \begin{split} + |x_n + y_n - (x+y)| &= |(x_n - x) + (y_n - y)| \\ + &\le |x_n - x| + |y_n - y| \\ + &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon + \end{split} + \end{equation} + \begin{equation} + \implies x_n + y_n \longrightarrow x + y + \end{equation} + + \item + \begin{equation} + \begin{split} + 0 \le |x_ny_n - xy| &= |(x_ny_n - x_ny) + (x_ny - xy)| \\ + &\le |x_n(y_n - y)| + |(x_n - x)y| \\ + &= |x_n||y_n - y| + |x_n - x||y| \longrightarrow 0 + \end{split} + \end{equation} + Therefore $|x_ny_n - xy|$ is a null sequence and + \begin{equation} + x_ny_n \longrightarrow xy + \end{equation} + + \item Now we need to show that if $y \ne 0$ then $\frac{1}{y_n} \rightarrow \frac{1}{y}$. We know that $|y| > 0$. So $\exists N \in \natn$ such that + \begin{equation} + \forall n \ge N: ~~|y_n - y| < \frac{|y|}{2} + \end{equation} + This implies that + \begin{equation} + \forall n \ge N: ~~0 < \frac{|y|}{2} \le |y_n| + \end{equation} + From this we now know that $\frac{1}{y_n}$ is defined and bounded + \begin{equation} + \left|\frac{1}{y_n}\right| = \frac{1}{|y_n|} \le \frac{2}{|y|} + \end{equation} + So finally + \begin{equation} + \begin{split} + \left| \frac{1}{y_n} - \frac{1}{y} \right| = \left| \frac{1}{y_n} \left(1 - y_n \frac{1}{y}\right) \right| = \left| \frac{1}{y_n} \right| \left| 1 - y_n \frac{1}{y} \right| \longrightarrow 0 + \end{split} + \end{equation} + And therefore + \begin{equation} + \begin{split} + y_n \longrightarrow y \implies &\frac{y_n}{y} \longrightarrow 1 \\ + \implbl{\cref{215}} &\left|1 - \frac{y_n}{y}\right| \text{ is a null sequence} \\ + \implbl{\cref{220}} &\frac{1}{y_n} \longrightarrow \frac{1}{y} + \end{split} + \end{equation} +\end{enumerate} +\end{proof} + +\begin{cor}\label{cor:polynomial} +Let $k \in \natn$, $a_0, \cdots, a_k, b_0, \cdots, b_k \in \realn$ and $b_k \ne 0$. Then +\[ + \limn \frac{a_0 + a_1n + a_2n^2 + \cdots + a_{k-1}n^{k-1} + a_kn^k}{b_0 + b_1n + b_2n^2 + \cdots + b_{k-1}n^{k-1} + b_kn^k} = \frac{a_k}{b_k} +\] +\end{cor} +\begin{proof} +Multiply the numerator and the denominator with $\frac{1}{n^k}$ +\begin{equation} + \frac{\frac{a_0}{n^k} + \frac{a_1}{n^{k-1}} + \frac{a_2}{n^{k-2}} + \cdots + \frac{a_{k-1}}{n} + a_k}{\frac{b_0}{n^k} + \frac{b_1}{n^{k-1}} + \frac{b_2}{n^{k-2}} + \cdots + \frac{b_{k-1}}{n} + b_k} \stackrel[n \rightarrow \infty]{}{\longrightarrow} 0 +\end{equation} +\end{proof} + +\begin{eg} +Let $x \in (-1, 1)$. Then $\limn x^n = 0$ +\end{eg} +\begin{proof} +For $x = 0$ this is trivial. For $x \ne 0$ it follows that $|x| \in (0, 1)$ and $\frac{1}{|x|} \in (1, \infty)$. Choose $s = \frac{1}{|x|} - 1 > 0$ and apply the Bernoulli inequality (Theorem \autoref{thm:bernoulli}). +\begin{equation} + (1 + s)^n \ge 1 + n \cdot s +\end{equation} +\begin{equation} + 0 \le |x|^n = \left(\frac{1}{1+s}\right)^n = \frac{1}{(1+s)^n} \le \frac{1}{1 + n\cdot s} = \frac{1 + n \cdot 0}{1 + n \cdot s} \stackrel{\autoref{cor:polynomial}}{\longrightarrow} 0 +\end{equation} +The squeeze theorem now tells us that $|x^n| = |x|^n \rightarrow 0$ and therefore $x^n \rightarrow 0$. +\end{proof} + +\begin{defi} +A sequence $(x_n) \subset \realn$ is called monotonic increasing (decreasing) if $x_{n+1} \ge x_n$ ($x_{n+1} \le x_n$) $\forall n \in \natn$. +\end{defi} + +\begin{thm}[Monotone convergence theorem]\label{thm:monotone} +Let $\rseqdef{x}$ be a monotonic increasing (or decreasing) sequence that is bounded above (or below). Then $\seq{x}$ converges. +\end{thm} +\begin{proof} +Let $\seq{x}$ be monotonic increasing and bounded above. Define +\begin{equation} + x = \sup \underbrace{\{x_n \setvert n \in \natn \}}_A +\end{equation} +Now let $\epsilon > 0$, then $x - \epsilon$ is not an upper bound of $A$, this means $\exists N \in \natn$ such that $x_N > x - \epsilon$. The monotony of $\seq{x}$ implies that +\begin{equation} + \forall n \ge N: ~~x_n > x - \epsilon +\end{equation} +So therefore +\begin{equation} + x - \epsilon < x_n < x + \epsilon \implies |x_n - x| < \epsilon +\end{equation} +\end{proof} + +\begin{rem} +\begin{align*} + \seq{x} \text{ is monotonic increasing} &\iff \frac{x_{n+1}}{x_n} \ge 1 ~~\forall n \in \natn \\ + \seq{x} \text{ is monotonic decreasing} &\iff \frac{x_{n+1}}{x_n} \le 1 ~~\forall n \in \natn +\end{align*} +\end{rem} + +\begin{eg} +Consider the following sequence +\begin{align*} + x_1 &= 1 \\ + x_{n+1} &= \frac{1}{2}\left(x_n + \frac{a}{x_n}\right), ~~a \in [0, \infty) +\end{align*} +Notice that $0 < x_n ~~\forall n \in \natn$. For $n \in \natn$ one can show that +\[ +\begin{split} + x_{n+1}^2 = \frac{1}{4} \left(x_n^2 + 2a + \frac{a^2}{x_n^2} \right) &= \frac{1}{4} \left(x_n^2 - 2a + \frac{a^2}{x_n^2} \right) + a \\ + &= \frac{1}{4} \left(x_n - \frac{a}{x_n} \right)^2 + a \ge a +\end{split} +\] +So $x_n^2 \ge a ~~\forall n \ge 2$, and therefore $\frac{a}{x_n} \le x_n$. Finally +\[ + x_{n+1} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right) \le \frac{1}{2}\left(x_n + x_n\right) = x_n ~~\forall n \ge 2 +\] +This proves that $\seq{x}$ is monotonic decreasing and bounded below. +\end{eg} + +\begin{thm}[Square root] +This theorem doubles as the definition of the square root. Let $a \in [0, \infty)$. Then $\exists! x \in [0, \infty)$ such that $x^2 = a$. Such an $x$ is called the square root of $a$, and is notated as $x = \sqrt{a}$. +\end{thm} +\begin{proof} +First we want to prove the uniqueness of such an $x$. Assume that $x^2 = y^2 = a$ with $x, y \in [0, \infty)$. Then $0 = x^2 - y^2 = (x-y)(x+y)$. +\begin{align} + &\implies x + y = 0 \implies x = y = 0 \\ + &\implies x - y = 0 \implies x = y +\end{align} +Now to prove the existence, review the previous example. +\begin{equation} + x_n \longrightarrow x \text{ for some } x \in [0, \infty) +\end{equation} +By using the recursive definition we can write +\begin{equation} + 2x_n \cdot x_{n+1} = x_n^2 + a \longrightarrow x^2 + a +\end{equation} +\begin{equation} + \implies 2x^2 = x^2 + a \implies x^2 = a +\end{equation} +\end{proof} + +\begin{rem} +Analogously $\exists! x \in [0, \infty) ~\forall a \in [0, \infty)$ such that $x^n = a$. (Notation: $\sqrt[n]{a}$ or $x = a^{\frac{1}{n}}$). We will also introduce the power rules for rational exponents. Let $x, y \in \realn$, $u, v \in \ratn$. + +\noindent\begin{minipage}[t]{.33\linewidth} +\[ + (x \cdot y)^u = x^u y^u +\] +\end{minipage} +\begin{minipage}[t]{.33\linewidth} +\[ + x^u \cdot x^v = x^{u+v} +\] +\end{minipage} +\begin{minipage}[t]{.33\linewidth} +\[ + (x^u)^v = x^{u \cdot v} +\] +\end{minipage} +\end{rem} + +\begin{thm} +Let $x, y \in \realn$, $n \in \natn$. Then +\[ + 0 \le x < y \implies \sqrt[n]{x} < \sqrt[n]{y} +\] + +Let $n, m \in \natn$, $n < m$, $x \in (1, \infty)$, $y \in (0, 1)$. Then + +\noindent\begin{minipage}{.5\linewidth} +\[ + \sqrt[n]{x} > \sqrt[m]{x} +\] +\end{minipage} +\begin{minipage}{.5\linewidth} +\[ + \sqrt[n]{y} < \sqrt[m]{y} +\] +\end{minipage} +\end{thm} +\begin{proof} +\reader +\end{proof} + +\begin{thm} +Let $a \in (0, \infty)$. Then + +\noindent\begin{minipage}{.5\linewidth} +\[ + \limn \sqrt[n]{n} = 1 +\] +\end{minipage} +\begin{minipage}{.5\linewidth} +\[ + \limn \sqrt[n]{a} = 1 +\] +\end{minipage} +\end{thm} +\begin{proof} +Let $\epsilon > 0$. Then +\begin{equation} + \frac{n}{(n + \epsilon)^n} \convinf 0 +\end{equation} +This means that +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~\frac{n}{(n + \epsilon)^n} < 1 +\end{equation} +Therefore +\begin{equation} + n < (1 + \epsilon)^n \implies 1 - \epsilon < 1 \le \sqrt[n]{n} < 1 + \epsilon \iff \left| \sqrt[n]{n} - 1 \right| < \epsilon +\end{equation} +This proves the first statement. The second statement is trivially true for $a = 1$, so let $a > 1$. Then $\exists n \in \natn$ such that $a < n$: +\begin{align} + &\implies 1 < \sqrt[n]{a} < \sqrt[n]{n} \conv{} 1 \\ + &\implbl{Squeeze} \sqrt[n]{a} \convinf 1 +\end{align} +Now let $a < 1$. Then $\frac{1}{a} < 1$ +\begin{equation} + \limn \sqrt[n]{a} = \limn \frac{1}{\sqrt[n]{\frac{1}{a}}} \convinf \frac{1}{1} = 1 +\end{equation} +\end{proof} + +\begin{defi} +Let $z \in \cmpln$, $x, y \in \realn$ such that $z = x + iy$. +\[ + |z| := \sqrt{z\bar{z}} = \sqrt{x^2 + y^2} +\] +\end{defi} + +\begin{thm} +Let $u, v \in \cmpln$. Then +\begin{align*} + |u \cdot v| &= |u||v| & \left| \frac{1}{u} \right| &= \frac{1}{|u|} & |u + v| &\le |u| + |v| +\end{align*} +\end{thm} +\begin{proof} +\begin{equation} + |uv| = \sqrt{uv \cdot \bar{uv}} = \sqrt{u\bar{u} \cdot v\bar{v}} = \sqrt{u\bar{u}} \cdot \sqrt{v\bar{v}} = |u||v| +\end{equation} +\begin{equation} + \left| \frac{1}{u} \right| |u| = \left| \frac{1}{u} u \right| = |1| \implies \left| \frac{1}{u} \right| = \frac{1}{|u|} +\end{equation} +For the final statement, remember that complex numbers can be represented as $z = x + iy$, and then +\begin{align} + &\Re(z) \le |\Re(z)| \le |z| \\ + &\Im(z) \le |\Im(z)| \le |z| +\end{align} +So therefore +\begin{equation} +\begin{split} + |u + v|^2 &= (u + v) \cdot (\bar{u} + \bar{v}) \\ + &= u\bar{u} + v\bar{u} + u\bar{v} + v\bar{v} \\ + &= |u|^2 + 2\Re(\bar{u}v) + |v|^2 \\ + &\le |u|^2 + 2|\bar{u} v| + |v|^2 \\ + &= |u|^2 + 2|u||v| + |v|^2 \\ + &= (|u| + |v|)^2 +\end{split} +\end{equation} +\end{proof} + +\begin{lem}\label{lem:cmplxnull} +Let $\cseqdef{z}$, $z \in \cmpln$. +\[ + \seq{z} \conv{} z \iff (|z_n - z|) \text{ null sequence} +\] +\end{lem} +\begin{proof} +Let $x_n = \Re(z_n)$ and $y_n = \Im(z_n)$. Then $x = \Re(z)$ and $y = \Im(z)$. First we prove the "$\impliedby$" direction. Let $(|z_n - z|)$ be a null sequence. +\begin{equation} + 0 \le |x_n| - |x| = |\Re(z_n - z)| \le |z_n - z| \conv{} 0 +\end{equation} +Analogously, this holds for $y_n$ and $y$. We know that $(|x_n - x|)$ is a null sequence if $x_n \conv{} x$ (same for $y_n$ and $y$), therefore +\begin{equation} + \implies z_n \conv{} z +\end{equation} +To prove the "$\implies$" direction we use the triangle inequality: +\begin{equation} +\begin{split} + 0 \le |z_n - z| &= |(x_n - x) + i(y_n - y)| \\ + &\le |x_n - x| + \underbrace{|i(y_n - y)|}_{|y_n - y|} \conv{} 0 +\end{split} +\end{equation} +By the squeeze theorem, $|z_n - z|$ is a null sequence. +\end{proof} + +\begin{rem} +\Cref{lem:cmplxnull} allows us to generalize \Cref{thm:lims} and \Cref{cor:polynomial} for complex sequences. +\end{rem} + +\begin{defi}[Cauchy sequence] +A sequence $\rseqdef{x}$ (or $\cmpln$) is called Cauchy sequence if +\[ + \forall \epsilon > 0 ~\exists N \in \natn ~\forall n, m \ge N: ~~|x_n - x_m| < \epsilon +\] +\end{defi} + +\begin{thm}[Cauchy convergence test] +A sequence $\rseqdef{x}$ (or $\cmpln$) converges if and only if it is a Cauchy sequence. +\end{thm} +\begin{proof} +Firstly, let $\seq{x}$ converge to $x$, and let $\epsilon > 0$. Then +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~|x_n - x| < \frac{\epsilon}{2} +\end{equation} +So therefore $\forall n, m \ge N$: +\begin{equation} + |x_n - x_m| = |x_n -x + x - x_m| \le |x_n - x| + |x - x_m| < \epsilon +\end{equation} +This proves the "$\implies$" direction of the theorem. To prove the inverse let $\seq{x}$ be a Cauchy sequence. That means +\begin{equation} + \exists N \in \natn ~\forall n, m \ge N: ~~|x_n - x_m| \le 1 +\end{equation} +\begin{equation} +\begin{split} + \implies |x_n| = |x_n - x_N + x_N| &\le |x_n - x_N| + |x_N| \\ + &\le |x_N| + 1 ~~\forall n \ge N +\end{split} +\end{equation} +We will now introduce the two auxiliary sequences +\begin{align} + y_n &= \sup \{x_k \setvert k \ge n \} & z_n &= \inf \{x_k \setvert k \ge n \} +\end{align} +$\seq{y}$ and $\seq{z}$ are bounded, and for $\tilde{n} \le n$ +\begin{equation} + \{x_k \setvert k \ge \tilde{n} \} \supset \{x_k \setvert k \ge n \} +\end{equation} +\begin{align} + &\implies y_n = \sup \{ x_k | k \ge n \} \le \sup \{ x_k | k \ge \tilde{n} \} = y_{\tilde{n}} \\ + &\implies \seq{x} \text{ monotonic decreasing and therefore converging to } y +\end{align} +Analogously, this holds true for $\seq{z}$ as well. Trivially, +\begin{equation} + z_n \le x_n \le y_n +\end{equation} +If $y = z$, then $\seq{x}$ converges according to the squeeze theorem. Assume $z < y$. Choose $\epsilon > \frac{y - z}{2} > 0$. If $N$ is big enough, then +\begin{align} + \sup \{ x_k \setvert k \ge N \} &= y_N > y - \epsilon \\ + \inf \{ x_k \setvert k \ge N \} &= z_N < z + \epsilon +\end{align} +So for every $N \in \natn$, we know that +\begin{align} + \exists k \ge N&: ~~x_k > y - 2\epsilon \\ + \exists l \ge N&: ~~x_l < z + 2\epsilon +\end{align} +For these elements the following holds +\begin{equation} + |x_k - x_l| \ge \epsilon = \frac{y - z}{2} +\end{equation} +This is a contradiction to our assumption that $\seq{x}$ is a Cauchy sequence, so $y = z$ and therefore $\seq{x}$ converges. +\end{proof} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item $x_n = (-1)^n$. For this sequence the following holds + \[ + \forall n \in \natn: ~~|x_n - x_{n+1}| = 2 + \] + So this sequence isn't a Cauchy sequence- + + \item It is NOT enough to show that $|x_n - x_{n+1}|$ tends to $0$! Example: $\seq{x} = \sqrt{n}$ + \[ + \begin{split} + \sqrt{n+1} - \sqrt{n} &= (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \\ + &= \frac{\cancel{n} + 1 - \cancel{n}}{\sqrt{n+1} + \sqrt{n}} \\ + &= \frac{1}{\sqrt{n+1} + \sqrt{n}} \convinf 0 + \end{split} + \] + However $(\sqrt{n})$ doesn't converge. + + \item We introduce the following + \begin{align*} + \text{Limes superior}& & \limsupn x_n &= \limn \sup \{ x_k \setvert k \ge n \} \\ + \text{Limes inferior}& & \liminfn x_n &= \limn \inf \{ x_k \setvert k \ge n \} + \end{align*} + $\limsupn x_n \ge \liminfn x_n$ always holds, and if $\seq{x}$ converges then + \[ + x_n \convinf x \iff \limsupn x_n = \liminfn x_n + \] +\end{enumerate} +\end{rem} + +\begin{defi} +A sequence $\rseqdef{x}$ is said to be properly divergent to $\infty$ if +\[ + \forall k \in (0, \infty) ~\exists N \in \natn ~\forall n \ge N: ~~x_n > k +\] +We notate this as +\[ + \limn x_n = \infty +\] +\end{defi} + +\begin{thm} +Let $\rseqdef{x}$ be a sequence that diverges properly to $\infty$. Then +\[ + \limn \frac{1}{x_n} = 0 +\] +Conversely, if $\seq{y} \subset (0, \infty)$ is a null sequence, then +\[ + \limz \frac{1}{y_n} = \infty +\] +\end{thm} +\begin{proof} +Let $\epsilon > 0$. By condition +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~|x_n| > \frac{1}{\epsilon} ~~\left( \iff \frac{1}{|x_n|} < \epsilon \right) +\end{equation} +Therefore $\frac{1}{x_n}$ is a null sequence. The second part of the proof is left as an exercise for the reader. +\end{proof} + +\begin{rem}[Rules for computing] +In this remark we will introduce some basic "rules" for working with infinities. These rules are exclusive to this topic, and are in no way universal! This should become obvious with our first two rules: +\begin{align*} + \frac{1}{\pm\infty} &= 0 & \frac{1}{0} &= \infty +\end{align*} +Obviously, division by $0$ is still a taboo, however it works in this case since we are working with limits, and not with absolutes. Let $a \in \realn$, $b \in (0, \infty)$, $c \in (1, \infty)$, $d \in (0, 1)$. The remaining rules are: +\begin{align*} + a + \infty &= \infty & a - \infty &= -\infty \\ + \infty + \infty &= \infty & -\infty - \infty &= -\infty \\ + b \cdot \infty &= \infty & b \cdot (-\infty) &= -\infty \\ + \infty \cdot \infty &= \infty & \infty \cdot (-\infty) &= -\infty \\ + c^{\infty} &= \infty & c^{-\infty} &= 0 \\ + d^{\infty} &= 0 & d^{-\infty} &= \infty +\end{align*} +There are no general rules for the following: +\begin{align*} + &\infty - \infty & &\frac{\infty}{\infty} & &0 \cdot \infty & &1^{\infty} +\end{align*} +\end{rem} + +\begin{thm} +Let $\rseqdef{x}$ be a sequence converging to $x$, and let $\nseqdef{k}$ be a sequence such that +\[ + \limn k_n = \infty +\] +Then +\[ + \limn x_{k_n} = x +\] +\end{thm} +\begin{proof} +Let $\epsilon > 0$. Then +\begin{equation} + \exists N \in \natn ~\forall n \ge N: ~~|x_n - x| < \epsilon +\end{equation} +Furthermore +\begin{equation} + \exists \tilde{N} \in \natn ~\forall n \ge \tilde{N}: ~~k_n > N +\end{equation} +Therefore +\begin{equation} + \forall n \ge \tilde{N}: ~~|x_{k_n} - x| < \epsilon +\end{equation} +\end{proof} + +\begin{eg} +Consider the following sequence +\[ + x_n = \frac{n^{2n} + 2n^n}{n^{3n} - n^n} +\] +This can be rewritten as +\[ + \frac{n^{2n} + 2n^n}{n^{3n} - n^n} = \frac{(n^n)^2 + 2(n^n)}{(n^n)^3 - (n^n)} +\] +Introduce the subsequence $k_n = n^n$: +\[ + \limk\frac{k^2 + 2k}{k^3 - k} = 0 \implies \limn\frac{n^{2n} + 2n^n}{n^{3n} - n^n} = 0 +\] +\end{eg} +\end{document} \ No newline at end of file diff --git a/chapters/sections/sets_and_functions.tex b/chapters/sections/sets_and_functions.tex new file mode 100644 index 0000000..a83f18b --- /dev/null +++ b/chapters/sections/sets_and_functions.tex @@ -0,0 +1,309 @@ +\documentclass[../../script.tex]{subfiles} + +\begin{document} +\section{Sets and Functions} +\begin{defi} +A set is an imaginary "container" for mathematical objects. If $A$ is a set we write +\begin{itemize} + \item $x \in A$ for "$x$ is an element of $A$" + \item $x \notin A$ for $\neg x \in A$ +\end{itemize} +There are some specific types of sets +\begin{enumerate}[(i)] + \item $\varnothing$ is the empty set which contains no elements. Formally: $\exists x \forall y ~y\notin x$ + \item Finite sets: $\left\{1, 3, 7, 20\right\}$ + \item Let $\Phi(x)$ be a statement and $A$ a set. Then $\left\{x \in A \,\vert\, \Phi(x)\right\}$ is the set of all elements from $A$ such that $\Phi(x)$ holds. +\end{enumerate} +There are relation operators between sets. Let $A, B$ be sets +\begin{enumerate}[(i)] + \item $A \subset B$ means "$A$ is a subset of $B$". + \item $A = B$ means "$A$ and $B$ are the same" +\end{enumerate} +Each element can appear only once in a set, and there is no specific ordering to these elements. This means that $\{1, 3, 3, 7\} = \{3, 1, 7\}$. There are also operators between sets +\begin{enumerate}[(i)] + \item $A \cup B$ is the union of $A$ and $B$. + \[ + x \in A \cup B \iff x \in A \vee x \in B + \] + \item $A \cap B$ is the intersection of $A$ and $B$. + \[ + x \in A \cap B \iff x \in A \wedge x \in B + \] + This can be expanded to more than two sets ($A \cup B \cup C$). We can also use the following notation. Let $A$ be a set of sets. Then + \[ + \bigcup_{C \in A} C + \] + is the union of all sets contained in $A$. + \item $A \setminus B$ is the difference of $A$ and $B$. + \[ + x \in A \setminus B \iff x \in A \wedge x \notin B + \] + \item The power set of a set $A$ is the set of all subsets of $A$. Example: + \[ + \mathcal{P}(\{1, 2\}) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\} + \] +\end{enumerate} +\end{defi} + +\begin{thm} + Let $A, B, C$ be sets. Then + \begin{align*} + A \setminus (B \cup C) &= (A \setminus B) \cap (A \setminus C) \\ + A \setminus (B \cap C) &= (A \setminus B) \cup (A \setminus C) \\ + A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ + A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) + \end{align*} +\end{thm} +\begin{proof} + Let $A, B, C$ be sets. + \begin{equation} + \begin{split} + x \in A \cap (B \cup C) &\iff x \in A \wedge x \in B \cup C \\ + &\iff x \in A \wedge (x \in B \vee x \in C) \\ + &\iff (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) \\ + &\iff x \in A \cap B \vee x\ in A \cap C \\ + &\iff x \in (A \cap B) \cup (A \cap C) + \end{split} + \end{equation} + The other equations are left as an exercise to the reader. +\end{proof} + +\begin{defi} + Let $A, B$ be sets. For $x \in A$, $y \in B$ we call $(x, y)$ the ordered pair from $x, y$. The Cartesian product is defined as + \[ + A \times B = \left\{(x, y) \,\vert\, x \in A \wedge y \in B\right\} + \] +\end{defi} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item $(x, y)$ is NOT equivalent to $\{x, y\}$. The former is an ordered pair, the latter a set. It is important to note that + \[ + (x, y) = (a, b) \iff x = a \wedge y = b + \] + \item This can be extended to triplets, quadruplets, ... + \[ + A \times B \times C = \left\{(x, y, z) \,\vert\, x \in A \wedge y \in B \wedge z \in C \right\} + \] + We use the notation $A \times A = A^2$ + \item For $\realn^2$ ($\realn$ are the real numbers) we can view $(x, y)$ as coordinates of a point in the plane. +\end{enumerate} +\end{rem} + +\begin{defi} +Let $A$, $B$ be sets. A mapping $f$ from $A$ to $B$ assigns each $x \in A$ exactly one element $f(x) \in B$. $A$ is called the domain and $B$ the codomain. + +\begin{figure}[h] +\centering +\begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] + + \node[ele] (a1) at (0,4) {}; + \node[ele] (a2) at (0,3) {}; + \node[ele] (a3) at (0,2) {}; + \node[ele] (a4) at (0,1) {}; + + \node[ele] (b1) at (4,4) {}; + \node[ele] (b2) at (4,3) {}; + \node[ele] (b3) at (4,2) {}; + \node[ele] (b4) at (4,1) {}; + + \node[draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] {} ; + \node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] {} ; + \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); + \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); + \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); + \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b4); +\end{tikzpicture} +\caption{A mapping $f: A \rightarrow B$} +\label{fig:mapping} +\end{figure} +As shown in figure \ref{fig:mapping}, every element from $A$ is assigned exactly one element from $B$, but not every element from $B$ must be assigned to an element from $A$, and elements from $B$ can be assigned more than one element from $A$. The notation for such mappings is +\[ + f: A \longrightarrow B +\] +A mapping that has numbers ($\natn$, $\realn$, $\cdots$) as the codomain is called a function. +\end{defi} +\newpage +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item + \begin{align*} + f: \natn &\longrightarrow \natn \\ + n &\longmapsto 2n + 1 + \end{align*} + \item + \begin{align*} + f: \realn &\longrightarrow \realn \\ + x &\longmapsto + \begin{cases} + 0 & x \text{ rational} \\ + 1 & x \text{ irrational} + \end{cases} + \end{align*} + \item Addition on $\natn$ + \[ + f: \natn \times \natn \longrightarrow \natn + \] + Instead of $f(x, y)$ we typically write $x + y$ for addition. + \item The identity mapping is defined as + \begin{align*} + \idf_A: A &\longrightarrow A \\ + x &\longmapsto x + \end{align*} +\end{enumerate} +\end{eg} + +\begin{rem}[Mappings as sets]\leavevmode +\begin{enumerate}[(i)] + \item A mapping $f: A \rightarrow B$ corresponds to a subset of $F = A \times B$, such that + \begin{align*} + &\forall x \in A ~\forall y, z \in B ~~(x, y) \in F \wedge (x, z) \in F \implies y = z \\ + &\forall x \in A ~\exists y \in B ~~(x, y) \in F + \end{align*} + \item Simply writing "Let the function $f(x) = x^2$..." is NOT mathematically rigorous. + \item + \[ + f \text{ is a mapping from } A \text{ to } B \iff f(x) \text{ is a value in } B + \] + \item + \[ + f, g: A \longrightarrow B \text{ are the same mapping} \iff \forall x \in A ~~f(x) = g(x) + \] +\end{enumerate} +\end{rem} + +\begin{defi} + We call $f: A \rightarrow B$ + \begin{itemize} + \item injective if $\forall x, \tilde{x} \in A ~~f(x) = f(\tilde{x}) \implies x = \tilde{x}$ + + \item surjective if $\forall y \in B, \exists x \in A ~~f(x) = y$ + + \item bijective if $f$ is injective and surjective + \end{itemize} + \begin{figure}[h] + \centering + \begin{subfigure}[b]{0.45\textwidth} + \begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] + + \node[ele] (a1) at (0,4) {}; + \node[ele] (a2) at (0,3) {}; + \node[ele] (a3) at (0,2) {}; + \node[ele] (a4) at (0,1) {}; + + \node[ele] (b1) at (4,4) {}; + \node[ele] (b2) at (4,3.25) {}; + \node[ele] (b3) at (4,2.5) {}; + \node[ele] (b4) at (4,1.75) {}; + \node[ele] (b5) at (4, 1) {}; + + \node[draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] {} ; + \node[draw,fit= (b1) (b2) (b3) (b4) (b5),minimum width=2cm, label=below:$B$] {} ; + \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); + \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); + \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); + \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5); +\end{tikzpicture} + \caption{Injective mapping. There is at most one arrow per point in $B$} + \end{subfigure} + \hfill + \begin{subfigure}[b]{0.45\textwidth} + \centering + \begin{tikzpicture}[ele/.style={fill=black,circle,minimum width=.8pt,inner sep=1pt},every fit/.style={ellipse,draw,inner sep=-2pt}] + + \node[ele] (b1) at (4,4) {}; + \node[ele] (b2) at (4,3) {}; + \node[ele] (b3) at (4,2) {}; + \node[ele] (b4) at (4,1) {}; + + \node[ele] (a1) at (0,4) {}; + \node[ele] (a2) at (0,3.25) {}; + \node[ele] (a3) at (0,2.5) {}; + \node[ele] (a4) at (0,1.75) {}; + \node[ele] (a5) at (0, 1) {}; + + \node[draw,fit= (a1) (a2) (a3) (a4) (a5),minimum width=2cm, label=below:$A$] {} ; + \node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] {} ; + \draw[->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4); + \draw[->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3); + \draw[->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1); + \draw[->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5); + \draw[->,thick,shorten <=2pt,shorten >=2] (a5) -- (b2); +\end{tikzpicture} + \caption{Surjective mapping. There is at least one arrow per point in $B$} + \end{subfigure} + \caption{Visualizations of injective and surjective mappings} +\end{figure} +\end{defi} + +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item + \begin{align*} + f: \natn &\longrightarrow \natn \\ + n &\longmapsto n^2 + \end{align*} + is not surjective (e.g. $n^2 \ne 3$), but injective. + \item + \begin{align*} + f: \intn &\longrightarrow \natn \\ + n &\longmapsto n^2 + \end{align*} + is neither surjective nor injective. + \item + \begin{align*} + f: \natn &\longrightarrow \natn \\ + n &\longmapsto + \begin{cases} + \frac{n}{2} & n \text{even} \\ + \frac{n+1}{2} & n \text{odd} + \end{cases} + \end{align*} + is surjective but not injective. +\end{enumerate} +\end{eg} + +\begin{defi}[Function compositing] +Let $A, ~B, ~C$ be sets, and let $f: A \rightarrow B, ~g: B \rightarrow C$. Then the composition of $f$ and $g$ is the mapping +\begin{align*} + g \circ f : A &\longrightarrow C \\ + x &\longmapsto g(f(x)) +\end{align*} +\end{defi} + +\begin{rem} +Compositing is associative (why?), but not commutative. For example let + +\noindent\begin{minipage}{.5\linewidth} + \begin{align*} + f: \natn &\longrightarrow \natn \\ + n &\longmapsto 2n + \end{align*} +\end{minipage} +\begin{minipage}{.5\linewidth} + \begin{align*} + g: \natn &\longrightarrow \natn \\ + n &\longmapsto n + 3 + \end{align*} +\end{minipage} +Then +\begin{align*} + &f \circ g (n) = 2(n + 3) = 2n + 6 \\ + &g \circ f (n) = 2n + 3 +\end{align*} +\end{rem} + +\begin{thm} +Let $f: A \rightarrow B$ be a bijective mapping. Then there exists a mapping $\inv{f}: B \rightarrow A$ such that $f \circ \inv{f} = \emph{\idf}_B$ and $\inv{f} \circ f = \emph{\idf}_A$. $\inv{f}$ is called the inverse function of $f$. +\end{thm} +\begin{proof} +Let $y \in B$ and $f$ bijective. That means $\exists x \in A$ such that $f(x) = y$. Due to $f$ being injective, this $x$ must be unique, since if $\exists \tilde{x} \in A$ s.t. $f(\tilde{x}) = f(x) = y$, then $x = \tilde{x}$. We define $f(x) = y$ and $\inv{f}(y) = x$, therefore +\begin{equation} + f \circ \inv{f}(y) = f(\inv{f}(y)) = f(x) = y = \idf_B(y) \implies f \circ \inv{f} = \idf_B +\end{equation} +and equivalently +\begin{equation} + \inv{f} \circ f(x) = \idf_A(x) \implies \inv{f} \circ f = \idf_A +\end{equation} +\end{proof} +\end{document} \ No newline at end of file diff --git a/chapters/sections/vector_spaces.tex b/chapters/sections/vector_spaces.tex new file mode 100644 index 0000000..989d2c6 --- /dev/null +++ b/chapters/sections/vector_spaces.tex @@ -0,0 +1,346 @@ +\documentclass[../../script.tex]{subfiles} + +% !TEX root = ../../script.tex + +\begin{document} +\section{Vector Spaces} +We introduce the new field $\field$ which will stand for any field. It can be either $\realn$, $\cmpln$ or any other set that fulfils the field axioms. + +\begin{defi} +A vector space is a set $V$ with the operations + +\noindent\begin{minipage}[t]{.5\linewidth} +\[ + \text{Addition} +\] +\[ +\begin{split} + +: V \times V &\longrightarrow V \\ + (x, y) &\longmapsto x + y +\end{split} +\] +\end{minipage} +\begin{minipage}[t]{.5\linewidth} +\[ + \text{Scalar Multiplication} +\] +\[ +\begin{split} + \cdot: \field \times V &\longrightarrow V \\ + (\alpha, y) &\longmapsto \alpha x +\end{split} +\] +\end{minipage} +We require the following conditions for these operations +\begin{enumerate}[(i)] + \item $\exists 0 \in V ~\forall x \in V: ~~x + 0 = x$ + \item $\forall x \in V ~\exists (-x) \in V: ~~x + (-x) = 0$ + \item $\forall x, y \in V: ~~x + y = y + x$ + \item $\forall x, y, z \in V: ~~(x + y) + z = x + (y + z)$ + \item $\forall \alpha \in \field ~\forall x, y \in V: ~~\alpha (x + y) = \alpha x + \alpha y$ + \item $\forall \alpha, \beta \in \field ~\forall x \in V: ~~(\alpha + \beta)x = \alpha x + \beta x$ + \item $\forall \alpha, \beta \in \field ~\forall x \in V: ~~(\alpha\beta )x = \alpha(\beta x)$ + \item $\forall x \in V: ~~1 \cdot x = x$ +\end{enumerate} +Elements from $V$ are called vectors, elements from $\field$ are called scalars. +\end{defi} + +\begin{rem} +We now have two different addition operations that are denoted the same way: +\begin{enumerate}[(i)] + \item $+: V \times V \rightarrow V$ + \item $+: \field \times \field \rightarrow \field$ +\end{enumerate} +Analogously there are two neutral elements and two multiplication operations. +\end{rem} + +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item $\field$ is already a vector space + \item $V = \field^2$. In the case that $\field = \realn$ this vector space is the two-dimensional Euclidean space. The neutral element is $(0, 0)$, and the inverse is $(\chi_1, \chi_2) \rightarrow (-\chi_1, -\chi_2)$. This can be extended to $\field^n$. + \item $\field$-valued sequences: + \[ + V = \set[\chi \in \field ~~\forall n \in \natn]{\seq{\chi}_{n \in \natn}} + \] + \item Let $M$ be a set. Then the set of all $\field$-valued functions on $M$ is a vector space + \[ + V = \set[f: M \rightarrow \field]{f} + \] +\end{enumerate} +\end{eg} + +\begin{defi} +Let $V$ be a vector space, let $x, x_1, \cdots, x_n \in V$ and let $M \subset V$. +\begin{enumerate}[(i)] + \item $x$ is said to be a linear combination of $x_1, \cdots, x_n$ if $\exists \alpha_1, \cdots, \alpha_n \in \field$ such that + \[ + x = \sum_{k=1}^n \alpha_k x_k + \] + + \item The set of all linear combinations of elements from $M$ is called the \textit{span}, or the \textit{linear hull} of $M$ + \[ + \spn M := \set[n \in \natn, ~\alpha_1, \cdots, \alpha_n \in \field, ~x_1, \cdots, x_n \in V]{\sum_{k=1}^n \alpha_k x_k} + \] + + \item $M$ (or the elements of $M$) are said to be linearly independent if $\forall \alpha_1, \cdots, \alpha_n \in \field, ~x_1, \cdots, x_n \in V$ + \[ + \series[n]{k} \alpha_k x_k = 0 \implies \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 + \] + + \item $M$ is said to be a generator (of $V$) if + \[ + \spn M = V + \] + + \item $M$ is said to be a basis of $V$ if it is a generator and linearly independent. + + \item $V$ is said to be finite-dimensional if there is a finite generator. +\end{enumerate} +\end{defi} + +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item For $V = \realn^2$ consider the vectors $x=(1, 0)$, $y=(1,1)$. These vectors are linearly independent, since +\[ + \alpha x + \beta y = \alpha(1, 0) + \beta(1, 1) = (0, 0) \implies \alpha + \beta = 0 \wedge \beta = 0 +\] +So therefore $\alpha = \beta = 0$. We can show that $\spn\{x, y\} = \realn^2$ because +\[ + (\alpha, \beta) = (\alpha - \beta)x + \beta y +\] +So $\set{x, y}$ is a generator, hence $\realn^2$ is finite-dimensional. + + \item For $V = \realn^3$ consider $x=(1, -1, 2)$, $y=(2, -1, 0)$, $z=(4, -3, 3)$. These vectors are linearly dependent because + \[ + 2x + y - z = (0, 0, 0) + \] + + \item Let $V = \set[f:\realn\rightarrow\realn]{f}$. Consider the vectors + \[ + \begin{split} + f_n: \realn &\longrightarrow \realn \\ + x &\longmapsto x^n + \end{split} + \] + The $f_0, f_1, \cdots, f_n, \cdots$ are linearly independent, because + \[ + 0 = \series_{k=0}^n \alpha_k f_k = \series_{k=0}^n \alpha_k x^k + \] + implies $\alpha_0 = \alpha_1 = \cdots = \alpha_n = 0$. The span of the $f_k$ is the set of all polynomials of $(\le n)$-th degree. The function $x \mapsto (x-1)^3$ is a linear combination of $f_0, \cdots, f_3$: + \[ + (x-1)^3 = x^3 - 3x^2 + 3x - 1 + \] +\end{enumerate} +\end{eg} + +\begin{rem} +Let $V$ be a vector space, $y \in V$ a linear combination of $y_1, \cdots, y_n$, and each of those a linear combination of $x_1, \cdots, x_n$. I.e. +\[ + \exists \alpha_1, \cdots, \alpha_n \in \field: ~~y = \series[n]{k} \alpha_k y_k +\] +and +\[ + \exists \beta_{k,l} \in \field: ~~y_k = \series[n]{l} \beta_{k,l} x_l +\] +Then +\[ + y = \series[n]{k} \alpha_k y_k = \series[n]{k}\alpha_k\series[n]{l}\beta_{k, l} x_l = \series[n]{l}\underbrace{\left(\series[n]{k}\alpha_k\beta_{k,l}\right)}_{\in \field} x_l +\] +So therefore +\[ + \spn(\spn(M)) = \spn(M) +\] +\end{rem} + +\begin{thm} +Let $V$ be a finite-dimensional vector space, and let $x_1, \cdots, x_n \in V$. Then the following are equivalent +\begin{enumerate}[(i)] + \item $x_1, \cdots, x_n$ is a basis. + \item $x_1, \cdots, x_n$ is a minimal generator (Minimal means that no subset is a generator). + \item $x_1, \cdots, x_n$ is a maximal linearly independent system (Maximal means that $x_1, \cdots, x_n, y$ is not linearly independent). + \item $\forall x \in V$ there exists a unique $\alpha_1, \cdots, \alpha_n \in \field$ + \[ + x = \series[n]{k} \alpha_k x_k + \] +\end{enumerate} +\end{thm} +\begin{proof} +First we prove "(i) $\implies$ (ii)". Let $x_1, \cdots, x_n$ be a basis of $V$. By definition $x_1, \cdots, x_n$ is a generator. Assume that $x_2, \cdots, x_n$ is still a generator, then +\begin{equation} + \exists \alpha_2, \cdots, \alpha_n \in \field: ~~x_1 = \series[n]{k} \alpha_k x_k +\end{equation} +However this contradicts the linear independence of the basis. Next, to prove "(ii) $\implies$ (iii)" let $x_1, \cdots, x_n$ be a minimal generator. Let $\alpha_1, \cdots, \alpha_n \in \field$ such that +\begin{equation} + 0 = \series[n]{k} \alpha_k x_k +\end{equation} +Assume that one coefficient is $\ne 0$ (w.l.o.g. $\alpha_1 = 0$). Then +\begin{equation} + x_1 = \sum_{k=2}^n -\frac{\alpha_k}{\alpha_1} x_k +\end{equation} +$x_1, \cdots, x_n$ is a generator, i.e. for $x \in V$ +\begin{equation} + \exists \beta_1, \cdots, \beta_n \in \field: ~~x = \series[n]{k} \beta_k x_k = \sum_{k=2}^n\left(\beta_k - \frac{\alpha_k}{\alpha_1}\right)x_k +\end{equation} +But this implies that $x_2, \cdots, x_n$ is a generator. That contradicts the assumption that $x_1, \cdots, x_n$ was minimal. +\begin{equation} + \implies \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 +\end{equation} +Now let $y \in V$. Then +\begin{equation} + \exists \gamma_1, \cdots, \gamma_n \in \field: ~~y = \series[n]{k} \gamma_k x_k +\end{equation} +So $x_1, \cdots, x_n, y$ is linearly dependent, and therefore $x_1, \cdots, x_n$ is maximal. To prove "(iii) $\implies$ (iv)" let $x_1, \cdots, x_n$ be a maximal linearly independent system. If $y \in V$, then +\begin{equation} + \exists \alpha_1, \cdots, \alpha_k, \beta \in \field: ~~\series[n]{k} \alpha_k x_k + \beta y = 0 +\end{equation} +Assume $\beta = 0$, then consequently +\begin{equation} + x_1, \cdots, x_n \text{ linearly independent} \implies \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 +\end{equation} +This is a contradiction, so therefore $\beta \ne 0$: +\begin{equation} + y = \series[n]{k} -\frac{\alpha_k}{\beta} x_k +\end{equation} +The uniqueness of these coefficients are left as an exercise for the reader. Finally, to finish the proof we need to show "(iv) $\implies$ (i)". By definition +\begin{equation} + V = \spn\set{x_1, \cdots, x_n} +\end{equation} +Hence, $\set{x_1, \cdots, x_n}$ is a generator. In case +\begin{equation} + 0 = \series[n]{k} \alpha_k x_k +\end{equation} +holds, then $\alpha_1 = \cdots = \alpha_n = 0$ follows from the uniqueness. +\end{proof} + +\begin{cor} +Every finite-dimensional vector space has a basis. +\end{cor} +\begin{proof} +By condition, there is a generator $x_1, \cdots, x_n$. Either this generator is minimal (then it would be a basis), or we remove elements until it is minimal. +\end{proof} + +\begin{lem}\label{lem:steinitz} +Let $V$ be a vector space and $x_1, \cdots, x_k \in V$ a linearly independent set of elements. Let $y \in V$, then +\[ + x_1, \cdots, x_k, y \text{ linearly independent} \iff y \notin \spn\set{x_1, \cdots, x_k} +\] +\end{lem} +\begin{proof} +To prove "$\impliedby$", assume $y \ne \spn\set{x_1,\cdots,x_k}$. Therefore $x_1, \cdots, x_k, y$ must be linearly independent. To see this, consider +\begin{equation} + 0 = \series[n]{k} \alpha_k x_k + \beta y ~~\alpha_1, \cdots, \alpha_n \in \field +\end{equation} +Then $\beta = 0$, otherwise we could solve the above for $y$, and that would contradict our assumption. The argument works in the other direction as well. +\end{proof} + +\begin{thm}[Steinitz exchange lemma] +Let $V$ be a finite-dimensional vector space. If $x_1, \cdots, x_m$ is a generator and $y_1, \cdots, y_n$ a linear independent set of vectors, then $n \le m$. In case $x_1, \cdots, x_m$ and $y_1, \cdots, y_n$ are both bases, then $n=m$. +\end{thm} +\begin{hproof} +Let $K \in \set{0, \cdots, \min\set{m, n} - 1}$ and let +\begin{equation} + x_1, \cdots, x_K, y_{K+1}, \cdots, y_n +\end{equation} +be linearly independent. Assume that +\begin{equation} + x_{K+1}, \cdots, x_m \in \spn\set{x_1, \cdots, x_k, y_{K+2}, \cdots, y_n} +\end{equation} +Then +\begin{equation} + y_{K+1} \in \spn\set{x_1, \cdots, x_m} \subset \spn\set{x_1, \cdots, x_K, y_{K+2}, \cdots, y_m} +\end{equation} +This contradicts with the linear independence of $x_1, \cdots, x_K, y_{K+2}, \cdots y_n$. Furthermore, +\begin{equation} + \exists x_i \in V: ~~x_i \notin \spn\set{x_1, \cdots, x_K, y_{K+ 2}, \cdots, y_n} +\end{equation} +W.l.o.g. $x:i = x_{K+1}$. By \Cref{lem:steinitz}, $x_1, \cdots, x_{K+1}, y_{K+2}, \cdots y_n$ is linearly independent. We can now sequentially replace $y_i$ with $x_i$ without losing the linear independence. Assume $n > m$, then this process leads to a linear independent system $x_1, \cdots, x_m, y_{m+1}, \cdots, y_n$. But since $x_1, \cdots, x_m$ is a generator, $y_{m+1}$ is a linear combination of $x_1, \cdots, x_m$. If $x_1, \cdots, x_m$ and $y_1, \cdots, y_n$ are both bases, then we cannot change the roles and therefore $m = n$. +\end{hproof} + +\begin{defi} +The amount of elements in a basis is said to be the dimension of $V$, and is denoted as $\dim V$ . +\end{defi} + +\begin{eg}\leavevmode +\begin{enumerate}[(i)] + \item Let $V = \realn^n$ (or $\cmpln^n$). Define + \[ + e_k = (0, 0, \cdots, 0, \underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1.5em}k-th position}}}}{1}, 0, \cdots, 0) + \] + Then $e_1, \cdots, e_n$ is a basis, in fact, it is the standard basis of $\realn^n$ ($\cmpln^n$). + + \item Let $V$ be the vector space of polynomials + \[ + V = \set[n \in \natn, ~\alpha_1, \cdots, \alpha_n \in \realn, ~~f(x) = \sum_{k=1}^n \alpha_k x^k ~~\forall x \in \realn]{f:\realn \longrightarrow \realn} + \] + This space has the basis + \[ + \set[n \in \natn_0]{x \longmapsto x^n} + \] +\end{enumerate} +\end{eg} + +\begin{cor} +In an $n$-dimensional vector space, every generator has at least $n$ elements, and every linearly independent system has at most $n$ elements. +\end{cor} +\begin{proof} +Let $M \subset \spn\set{x_1, \cdots, x_n}$. Then +\begin{equation} + V = \spn M \subset \spn{x_1, \cdots, x_n} +\end{equation} +Hence, $x_1, \cdots, x_n$ is a generator. On the other hand, assume +\begin{equation} + \exists y \in M \setminus \spn\set{x_1, \cdots, x_n} +\end{equation} +Then $x_1, \cdots, x_n, y$ is linearly independent (\Cref{lem:steinitz}), and we can sequentially add elements from $M$ until $x_1, \cdots, x_n, y_{n+1}, \cdots, y_{n+m}$ is a generator. +\end{proof} + +\begin{defi}[Vector subspace] +Let $V$ be a vector space. A non-empty set $W \subset V$ is called a vector subspace if +\[ + \forall x, y \in W ~\forall \alpha \in \field: ~~x + \alpha y \in W +\] +\end{defi} + +\begin{eg} +Consider +\[ + W = \set[chi \in \realn]{(\chi, \chi) \in \realn^2} +\] +This is a subspace, because +\[ + (\chi, \chi) + \alpha(\eta, \eta) = (\chi + \alpha\eta, \chi + \alpha\eta) +\] +However, +\[ + A = \set[\chi^2 + \eta^2 = 1]{(\chi, \eta) \in \realn^2} +\] +is not a subspace, because $(1, 0), (0, 1) \in A$, but $(1, 1) \notin A$. +\end{eg} + +\begin{rem}\leavevmode +\begin{enumerate}[(i)] + \item Every subspace $W \subset V$ contains the $0$ and the inverse elements. + + \item Let $W \subset V$ be a subspace. Then + \[ + \forall x_1, \cdots, x_n \in W, ~\alpha_1, \cdots, \alpha_n \in \field: ~~\series[n]{k} \alpha_k x_k \in W + \] + Furthermore, $M \subset W \implies \spn M \subset W$. + + \item $M \subset V$ is a subspace if and only of $\spn M = M$. + + \item Let $I$ be an index set, and $W_i \subset V$ subspaces. Then + \[ + \bigcap_{i \in I} W_i + \] + is also a subspace + + \item The previous doesn't hold for unions. + + \item Let $M \subset V$: + \[ + \spn M = \bigcap_{W \supset M \text{ subspace of } V} W + \] +\end{enumerate} +\end{rem} +\end{document} \ No newline at end of file diff --git a/script.pdf b/script.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e412dfd7d83ed4d8d266a38794151c3e61174b59 GIT binary patch literal 437507 zcmce;1z40((?4t=-5{ZKgSfB(ETKq9Hwe<*9nvLTlF}d{p&%tKozfv9EnU(g3Ig&i zt0*cy`o7Qm{kbmgYj^K^?wK=Z&N;uCGiPXJ1cj~x0c@zWeXm=FQ6Utp6qY(Bs60Fr zEb+w(ujPkxpYx z1>=cu&_A@qR$tf7*wO+3{JAYa;8~54`2J$U<41Ulnouo9z!#+5ajk_$N_0&k_~h0r0+scc#vF$!&h-24ejKw-Yn^ zNi87oS-j-FzZ`Boa3eV}1is^YaQpai&j~KV@de&Xa5Zure?1|RIsO8F9xg3hUnloO zzbgv#rx9>sH=v*G26W~ixP8nEE;77h|7iMfN#K%ym*kid-ZVI+_3>A@#(%UF-o78* z4S()OPlNtu_#nVf+6SL$_&<#DhXim&aM9of_m%Ild?&KQMT9>9AN40c!v_&uXt*AJ zi2p-q@ZUxf2=J46g3laD0>{F@=LfhD_Qzl0Qo_{?AHip};Y3b2rNQY2{m=sZ4RFc7 zHv7B1fd4eGPE7r0xz8L{KNR$%<9`_HiFka+lEH22M@!%%5H6eccZnc>8hj@f4F1`I zA!iOh#qY}dF}uJO1m|`l6I?-7$B)A0J!Ka^#QEER0{?7}kTVCA=i~Yho3jX|$f%w((el+|K15p)nYy@%? zEJDV1>Zevywv&O#!-L8qp>JVmXG8(ygiw6_LxnwV23vt)WMm*rGV>94wXet-`4V;jjlfImt*UP{UWKa zXROU{=}4h^`~y2|spjAWsiVSPU<0G1U^^bRa>x4n#*6L841@{;Jl{L%uCfXR5Cj2m za6&0KSXlwA98e02duC?pr)f_{&~eZGM#~1LWoL)YyFiZLX@87XR0>$b%q(r>t+aLZ zDURO>GZGnXJ6Nw)y;ewmZlcn!k#nP>`9V1HGcCHEvED9}2NcPpd9Pj(N+662xGz33 zWf-Lh0ub1hySEVQcT!HQlRQyaaY$-|C7}}@j17ibaD+-3}x$)1hnh(-4_9B$+I76p*bGF{Z^1UnM zdLbJBDo8snfZv{>1Akg9^`SLYi$*+xxzPE|oRNnuCCpfsw<8tgoI$~?3xh$Dlww(Q z=r402Hc>8Sg-!Nr2U9qcF3nDbK89;=EErc0^(YCg`^H}~RtEkzkNP$x^cKk}LZ4Ov2N zmOeO0S&gS~VXAZO+Av%hvmu*A8*@-MUfJ!uL)pF4kHwt1=doY>J}^0!QOt9t&s7d5 zYWeWx+;sQi-V7mi2AlTp!d=?g#u<1dSg6()U zk)vRPlT)yLoq5^ea|CQsfZt>PI<(lo4mkF&BZ&R$;9-YP6BO)U-*S4yz+e3H+yrNe z$|8SH#|}PMNf=w0qO$N?+UV)qz-J*=brum8Q5FH!W5%qo$w&_7i%_T@PcKkb5NzsV z2Y_Jn5Qvi<00yzaCO0+!^mxwVgOBe&yJM$ju^(&BiE97XQbAxI60H3YPF4UL6bM_2 zzyK(0PGMt(Az%pSnPQzFj1%ALlwiO2`F|}K2PXi?2BrY9L1AiQqkur601goFFM@r= zzCQ$m+rs}*Kb~leoejXw3ZVc2fdE#R=|DKx06>njJMxFdzT(7Ff}Mr~Uq{LRT4Ub~ z3vDNKOg} zm;+{cY-fsfqOTJ#?3BJvFT(#vg26hF6U0sd;(!ST10xU+7{Ctvn_$0b><0k;zZ#QZ zPAC8tZh;F1VFgk^fG}Xf&i)sT{bpe&PSlTi_`kIn zreG%)_M2EgJgWaQeZdSK3|n?UU%_uNyrfeWcH)`*AL#3w>4PCq z04EG*fnkDyIN2z`u(^!wKTlyN?$QsrI8M(LF!%{yUtu8dD|G$O@DskSew+UOOZW*J zAROONst^o?b9@7^La=}Y$Ja#_Ch|W((bHP~<_2*>|J@DBRFbqEW5=%9SK36D5=WRk zmuSpwe#J0rU;(##4!fLG#qWBLjGmZm=;1~c#X0x*NW4!}vIzE{*2c=w0%#miMBl21 zZyv5J%nW9>;RzMWNzf&Z`G5lNS>Qgs95YUnm^g>$Tzu`OLzyHvpEiA2GjXyezJAo` zU6)8?Aj#E^ng;y@G`nY(K{a{uQnE@4NS5laIlfH04O~_qdF{=?#7Y=+$x_bSa=J!V zVj$!K=!3AWl0|Y$cw?@(D6W{5)O%zEE$jB`Wy_C2GP1F584?Wr+$#bga48r;oUy)| zqlzlh^_=UQX+y+&NRD``3tRXtx9*fQp_v5}4HFTUf4N|VEbLDiB$VuNhitt3*6m>& zieYEdLob1HmKVvsVK%A?gOAY?^%UeJp7 zaT_`R6x)N)o}kpDV!d4Ts3``!@Dr`f5Sjct!e;C#0u!@XgeUYZX?HtQBg?T`zS!yy zbx_jKrC!3lRDY0F$t?mV)D*vAC=k66y`zkur_P@(j}-4?*t3YD1{CY@^A&z98B!&R zA>3VSJl5*_Wya~+MK9i~Mi{7f{Ka@4y~G_i2+c9GPNwW!`ysMhjzPSmOC{H*xZ)T=6PNK$uMk%YSuY? zTC~(A?u`yn16DyAomc_44*I$r_)$| zMQz&nDL3dAz2;5*Y5lct12t!bu2xXDEo<*(JvFUb>u?eFyWyrH#{BePG~)V0GGCG^ ze2RP%pT)cLO<#s`{ZZK)L!K~_?iX%6P?jgD{gj&=%+rE$2Xdun#I--Zo}YO8(fb~P z8#lZTw4=vr0n{S612GvETv)Gb+;L6h1_CQcaM`#o8W168qhY;P`!+_$4?1 zTOi>+!;jzq3}pNdyoggX>}gmHn_=O+f0|+0{u~^Du{^<-XOcoG{uCQHjhX*I3W2f% zps?xn*N_CqztFO=0l=_X`&U}%>0rR0_<~pgK-M#8PlKI5(1IZB08S|QcfP0b$e(CI zu=av~Z!h%ps_`dURtSI{w%PDod;i+IPzoRv1b_g~p#29u17YX`1oQ8H<;(dGdIrL< zFem5lv~WxQf3t|T}4c3w0K7%NrU)|+@TIV@WxG9q!7J#4 znt@9y%7=ZK>&2w-#>|H#^Rkd4==GdeYFiaK16S^6Ewm3)C{X9LZp6bre zdy|S^+A3B?e0-D7ll)vg`KTz3sfWpBo3jAxW6n+95plAi<$a7mw796|!G+lU4X)KS z2by!$6#X%{&3O9fkC5=jL)>jWK5d28-y(?!pdk`vrb01&7#L#zvdW=u$_UHDolv`3 zYoxck?=f*t_>`!EAn(NC(j5h=h(2^W@$kruC~=LBOdpCa%ZRZQZ_2I@dBd01bhByr z;sPi?7GP{{FF%6oEoW`6exOsqbOYX)&?L>@;49`s8?T8bOT>6Pp@pa%QcT3eCN~_AV$Uw-t^8C3_dY~h z(dx$Rbp0%YOz*WDNewN8zV_>DCTV1!2rfV~Nof6W+@`R=kFEvCq~Xk)DXZpHp-|zM ziM-QKOAbS(d}!^9%OB&*#pNH~Uc`^U@L7%y!5wu@1~U3WG^UO6mNAVJ8z-(H!nsC# z+4gMnu83LZG?sQ81V`ae+Nn?yZJ!IA8SPB5K3q0FIHQq|S?v5s_ z>=fSZbjnz^o3o5jR<20RXRB{1RE7@T;xEzv7>M{l@dkutT5zN6!fa+x!la_ChjE(J zok|&$S?!1wb7&kI$I{hc>z45(%J$dyE`Lb%EL&?SHYNMA;_otq%2Uy!8%_4ogkFZj zw%g5FQ=vLerdqibBM;q_D*93iL2uSjd_ov+Zhq!+ObqV_2&dyZ<@KCrhw@XaQ8n%r z5Ov<04VQ?fYTG88d_#*z4L1d5#6ls`erkIzh%5gSMr?xaCpV5AiBkl;`cnG^ z+}pG4WJus(q=?*?5zvXWul|tyy}C*qIS4?0wPN#@`lH-nE`Q{}b4RzIOkN6cKyLI} zVs9IJPLpMQ9r56j+8sB5H2L%5!#m`!qAZUn6QfwhwJW zB_LcJNmxvjUfwEds|McoTuhCPqsrDn)ijiD3}A~uuptpESo86JCsG%OH1pgu4(koW zSVY%K0dV*V?%fj1vAOc@fmG_|D81D+;V=1h1uHQVx?9*FByqw5&Cf9v=g_~9;$pZB z#<<4N?Hp|_)YIL15))2^X+K+>cyw<4!Qrlw<<*p7cDMU%PXn%gxKZigJomCdGOwD( zTaI4Tf_fx~LwTxuS2{)=X%=3SM1(3U=F^Z>naTtRY&B`OLyMPIUvw= zUk(oS%(q8)pP&?)<|?l{xkezBF=@w~_zajf#1xvRlQveQN@UI?I9Od)Xzb_WwzVw; zwpH;mu?Y6%?GldPSj$@kXDnu8eSEoD;aj6LSC^P#;U{V$W;JEFoaO%N~V;MjPI$Y2@J~WxhQ#6;&Zy? zh(8he0!gswd9t~i{eJ1y^1<#fzU+LZ6ic?eW0ISz7Z>@sgo<9a`rAj+Kx4-yb&+^R zvdoZJlYFNu*9l`yyMRU-Rz*Ty=AaLtEdSn=7&{wpYLqLiOVASH+2@!B>K)tf9$$3B zVEZ^kOE3^BhdBx{CDj+%cylXhXa0h9LjfDnc(Ggy_LGH}F57w8gsC#(kOI@ll|2$u zDr{NwBkh}Z8j}t;uJ#EVC#SEBgnYKCdhZB%^d804>8(%hs`#RHZpX(g`-LYOnC_%E z)yrS^SdWecyJ-wA9vsSZpHDE?oUUw*PUWE!aq`CDbJoh|y~#0DSpbwpud;#|>|9Gc|=#N%8LeV1OCYrcUMU!Eq^y|QL;Va*%38IW?&bvYp< z$w#Tdhut43mH_fWjE*zW%+;6%utgK^RTuCmUr0KiEez4EN!nJ{tcz2*5M=<^`aIT- z(Lo{>rC8bC(E@{>oA(j8$*76Zw$6B=(ZQ`PhkfUQe;Vu6ERES`CCipdvwq~ndvu71 zKv!FViON^)vFt=`&os?%t3>pcVrh=ey$>#@8({8TGhS}ws7rMduI2IA80@5(;|tR& zU9NxT|9n_!DR|_DcenrE(#hb({I;DMyiq6!C;4-i788Dvw%q95PEQv)G5+ zVnEJywZ5Iq`$T5#UF1kTU$_j_>yJXJfqWa`M*=l@rJc`)wYn1btBx*EEEZP%?sC9z z*bglKHN^Of%K-;9KW$ua!eP_@d_NKvp8dfK258~Dzq=g&c|Q^sNcs=7UjssH$NQ12 z?7xH3({9yoe815`IAOHE?}Kvw0>Xcm`5P@PhRO+R+;3p`7Z83XEh{WhjrI3ERL);O z_*t|N4hVql48B0tUr_j&#IV3Q=nTd{SS<0cng+pwvmB7$TMUG`1b-z4!a~qzZ5zYQ z>i-7+|A^1A2*GxrzG3*EG5_g!-f7JL!x#7`%nxKeZJ8%I4jeFN<{v?SxAKG~EV$>f zp{YG5if9rui7SsU;LRrBe>3m=$39GNlYt^G)ef3U^Dq0Pyv%{9hoy8A8dPF*VK1vD z57$E*qQ+1j9lS>md!)qCtDz>&LrKK=tZmMKlTsm7K_8D1Ih`tToSBY1ax%+{#yM)p zL-MF%Z>NQ=+fN+I7m1B+w21q#Qk1$9oiWQkDm?!Et>mI9V#0v;cA&@jC{z=#!tPF8 z_!54rIoOoXdyPhJ*@B}WoT7;sS9^r<(40#bfQTU;D+M4PsXjdbrY?q7AlXo^jbm9K1p5mgkIOOjct*x8U#Kf>~y)?bT_iPrNVY)DP#KIjvyrBwF(mZ4>UceNtgKWyk6)dtL9 zXU;8$8276H((lT&g-9tLxnmK?In{oaRj$wBNp~~95WOXMRCArDtrTsg=o(6DqAnRq z9m{^>hFfjFMM{UTQ*!y8i3&?w&(w)A`B0^~v2nAyj!xAY$MvmCMwAjmLd6i{nl`yl zUgz4V-Dd0eZIUW3M=kr$g1i_l#-)>sN_+UKrrxi>MyT11d3@Rg5<5C~WDe z_Kc-7B?76uIvVsy!ci3qEd6JtePGb}=r`(S` z>nC9W&7vlafxBtvFA*$f;dfIQ+d438f4TSWec;}1DSIUwBpkggSrn}*T!o=Qw=U#f z_p4Q8#iy$}{_C8qO{=^2tK8IfF49*A1bSb@=96CZ>v4UAx}#!=sNMBhjCz=^Tc#DO zicx@OrK}Qa=0=60Lqpm>U-{Ahy%cSMd+JpxZoZKlS{t2D);yDk2Ob*;v1;)>NbpaL z&fj6!VIKsDe=IFbi>urpPDpa_ShUHYce~}Qs^xfH#6_dn|FRPER$vWjr?d+XD+Lmo zdZT)!8KSf8(3QEjRZ7B_Sa)AAsfjrhT;$ru?dU*TYOr)h=>cgOFVW^W>zZ_T8YR;< z%vNv5jK&sVaq);0WxqB7(-k^dwOyBOj>6|U?~dqKODaJT{>I0Aqi4x2A8qK>sueDq zW&*#^QfO@mVW?U_Z9zy9P23h}H0`4Ly|hj;KB3RZAcjz9K$~Z|{{+903GJiTQ;v1j z#nzNt4ILs@8Lvn5DUsK%aBk~FKBo~KSXg7ti_?6OukR!38UN7ViO49g&b&RD=Um+K zm!}YPB_Un(F?>9#HP0imsQ8y;Zx0Xl7=*~GoF6PV;mk9iQ(KktM5;!kbEq~Q&pq5h z?UtM3*IaaBT?bvlUh+n58Y1g_G1}ad{fdttN=eHx7P=sLRFn`&^QpUy5`0BV#662R zZzk8IW;nV6A57zmN)3!LH?8SWU#=}+*`d_4jlZUQZ{$unJJ8zVF;wLU<%u4*x@MgZ zA_A9B?(kDBre3ah2SNgoPpmAJVfXLPE)va((#Xxiwc7m|$I+81f>T8rpfEQqM zI}LWE9DV!h5DZH8b@sB97k<Lw zq`f!V@gRL}bvhG@djL#QQ{u__t8UXeu~va{v;szT?G9%A@`FV&HHSd*)%ghGIft7* z+oNtz#B8rG3)!v-wOBlNIcM~!Nu-j;h_^J9X?3pkhNQBIVOXxswJMFJ7Yx_c6R&z{ zn@%+Hhh7)p7)5WdDDe%t+}3WU=l(&%R{TA?hV%vEPflyxsBG>fx8#J;O39h2A1Kp= z7txz$?ee+y;|R$MNprl@CGq3QCJ?V32}r8A*$GdBy>gaoH?{~*aJ z^|srpAfnv_hYNYSe)p!|6oS;md{Ss-nZD-DW=lgYH#&FZPQ($k7N0I3(ff^WwNaBu z8T02q5e^-7oTsMr{5Z|qkZJ|F^E%ZNa}B>L+#|A8+p&x{?9rMmq>^j=z5)Jy`ST$n zyQ-FC%#OC(tK@Z8M0I`#pg>qw!4JrACIbDs#Qp?9fvoTl-Txee0%7>@2Rj%T{L243 z3Oz=2e-3;DVSwpx)Uen$EEs$Y0Di@TKp4LK2WnQ>ekt_#F!XU~`tQ_i93TK2EFa=G z-oRfl;Ti3Q!gB36VVlXnhh|}r?O%8w2eM&N>)&{v4vU_xawse(=QtXDhSE-*NPuS| zo+&tlogF6l@6aCzi*Ns3X<%4(3lNt5^qb({Pd9waf;^Kq7y<&Y!m_u2r~bRCK`FpM zPFRPXLHsY424aVK50JB1|BI!8z)%3>Ok4REOM@j+0nW10Qwsktci&G(=>LT1Pb2p~ z?biQ5^e}ILjRFY#A8g$NL8m>M@9-W1{a1Joi|JdA31Qd5_U=W_&+AQAnPKCLCg3C6 zh{&G5F>IVBQj*6{Kq_XDLM&YSP7ih)m>#C^{l3ug=XN5m54s2iGptRf+e@YF&Hj>7u z^)A>}5Kl(%jzB&G;XH$|2s+c7!BnM|fS4e31QSKfcmN{KB9Gczx{nW#v$xNKr$Oxm z?T(z1i!Hs&rIsKu*s4m5Rn`G z(r?&76c-uIyr4;J)mRtBt73ydBwx^_qkk(J^IFBTc(L=cC0E>Y<_}A)&4v4$SM~y| zQN2n?xT{P1^nq9}y#uHUgRoLITYN;fD4nW>>uIBA20*0+RMq0e??26(Z^a?U5`55H zt+VN)QjVFi4RZwMZo1Xs==N2YO=n66`R*XPruu%sA{Y zlRfP3KEP2DF!?kpD%67ZBB$@7XwGMy2x(><+V<+C_$sygBK(4~C`4wV#+AsB<^=p% ztHUH!WG|goAnVWrYg9dwa?f?-$W$LQ-OPExAnONy24Wu^LFoxPdSVKa=Qym99`JT0 zj;qI+vgfYqQX44W1WBQ_l1nbK%dIL6R1T>^i`>Q*udDf3E5DF(FcNHhuN6jgQS=U& z(;|WtShU`F_bsgvE7wgLZYderjwt5%u&CNDq5*2!+wMkkg4xR?4ZIYL7Hi)02{_at zy_+rlxVqHrqr`Gl=B#rF1{7tJgAqF$Dq5FfBWRjIy630%ljH`t&M(Y`bG}xw4lt6- zmo^N&U(<0%^_Iu=dKK`SXTEhju1t|O(l<=_YK4kx(4(`nIl>-S?JK`8?v=;6bHNPN z46zTXPER|-TO|z2EPMOLVX1V8;DwwP$McrL0Vd71Dd^}F{ZhjDWT7F651i*1g5ucS zq4F0;+V zCbz@2b2llzx`bI)AJv|>?|{)0zZ^>Z&g~9;Og^qi>1Af=w>S05xFohchWe@`7t_?oli1{h=$;hMVAx zOpD~!u}vr%Bqhumi?6u%TNxmM6K@}JrlYTQAFeceKMssac zrhU=>z(8Om;EMiyxU!A9h5*qW-srQe0we(DPZ_aG{ z-f(Dj6Q(G+&^=p^iqw}zHVC~4rX zXFdKXHGlM2s1(i<-wXp596#^I5eJO`+x{MNY8g7dS?@A#L)JnYkHZ8t9HxbVnYUL= zEL2fSJmd+Y3|t=T%C{m13}Pe>W_4*gSk;ta;3+8NUDUVRwbv4iGpK!PRvyu&QPxnN z5bU0loys;gjGU)R!n=osR+@u_R%dV2STVwfca)44BCR2UMo_jrM5Q(5$a@PoexRD_dbl(7wf$WUuM0 zBd(yBTdb)#A#MHhrF_dgUV-aZ+xY?8XJB~HX?S=xhKH}CKVx|Kk;;Egfd7%Y0{niu z@&uN_`G3do|2dKjOHKa;68=p6HKzNg{1qS!i2MvF&!UDQZ~*8m3=ccc@^@+oI~11s zdIlzhoq+iV>f^-O-vime?}sAKR@&EQgV@+%>C|UYpN2ul82+qg136&X{xCkjAz|<- zPZJVB#l5}4%a`%j|WvIEJ@07Jccxj+*HqN_)U^C zzMsmt*Ow}yEqseS68~ujJpnH(?pgV{p zI$)UB)}$6s78C$#9W#xa7_46xExgOpR>PS!dwiK%ZDiryi@hQ@+oyNA%|0L2v3S&e zUJq6pk0}rlg6P)wh3Wfjv6{3F<4n&%gQmiLZ`$@Gr#H*IwM)Wlv2)y^&snlrAYXMrkVuw;E3UKt+ddA$^;2O4F z^~f5Fa@Bd1wL;-YiS3p0X@~MUvX4#o933YMKCu)Uk5X@*v&LW$4xB;1;>ED+m0I=1 z@dJskk;_5Enl{vV>-pgr(9Th|ulQ|s-RilDi7&(S2x;WlAL_;?tdXh1$`AX+OM{@< z4OBF;uML8qG%%vXO5e2ws@qza?cdquG``~{6Tw^;hWl2LmZ6bvLyq5EnGvVtwYLV< zOPyVXS~>;#y%bX$(rGT`1|>E+t=OPUN;k>t;&I|SU+(D61lSvp$odZB>OM++Io7_e z0Y%L32QwJmEksgu^oz=$e#ah{Y^3zIxgqE6%=@zbX20H-+AeDtwX6-Z?uTD2pkx|8 zeB|r?HsH-2YVPC*1CS2e5@{!fe^ zE%h|f5p~>ow-^s8+wQLEe7=Y??_9GMCa^j@;e(G>NO7gQm!{>NcgxGy#>sf}B2UVq zCeC@Ue_p#~!2Wp2EDC4XaDZl?rAhi>``YM6hLnh(Qw@dTgWg7_706f})=MVW(85)B zjW-W`M@ob>U&k3yWyCvG62DK9(YFQl`FPH!r->>@kGwW_P^v&-*%gk#rT zucV99?^hJ_Cu0!4OY^zN58=RSO78`vTqp1u=DOhyl1dUMTsD4 zzty!st8Nq9t+e~rlkD!Bm-L8wau(#h=ddE6UmAtdF>$f|Oq4G^oynpRYb8G;Kh8LMf(#~)Mf|p<(P{qo&pB`ix)c|H}4iUI&~v5$1C_w%;ef} z%_c6)lp^Uj+pQ`g(|b=tzOantN`ieq-)m332CXLBQ)=*U;)=%a8<8+#lV9{hs3=WEztLCX$59u@%zu@U6Qxe49mahO3xT zlgUs^@XQ+?(=n#2_dNHqUvftrjc;%&sq}>ij^UbNj$p(B9(M!5GK$WX%V~n#I8~RT zEC5dhuRdqbJR}fFg3utg`aF2}?JZOcUg{Fhz3wf!A-;)kKzSC`o6Pmzi^qA&*!0V* z=1juS5+W|=F)wMV%NAv+27t;^$4tAmJ8zY}6BOlP7E(*SKz@-AQaqaT#<0HHe>ClSUVn!6|0~bfg>~2a(Ji1vd)=$yN>?M?@ zMiyrfK5{*aOEaPPyk7GMCv6&*Zts4YW!2Uw2@-F4y489KwB=RCpSJK>PO`p^Gh_wYj_s3V0V`^+G*|c30gg84WUYnrJF;q?%o{Z zPtWp{9kJLAt69%sc2KKKlHfEMX+ly`^+rPjH=qe@B;U~2W;$mlhW ze^P@?lGZ4j1NDd999u*_nLaDYFBqhq4i~TBgUF}8Jl!kW8}YWo;BrSg^5C0HeW;f+ z?Q~BBhsby&E&;V+-Lc`aZb%%cK?>j&(E_)(%8KF%+YT zV<6b+!(+px9r(1(vZ9}i6kHsY@Gd1M2iZ!0z!Vp25a$aMW{9m$OXW&KsS6T)?yLfpLKNOnAbHy-%bC zbJF4Y!)ElY^%d9i_4C1KE6{iu^!IG%9wwUr`h3}9@7{y>Fai(tGzoOLj9-gRK$3u6 zc&H?vK{_RFF64U_4z-jwr08b!Y-rm`ijE#$kkCe%OlDEcxRAhtHA$YnslX_BzJ}#8 zUA3oIxtG=5y6f+XUnlVe1%pK-C3f_#mk0*w?l`)T?h<%mF4A%aM18!UKzVWUq2Qhu z)J8%nW0UeK)=hK!eG%Tbe$$}WYX&b`#=Kgw%?)Le8KbY5l7~rDYdV%zAk2^wYS@2x z&~%8pwrD@oi@7YNGgw5d`7u%L)*g9fc?tu@&{2+isPy_%h1e3^9^CGU15}ll+R8$f zm{W$yB|Aka$+f_wl!XU zP?RZ<`|h$9&d%x;hAzkE=2(dc)~A|&wf6)KnTx3Murd<&*HH7URhE3HL+UL1`6}$0 zHMC!Et1Nk(>$zVde1;!-s&dK6IlEu7nPAE1#{m9xc?BT6^2*=+P#`SO4kv}5C_Fxi z4TQM|$KJr{L)2e?J2@Tk-yPaK4$#AnYJy;4df4U6Jn+XRAt^qgF5)NC*pk`tEv z^qUI_`PBhElbV$S=69d5AM(8*%!%`R7BvL64a5d>{eI{DYsBD8Y7h_rg`E@qjrx0G z9~kfdzjj3a;LF0S1qeHe`5!&jfAdmd8y-JG4=39o5SUv3(M#>VI| znzgd!p4&u*`;3^~jI@t$|_Bx4tHTP`?4nQqjkMyy${fW=9$;`$@Afd=k%!Ha>L5qbXSzC*sk(wh2HDXui8W8ss{cBwaszK$|IHW$n5BnNpvHD9pRu> z+o~&7xa#h!_M#q26VEM%c1B*DJFixmwn9Vmc|{)HRe~*m&+=<1$a+{Q?|Dn6>H1AE zcD-JyO+%25vG$#(AdwHKC42Poe6$+_WO1+EOwmO@ieD_gAVxtfSuc|rOEDeTb=TYf zHZ*6^k}9&3?8>D~x|Y>#yT^QZesaaQJcS30-gDBO-S!&YI*u%D23`eagA#}sRacjK zq$Shu0MqPA7uTyqr+aOrp9<7-ra6D6sQBbWWp)#5V=T~W?@-cBLtS(7rANWaTGDg1 zgfGo69$)KOdT#2kaG9pPBD;us4RDDt_nuX55VAp&N&N+g)&ZKg+{c{hfxAG7f|=!& z5!dC5g?Z&S>44{g-z{WmXb43}I`%A(b3U1`7A@+?m6ShB#X)uLOIcBdMk~a(Jlu9< z@OW_{&RTX=ulnMLjJM(X!T>1oj(3$O641GzV<4~#?ui5; zb|^8BH1&_Z4atX=dz0dDWUUcU|N#g6!4|pV>h< z9keKDD{l}X`HPNm9;{`^s7>+px;0gz-uBzZFz4fvE>{|ic`t6=94)H)z@?CzN3B>V zL-Lc~#@!^6)mwXo^tDw9)x>w{j`&TOiS5ijBiBg@x01080(BM0c!l&qLMW3(O3Hi4 zL%pqWVn|bUOXsz@2(}nPH}&VNghq8S>B&4Q?lZR7p)|e2XVeHuOCo;11i0{tx_Xjq z{X(Ci3Jn3;ebegZJ{r8uBYDetoE;&CW&ed-)YYd>@3!%W?*q-R4`iu#V6D$tOB`vi zSnvoFs6a?6AKhA4PCq&vWN~-iE6-bu`7%Fa@ATG8?P2yC$guN_zNg}B`G6i0_L~O} zZ{LlRzlZD0%x=_lqo@WEj|M|m5jDvonMil_4s!6~zy;3ns>!TrtYB0DKi(Ns+_vnL z;BH^6o);A_3RXG?o$pnR%pNf?QSWLLrK&n~+|=Vfma1WdSR^0VrHF;17% zP@n8+(lmYUiVnIqAIT6x_~L_k8uQguC^hD~zkt9i)^G#IeMJfrUEV4hyg)Rw*!%sL z*5f~x58xO)d(l#@Qa*NcCuBQIrE6e5_5;diKRKhzSMY>Gg#)7*A35J75WzR9m>J!< z>-C|;Evnf^X#Me{#{r0&l1fHT4*=l1X&%TN#B29bqugcLSG6v4`q&MfJBphU#$l;7 zjZ&7@u{ns|QJS!=CRvWJG3{=eXq@Q)G|l@5KklR>uTHMrB^>Eq89D<^eJ@*fyl9>s z)rT(&KcguKJY4$M%$yT6bteSS;I7}P{}R@RMT7qn z?{Cx)Hdsl6Gr-BOm9~D7{3|sZtY!-2EPw!uIRBkD1j+#bpA{a5*T?!>yCGm$nGaZD zgx|mkyrS0MsKKz)o~*Ev48K$Vn&I+uk9}=77y^OqDV(vL@l(B_KlRvgiVF}{sO)#% zrxD2?sX-ioGm@d;MU(#4Y9N#o0EQh4{f+Za^>zNl83@<-89IZHk8iyHU%~|Esx~RPo-s|B_5(A~(BvDdmXlN?G{I&)OF$`|>j=#WkKXBAUdh#oc$UyN zt&`d$ja0Iyw;79RrX_|;IiHF^Efzfe;r&$8IW=C4`#YYv)6cHl#CUX|O_e1rL~~C8 zJp_g7*|beXv!H04VkFi>BHefl{8>o(t+b`FWh>Smr`F0;>-@g3>k3j3p7!&By3NF$ z^bZDN$(SP5U<`Phn;S=zGL)S!Ki_I|=!Q!M(6_FRWez1gt>7(0{%tW+reqV9yQ zxyZ1%W92g=tt3F7s$_n69A8K4X?}$@))iN{Co?prFnm~p&ds7~>_CwRl9~M}M)+I<(iDxBngj5-4 z?%qXHj-(nFyWHQSi9H(69@RepNqdmDno6pd)6v%v^Srm^xBoK|!gU`rtR6PU_dw71hdG{7kpVU#YWgqAw!#}a=qxI^#AY_F6c&FI{# zmm+_7!^Ztl@ho>q95OdHj1f$ zq7`M6iWw(eXceDA)-<=}F=+&9mN&#eZXUlmz)WoB3RpD-f2I5dO`+@gSbR>0Ns|9TtoKEvk2tbugYwz?7Z%%%hFtOjc{!HjXHXxsw*EJP%50-I8d(aEq~{}El%{O z&2&8T9U~iGV4_TOX;xY2Na-5A;HR;JU|lXl&y3nqT zdObcaJw!vXF@Yv6bg!7k@PIF&LydCCYWShBhbCdT?X8aBS?{`|r2#BojH`3xDOiEm ztw~cbSO_OsG)a$KH=BSj_J`E0N0-f$%pRGt2Z#!VgyU!L^9!V1?8M49l}fL_MSqQi zzo*`4!J$;5yS#>qH7dvy%veWyR+AgjC`1`**(X|iQ-?Gk#ZqYQ-r?h&M#MB`Fik5&wCQ(gH@ zZU)+EwJsF4aZUfj`Ec7- zfaRK;cL)=668@J)K&CdGkFcW%%PXTt!o~Cmep#<`-a#%c$ate+5C^ee>r$@MsG6>m z+#ORae5ue#CX2zX2k>yAvAQszEk1{;wJlCAhnM6hF!R}$$@zlEu#FER^Oqv!=PhG{ z%Qkw!V{AM}FXjx2-m{F%yq`PV-&yct7B(E8+3kMkd|5cplB%gaPujc49&O)0hzU?& zVG;WnTgSRoc@L=)T3K7GVpFw?zq}D^g{$%`f2%xqr`2}6_59`~8h?dxB0Z8N0Z!xR8lFJ8iGhNk&tTo%h8Ce+DaAylsX zsQECR;CzC*b{9LoHCR{mXw{662J*@D3jW6U2seW-()bOA*H1r&b>KYZ_3XfT5(c~Y z0;8#)7Yg2*KjiO{^rT|qKn;?5EqyEMTF8hOm4$)HN-;3fBx;t9W`FLBfHeC6{o zU+BU_vG1*oe(pFrzaYjyQ1s_0>q=tm9OWmPtUb_H#n#~`4ba8U?lDn`=QQxv@w$i% zKnufuwmwoTIl>G6xN4nwhmtZfP9pP8ZDvWr zFs@Ra(WH&}wbA0m^uyVpj~_en*Vep)K8A%bKV`gcI!t<>&H9ct+qDr632vs3W~wcZ z@Jx;GE>4l=Q$|b8i_mK)^F4$%XzB7tE6*mOT~@w?Wx)-_J;_#C z$m=R?Qe9e8etr&BsXXXQP8fIR#l8VUSK!ryht7nJyIhz_Qt{{RqoAev1kuu(YQ;9) z4X7|iY2jbMNC_M#{_OJt+Q_fg#MmQBX^SU}0+rqKevt73@dBm`B|}{FxC8SmL)U)d zgV!&htk&5Q6U{|lx1QUFtxQXJr|8jBN56A$03i?}sNFQxs}6mD-o8AuG`j;c=C#jC zlY)0|t1N30F%iDBjOnV=Mw@I6@A75$TU;pzzRi+!w=cv#5Fx zlk6Ni<;*bo5FvSik}NND_A0ALPD|Yz4sz+Yc}KQ3Rkfqz66{GYdv~%L8Sj>I25(qg z!9MIfM@3OyS+U$x+@++Xy4g0Rw~&1eieoqG?J*sqD5r8QenV}{N5U|FWgA5%)SnR< z-Ba(10eB(cc9R)sE~V}P^8*`?p#H$cx*Lpz2(IRAfy>>O?5`hzciS3V_@`w1nCJHA zpOh*meKKfvW4jLg9Iz1><+Goo#g?fOLZ`++gZKuW!+uNM!6t?%@rKn~!tA&l12&V9 zmz}+mJa!ghPkG8wRS*dk*O(R_UAl7r&7gAS5;rn)`{x1wfLmGa7X0NXj+kfz{8@G9Ln80IAH_Iuz9L>P#y{@Ymh7 zduuy?P{w_iXdH!B$>nzE%FahE?Xdw}LRQBQL;VjOEy=2tA#YxFsAy(>EN36yefFp< zpZsQuTCGR6x*A-2kosxqK>3qiMh)R zY`qVt94&4GM0l0!8FS4L#un+Px)$F(lh@V>xF1J~leiww*Y7uD>$8coQx5GNBDds5 z%fVEx=Y#UQxdG-7{Jger_CKA@p{#Xu{Nf_+n9g(Hf&IwF&{0MB*(-U+=X5+uD`Om6 zh<#Z7-Gld5oWTxm&;gD_KC6QpJXjp`q>8&`H5h^=>c6rM3nh3C%dxcNT1PEo!>QC@S$tFz3oh6Eqw2#a-mCJYmE z_C^^hblQPb6QID9^tLR;?i^P4EshK_jRp{RU?+Mflix&^E<=))cePc+pv``y2myj$ z-E&eS5lNzZRef4adR?SeyDo(vNr{Cc40N|x+Pxu|XR^KYwo+|wJA5Q1ME8PBP>f_2(u=<3sv&O%>b-y~Zzw?G2 z*MOCdg(ZajPJB9x>ukYc#IOU~(6bH(oi14j&yPEcHHZ@e0H0B>3HVd-;Xm<))gc0K z!uskr$$zSo{U>T5tZpwWtXqGhhIjQhmH(IC?CFHO)5kr2I=*qrf&Gza_e(b3&$}Lf zNay=EZx&wh@x-D|yjfVWuYdJsCsagXl^gM4r#}igOmHcOV+}y0+~!=}8S!s+B(Ov= zg9Jy+N}*JjxnsY4yorsE@`{3S#3o^x5=W8`%kuE;g{dV_V}CDw#g3D`_50Q6dYpzf zErIl4C&4GTI+jFGy`J>-w=g>s9>rC^^eK47qh27S+h8Su-TxSiupp%-ee|gEO@J6; zbMR!%%L{c^j0r525#Tlwxt$jiHUdF#uUt}@*`KPS0_3Vlq+DDMjC3U_ZvXaNO zhCbhNB|@0TphI|GMLwL~o}GDU!r{1&z4&QS9SW`^o5fJlZaIHY0hOx6(#WsT>vjvtCZtX}5d)N3bn9dU;!_{%tWhLIP?=p*KnX(pWL7$f7ST zBwlWa_Sd$J&=B&9NI3DH%o2Mt8|WRIk(abbuYm8QNm{K2b$7GBtq^P)dfgT5TZ@Tj zN%}gzpLs&&LSWpOh_s}=fw>TVi0boRT(>n$46fyYO#Ul!6wVmy)RkF7!O z+%Mb;+{)-bJkRkYf;DMg3aF_+BSB@)aQfEnHNw~)HC>M#LU*=@EL5{^&WSg){}~FC z&k7&*g~a=PPM+rywX!3$5pk|bjnCfaPP2wTSB5QY%Y7n(U(EIX0|mHSq|(#*kN5@2 zRa{~%h-(m%0da_r!{aLaE~Lf_w`ntEeYys~$sQN&*_vA4v+RFjSS%a0Zar%xpz)36 zimu{mroyF;w+ePv6kiZ#y_L9jUz8gsHmE-)k)TUu?X>I`BK zp)}Q*V*H(aDzS9Uh1sUK5bs!MdB zlps&qSk7u4R~oZfPU+#Va3m;fC|DLuEWn%S;QSc8d_dNn8JYu0Mwd}yhh?bW&OurF z-~}&KD!nr1B|W6Qdh4v+$1S5ic2wj<$Ouk9Q2ptx4asA& zErGUVBGkEZaD}rqE#341t29^l%0eg6pAvRmW!BoCT4V$@aMT1qCF2R5eyaZ-NB5jUEB1TG1TNi zNU1-5O|H@SL?FUTWo@K+4UA9qD8ta(=gNXmgGOZXeV_C+eiZIK-CbfiB)XQfIXTvl znunerDQJ|t`T7D2X5sPS28gDJwCDtVrif3+OYCxzGaLN{5^^`@lZ{|3tpv5>GX3C} zL!&w(VR*`gKUEd+B5+M&F12er%j#nZtNC+o6T*daP6WRtd2#6dBfp&p{>OT>zI-sB zat|{aSO$r!HB^3`3O@0p*e*XiNctDEP}ml+3fj~`LB3}=R?yVy$6bjA`$N&D3j(-% zlZo8i`qk?MqLO(`hvVHNC*D}Xkpu*eK?KeUUv*FvPsn`xI*jFZambh2L>NgwMu&Ts zk*JqN$d0Pjgo~mUz3lU8;Qs1l)N_xU6ivOxogEDT_)DWs?nir&FU<~Cw_)$oT5#Bg zy^%T3LyhIr67@;_Hcx7p@gwIRCgf{=aufI1tQ075(TZn){hz2=2!it54}bYEyUx0t z?^jH;9hL@bfw(*)Ce9HP|&_snXy$*#JpWL4C;c<1Mk6T*uFs~VQu$rG& z?3(&Z>y~B97CrijgvbZ36>YY!p4N~Yx{q;TMg&xzrj=QwXKxHpIbMqm-8xQu)Ct&VDUz1bVAT{y`g<+Ers z{gX6j+TF=rQiU>{O{YqgPXxC01Yw(I6HvKQxHT1XKM32oO4fL1D1sr+dvg`8D*KL1 zSc_~2v1-TComTnba8=DSXV+1!Tb0Tupj52-v>auovTfTRv@82Mi|`o+tW_|8^Arcx zp+s_ZsaAT<=eWC33Ws5Yw~z{wX}(_J-%Q$c=X~@5c9~Nr^jXu#i{1K;s)h3@0s6L@ zEtWmj1xDVKZqnYt9}p{Mcp@NZ!B11{U$6)?E%?hT`vxueY3lvwbymMAgFnr-f91Qz zsJ~pf|74U6%kRdbKhgEg=>Mp5z^Dagz?1t9!o6Y2dpGxA(d>Z9IVUJy@YAsOA6E`k zasdMjh}k#+Z4a=wy_@^C#`XKkuT7ZP0iewGa})xo=v%Vl@4-Ne%g-4;tNo*efp=-Wah_l5{RxYV*WJLN6U+M>v3u_r&@ols*PddGBvZP}NQX2OM|QbPj<^~e*f zH_L|<`^vkm=``_cSL5)UXm2a)i_veK!fn1%;mSd+@z2+|Mkmi7sL&5PYT2EA`4+i% zwechi_r;I7Ig=Dk(!fxz>8q^X$s(Kj{ZHmyA(i!Dlvz+n3|a95rp@DQ0gw*l6yv3y z+A{iaFLvTS3VhJoRu%!*0#D4sI#8DkxtDFzxV)~VfsDt#G{U0mr&{@`2_bC=Lg8^^ zwm>2s3>v0OW4f@JCaP9ss;4%6nDwg?v$;-a?h0Z#Yidd%o8FLz(%fZEYDeDvEi7?G zP4=(RSb|=K3^2oMSX~@byVUnj_IIbB+SrV&4$3hgEMpV2ko0m(j-^dkH`LCL%M)kT z;&M*poi-+(KMH);zw5#;(@QbQv$({jaC+Bm26Lnb<-P{qADO3b`C1(465WmU+dlsQ?m{K131xi3S zK`-1NRKDx%$gCB%K$v2;(d`kBh$wKZ?;i%~#IWN*a!4g{F(> ziDnJ`qCeSh`g|^ANpf6bYaVy`qbjW82YE4jm9q{~hNKoEPZcG8t)}#L;fvhksX>=IB4D45)Qfj-D6iq$x*L9P=Z+3nXnx2{mIao01jp3YIX<{q3 zR@4RzP!k`W-q7j$xayV5Tq@o40Z9hu^xe3m;C2V?kA0HkqmU8hP5igtP7iAGoXY&f z+FQP}m`*zrkjSOTD~x(j=<{9GI==!SAh-(Ni>{0ab*6kcuws?f_c^w`BmG z8_sSa4>9sKn`n)}&=OZTv9?9k>22vF+dR1gxvc%{C*j{M!hAH$GRbI>+WVUA`FfY` zLHT^g-9yeu$<1ylWW<~3`ZSNZ#{OaUs*zlvbZJE7IW|bk(A$JX(GC#eL$N&KyHn zIlqUS&{vN{q5Dqygu~6v6~xaJ8P&Mj9;k2adB`z2JUJ%K=k*r5=j@9{0jpa>LQ}w8 z3bB`~KI5tv!1AHm|6cZqn{}sSq(iPsfvlAkmB#v5+{++UoD?|5UcQg1PqsuZybQAo z{7<~rAB5B_5|8wIIJ0k8$+^fl%9RULVxV6>CZ5Bw7%Xb^6{Y!HQ?R=6a_{vT&JRep zjFUDHu;r((_pe_T(6Hs_m+H-eroWuQ|2MapKqd0u-_Y04;g_-a-(yVv!DYvHfe zf{y-YpM93w?(raU1JSI&&>^5E{O<4fZQyZtYlpa0u)171Tw!PcF; zxBcTmuA2RNR1h#!>2CCIKmI>~9;j6VMazuLfXU_E=-U1DdmWfbR9X(f|FN0Wk6Bpdb+Mn&;DK9Z@|OfuBdM|iT_@t{~Naa9XI}l4*v)QUe93odjo%gKn_4p z_(Kr*N%JpzqHVyQD09(lArh0PPEMIPA4SgD(V?8-A*F$40ePc~x0jii^b%tTsi_Kb zRDfKV*6z@8%F|%>ugN1TWoQwlKC$K0DGA6!@WXqL%Sdwt`Sx2U> zBIQk!R+c|S94sxT%%gZ2(oH-iS(}7ZrXzdGKuM-OObO%3 z-zZk*}P2sN*OfXBGgMg+o$~9}k+l&>_E!m|)liukf=a#mAiut~cPUk23MsT8axn zl%`f+Eqw3X(p$EMfI0MrOu0ZP;69cPaPa_5PS5iyKy?*4XKmZd>a?I*@G4EeMEVQCzM8BZYQxQ3p76zNTb&&fnZ#+{2~ zuq;`%jdd3E5V|7L@+Ux(-&+b&-Z7BL`4lOYY^M}rQ1d>h1Zrwiv6a3GChdDDOl0(F z2OanfEe1>j**)mw08hUQp>eqGvL%=tGm~)t!sHI5a_lGG(u?QyrLC&WqIlzYa$Bfa zQ)u5bS21;D8|K-fgB6)e)@x=aie8Epz6485soQ8ZYj}*Y${YJAtXIUVE&tH$B+=`0 zUH_q8-WSen`4^_{x;TWks#Ri#3lmy#N8nD>6#DxVfN~sACXu^)Mxi8&LvHwv4saU@xU65EL*z&Ui9)_sYWK?2p-(`{Dv-gqn z3gSN^_(nzo!7(k20%d#)(coKJQX__1Moi%Ky-%R}rdNKPe!%;N*NX6Jj{L{V@6T)O z+9{QNYpfQK@9*q&6gb16`p@Rs7($P#;g?D<8!535NHY_EQxvXh@N0GbYTmbEQvvAu z$yxxE#bjr|%zS8YN`=zpSwjz3Bmp&Sps;VN)>X?Q^E9j7!9a8Sd{VnOL{k|msiR9UG zIo{O}sL+n;d}!DXBNFPiD-n{yGi!ng-As>fBnJ4g8-g){-L4mUd&M<*53<@G?Si#} z#ZgqFfra{k8wgg3e@9A~OE5i#clNE_bD|0xez&-b|U1 z@q^GhRFJVm#t1uer$y`fj9L$J8^K^FdqB5rGL_W?E{j<5W479R_we$oXuFBsi%EmH zkkpB-ur>DlhpULXmj&;=bL(e~au3X3ADbl=9W_(dE7H)vP)iwU%*r z#OH(Wof@VmhL3IYR^{HiHuNH|3kfX5?!eMMH>M2FRzRCB5RcdoTeVWsnJWpqj5ybb zfH=Uc^w3;RZx3;LA95mdl(|>ev2AZN2O%|l@G|ROCjWb>FL5P~s$U2a#b`!ZH_J=f z4IMl6f?;dn5Jziq#CQcJ=D#A5>nUspWek*%&nO&yLv8(GLg0-rM>&H&%YnyE2^pc+ zU4Dg18O6#{KeYbBvj&<;?hN@%h(;?#1W_NuifS9yce6Xgz(dQ2kWHwkQn-}-=rHDn)Rn6`TyqXkM*a~=Wi(Z zuLb;JQvmA?b5Q_S-HQI}9_pXGepqi?f#HDxvwslH#sie*--Xevx4lAdF8n`Nhit%$;|5_~&wAS{ z6m&EI!Z`sOr`vE6sIT~wg|l5ZiQWaHthb#;LFZ-$I!Nv|B(Spl+e!O%R#*WX%mt#I z;o6G-zn>LWpq+sgWb~h$G~lxUoN^F*_OA!+*HtetaFrWG?+WYh#!%OE59FQ!6-2Tg={ zXH4R!=hd(M_{Ai6fRp~GOhRk+B{0XpYoTl;J6sr%rzx*jB#aZ@l(O;b1+p_6jZ)(28@bD12>$I-Ulx8{iux#<9?3d`S_nXOxkdJgKZzf!d?8Ur9L0f_*b8`Aak@--JU#(JQIB8qVI=iuTH;zJN65Snfu} zD_;6CWnn9gBuKdAJD%Jn{(zZJJsMXGs$FCX;L+!{*_Ic?T^Nc>_$32r%WYNN0Au{Yw$8C z=G)OK7wVPz`L^d#@LriP(M2 z@HIPhL7c;!xCajn;g$*SMhQ*^K4%d$VC@+9dnCXBOLULn5PDo%hX>qWOA3YGkba^G zqxBgXH(9$O1A1E~78re%$^a8#p5M^RS3g$dj|+H_dUl;C^S2V|>rledO7d}$gO4PW z9MQY#r8AlB$DGSI#db0BBC^UoPJ0LsOYNOAy?dd;FtKs=ORFc{Jn|~shFMfMAo)0U zD5u_jPc9M+qIu~=&}3qaD^qK7N6v(j9NQZ`16y0_y}*{JS%sC4SW`7&}%Qrs>7l+mKI9EIb*c& zsmbg^W`t{tLxQj#6~if~S&N?N6TWb;CpZ=}oB0!wyx&N1b%P|C1Xi~5r5B;9YAz@q zq$H3!?Qfx=kz>+q8d8Pte%8*I+ul-q*60yzIjYCI*n!v@@5*d|-tql(nb(!MFl$Y0 zyih4FG|Rx*mwK5xGOot>;(3~=0Dp_#u*b_X6XMIy8q;~=DAJEzLxi^5j8*nt%6(1J zLrj?6792Zs<(9R3`K?ukHr`Js4vEU!)%|c1nl99zLbzzj7_rKxf=HfN?hDRtgsICJ`a3 zCuXzoM4MYI2}-slmpM-PdKPIxosG+IHX=?!ctuOfZ9^5H-*4fRPl+rbK`$LUzgOd` z-q>iPH^292z;$)}^wSoDsgbkx{E&K4gV^}Vu+4Y-`ud{R3rt*G~+_Q#8?zgIHAawSVYQVvW(*O&4cqEgWJ`ogTJi%^tqo>cTV^55BDaBP_9vOmL}GT_>UdroH1xinE9x|d$B(oUtaRVB zyLn=HFc41_2$iiuh^Y7ILz(40^Pw@df;)p)VHh<`g;0d^CAP}g3s00!wMZo*lJQb) z6esGgI^sKsa$7@am!+2z) z`#}$Dqv@2?ow*^i3kF`vXYcq)C*yoZGD3@{dsljQ-(lG&VH59n-|FUghMxy05`#a1 zDZBUu`$QyNt+>?G5Xr=&|1h)$$o+_44s)}^II3>67) z!9I3-^l^Mw=w>70T8_Sb_J?7mG$Aig-Cc~5S2gm~*Z$MBs;L7-KfCrkg{bhLh zd$k7ZPm|UEPT5%RxZ<$>W%YW)73Z&i`-Lw4TEkBp9e5@cXCo(fJ5ypNSxeg|@Jzx_ z9ZXCew68e?vo4b)lN6JP_BAD7*1cYxu@eCE0PxQW$Qx{201*Ki(Aijk3tm7;XX6I` z4tmhMiK&?-BQSM}jfNNiL%<(XTa)X>umU9;e{an-g#5Wz|HCe?LEt|tG^{_(Kz}_H z=;(h|XaHNE|C$?!2AZcq6@9bbc9I3LazJANwu&17x_98~Z710q(X7Bg11^APaBu@# zc2_XC#>4--X{_ArfTRSdJ3PQh1rQXC?e`1of7&w+;Ku(N&EH-3EtTcQx>*1=d`$s4 z0B+3&3iAK7Yx<}6#mdRX$OW{dvjbz1f&3tH-%?p_=Kc>^VFy~}fqerJ{ohX-Fa!fI zeBuB`&fR_P+Z^r2IR%Q3IDnH3m_z~Z4FtKo?fP_c<=2BZfT|Io)g5FJ668g zNHy@>>>vhF17=nKc36NF10oI^KrXLMo$oyMPw%3CdSQPPTj0fkC}9GQ@xP@0pJ>2! z_M7 z{Ec4dH!7F@wm<$estM9eiVev8hg5S{Q|@}EM)UPdjm*zx=IUgA`S&6=fhSC~A(kd1aK*1%h+P$0`v{(4~g#TwK-$XSrkuuLuq|@(||F zzZrTQu1VLyav#r$u%}57^RV@ai$h|}h>dM;h$h)vJYNnSbT9;{1? z=6UHWJIb#^E4A%86=UDFCstzM;mBi^ca2DEdjdzbUqtFqe?VbI;-zy?cD8f2Ye;oZ(2*deII|xXo!q=K9iCbEG}9YDoxXCf))ndMm1cfsM_x?MW{P&{aGgb* zL|(@7BFPAmIRC25n@!9;=_2V(*<{Yc{e+) zCaNJ`Dx65E7!u20D(+D{$Xa|egPL|&SmF33+OblAL#4rI)@_ZJ(i*aJzk?=)ltmhE z!Tg1sG>>|&R%(dUM#y>NQh*MEJLbur-`9uR8JJ^Baq5|$f{j@|mVU(uj9IJJ^23H@ zB1hQ~jPzR_mVNrcIf1c4LxT!PTCG)4ZPo%M`30Y#AAng16 zW)h_~A~oR5q)@%_Ue>xfnShV*KiZz80GA~*vaC>VS~X>d2!VdzbjFLNSW1;?mY2p~ zuG)%rUY{ejpDR4t@uq!D*kgQ-+bN+?6`s5TcBuFn4I@#qBjIx`3o{gkpn~`;xuA*9 z|nOR0qF)$7blywkU~?Om*+B$iMq zCg{tf_Q;LbxXeM#VzH;7;*%=Bo9` zPDZD=n6SM}13MRWymYMl=}cIci{1+lRgtelQzo7!KGj`bIfFj>^l9DHonI2=B!4SM zz$J9xia}bkWFln=C1uC4kMg-PZ43NljHVwO-aD0`RWCs!yg`8?h{UcR*0yFT_+h=> z?Twz1%3FkAKd~gE*{A4PDN+wvzqsE}FSPWL0(to!8#3K%)}=4=vpf44DZOf!i5R>( z>qO`Mw4b%z9zvu;^hhhTAIso8^pRSpa5AGvFe_Sey@)dNVc3%{4n){Mr(D&qbaF{E zI|ZjyM^z4t#^o7_kAX26-00ctdS^84!vTUC{PgSj^#co<8r-#by6%7bX@n_fYGP?9 z{M3#3CtL@l3}P-GRsg3f8akNTIsrzNe;H=}hPQ89Jh9$14ElGAC)V2*Pq(7~i<)!W z;t6#0b(;K zQD3Tchc26aOnV?~N*SF{Pe6j2$!8q8UYt(*Wm^e9Vp;kl#$ucxx*@VZj7qa(hmolT z`P*WutxtFls;k5^hM%X|lNS)yv*GR1cOV+RG9+&*@y01g8wh`F*aKm>ns`o9P2?9C zwd>6-FL&>3LKtOh^<9nITWmy1-6vSqF)D6|*^VeF?-ik-E3m>u`VW(e1xAnmOS z4xa{;{Nt1iHk8yQMi*hSL1s1B5#zUX%mgRMt4#p{fv%~d_tPv%`SA{N4CQdWa81`5 zvIjK?*TbGYTfhkkceL;(AAN(L%nh?lhM!EdIdY%~fB#^sKc`|*c9XoM`+`C(uv?yu zHf9Sv`^ndMxc$!7Sonf05jSH#u7Z31N!*&nkCHr*=3VpQ5-%5L`<=ThT5-lPQsGN6 z4x?8XYCE0eF%|Kk6N1BgG(H{j5G@^JRHnUD%d%ci*TOp@p^=oJF;?z-1eQkoxL8h@ z+9>r+cu-2#=jpC#0rT#nV?=XV_c;?15%YBB~o8I zWFc7fp*YSvtl6A*mXWAs<$=dW%P2Xf7}DRU=ZC*Bjj@Qn4}LnN@&R`qeYxNFEwOu2 z2?_!_-6-ajU}ci~)r$md>}L`FnAv>+?{kCWQ-CgE9>I^etkAulyL-E~wz;TylwIAr z?`qXoZFhxK^(acDGF3B+jfa}QX&a9B+QqZG>j|h^vaK2sb0zL_N-0Pp7k{L(@NMiV z(9C)yUPew8x7{qyL6+*Py*S0sz!!Wdbo9)>_{s^P5o7GI+#|xQ zMmVKTsXj4}lY47HY&29v&{=#BU$kEjE5)EBM0G%Gx6R6O^`Hikh^Y!ZlqZr1`stTeF$I)j zg^1Ru7Q?M_pbjw`hXL{g?1TG}` zJDAT|Bbs*&kl5u!2XGahS;@Sr>W!tgZ6+Gh&fMm8^y$z42>$6)t*yaJZAbFhZJO|s zx%yK%H|&_&`h}R<3WDy~yeG#KmET}#j*hA}_tO>ReAyq)p9h6CidC1SKK+U$8XS-$ z9-5TIS?rWh+aDbTKTs??E~5Uz`N4PCrd7`rH)X#EFRI@sT;Y;EDWxjQ4VxaEU7w)f ze51SQ@Fml3U)v%H+)SUsEpo7C5Gi9k?vNU09hkUnp@tGxW3x#WY}`4=80xXZFkyLs zhJD5%4t0L@7{{zgPy2(_w&G(5ZC?mnwb0gNdU@D~xLZq0Cf`lq-D{y@^J0{stKI{i zg3n$=n&Aa-6i_ath>)r0d4bJ5HIDMbvzw$_h7M9WdNU?7suZ|!F3QoV7n*uDA_-BT(zVF9=lyr|=P_mE+&oao-zlW)_sE5y57f0_!V2OvA8XM= zkkm)q-@n)YveBZC+@Hjtg0s&DzZG&_G6mT+PKYohWKyaUKBk|n{NRij)q#9Q>%a#( z(5WJSRf@>9@i>X_01eh7X+KSBheh(RTV&X?c3eL^O!%Cl5n0lJ^P}F=v0fM>nzIsL zmAn9jj^H=60F!m8Zw`=kt(Jz6 z38vd@i$ltF35vy>DalX29Vt2QK)d3(nYuXd$*AQow-zdSfAwD9PTsEnVcF3zw@o;m z8WfOMPhTZ%k`qPHj+M^-G~7~)>R5Ov$WQr*3tZZ-OENU_wKU|AO$8(En5BBnW0S~I zo~Pb2$^(ge6Eo(6q8>kSpb%m zh;_W8ZO0;$G~GLYf7o^NOe#v!%Us(2L-sy3_1wFN{?y#oR@jLXzd*5lzDDj#94zTV zJrKkasMq-$K!YZhKLO6oGC=?i|1XKitRemC`PMFV8;Pl*o%SK#{nc-`K#U)Sq^ssZ%N zfLi!%ZU{2>wRJEE!)4anz0Eha{8#SlrffD)3fArJW{}a>hlUdvns{f|e(zcN$t*#w z94NpA7#4`v{j)XapAPD;m0ybz*R$sD=Dy7hLFERd6p$U^tUo{6|H=J-lr;W?p#8Iq z@w*`Mw{UUGLh5hNsXrrYH@fY9k+o|L@(;<{pq5PRY&TlVepxFTJyXxIH}{(W42kDD zjPXR;@d2xlt~hbHu^A9X)gRuua@~V6YXuhyQTvvnP1byIzQOz#m-q1JfSuI??>lt|Y1{3`6yj1E<#%2R2HYFK^M_;7S# z2J5usT|G6?RhP#~mn<43FWS2=PXY%J?SnaG=nWIh9mU@=dymsnyas=4id_tE3N@Wh zxHTS<75j9(OUstdr|4W!^|dnkP<@oBG^!vfg)X_@(xS9n_^x$t?2IyLKDU*bSnH=t zEECSen^iG7Z0ZO zVhDQqwoB-N5fpi0x9RsH980*jdjk!_L69T{iG(3uvT%k%p|)LIY#WYzx)Dia?eEKm z;?ZSh{~Ii_~N2Kt9Vubb%1|RqowV|v$|;m-UM~Kry);t zTJmS8wy&@o2aTE;U8;W&ex|3lMYB0}t6JM6tV?<~&o~RFigslM9lkMHW=U=nf$$20 zxL&>UI3PeL_8vS~PLyx&cuy=6ZlP-Fd(Mt~bHQSvew!_DyQ7U6?lFR}z5J7{jG3Zu zH-#9Mg%~awP01){TaN{;KJRnet>JHniyS~p4!#=N2Xo~@WzT&@HJjf!=4YER`|xoOcd$g>J$eXR{*ifki`^&b8D4tM`38b7637H(R*juHqMW)i`2E(O251&C+vh0FiQP1p# z8(_RCp`*Xw#juujnoZo)EZu_EX?~H+7#rQcmaxf=={sRvzszo*InM zb!T+*RtlB%Dr631B>g-p8Ku}z35gM_z_r~CNj>g|Rw;)Xhd9>U{P)oDKyfKu77scznzqk|2#eGG{3H1+e2=8lC$<;m%ub(^);OAcvC^??mi-liHDvXO z)hnML2jwM%>Z{t4tdj3NUc7D>x!5f z_b`TA^|6P`Ydo=H$B7)pIaTHiHG*{ljAT5c3#~dSae5d-u}Ja{$1%jiWr=*t_n&~X zFT8G*T!e_odwj20LaB^Mu!@z zQ{ZX6KGLrZsKGK^3gZpA<BC*!wlNbL6FRFE#ep(RIW>og*wH~ zK_yXLAztN?Yzi);PQ1jLd{p}mPfB|Rqh9H0rA+nnCU^8?F&{302fmWdo9*OS8iERg zGmxX=qeLhuKK2u6smVp)yt}88-3)w@<^cij`bV-&e#x|aT$o=Q@MLm*EQQ4!bGXo+ zB{v*L%2LXHFj&AX?U8EhAXLiz;uQRPbbVNHUnefS%_1bv0JAVaFb=Y_zpjX|NoR}@ z?xa)T2mP+6H~7fIoKm+lk{;@vR353+ZdI^W2J0Um5!<$tcHIIYT0-a7DWM>Dh6?bg zOM?YqneETNHR68Vjqr6^v?|opH0y9*5&Bwp`pv0Uj%TcwS(a&acICvJUw1$pMNeMtvLCOOnp;Rf2*@`h1suF zMHmu7>I6YGZ}=pDrkX$D*-fhX)0^SX%Nu{wFoANPzp3pt_xQPh|Dl@yMZ>)9jc_9x z=&-p~0I!V|IDtaBI}rS~J;KdkW}u}C5IH&6Sr~ah!GFN?_TLu%mxRd%iZYP)B|KR&{D<${D-^Iw^=TzXjXuy z0y_sH`Zmi284akfEI=>*-Q2fn?(fmR`1w!524cPr>ur048}Iv9^tHhOFl`1z?%Oo? z_uT(O_W)anYjSpH<-ePk{2vM1?=8YR$mug+BDBjPA0NZI(_XpQ;u@*qOquN5lR%$_nI6&KOz`k zbV?>>Tzr|b*74~gX6uM;pxv$hUCRFMQ~eeU@^8;GLfPi8)-nl%J4o&+i8Z3VB_PQ% zHRy!h4EB7T(uv&GY(oUM?5)}a7N9Bsg&^yI{eWCfV5?}39^bO`S%4wwl9yr`XMe+t zGjct->3*yQPZ*i(Ib6Rbqj}tiBT92d!%!CYkv4QC$_BJr_jd+kk@>S&9|xDdd+7UA zHtN*3Qkx-Sm|r3i($!h2kH7%Zoh>Yau$M+%(FNr?{9rWmMFt(BTZ+O{deet?$!dNl711IfYoe8Hm7>FdK<%x)69i_LdK@-k6`YiV3BQsXfh zIa2y?X(-w5RY|=ItNI#`T#@`roQws^bA8yF9ia|WbE-8$UuF?ZjMplp140S!+g>~^WAtt=7lM-1x1)$Q%8iO6BbBvp zZaCjG*P;Ks<_g^jwlZPPi#5nkE+L#){A(r+`ASnz@+eI!yvtPB zC=I&^di(d4AklG!l_H{C#jE@;JL9_5^J;WKXR?ihLoO-1l=5<{}^djO!7{)(ihD^Tu@*}x(mqi`I^+Byv z^ujY2QOapFOfc5-O(yrwP_>biL`^ze7VhwKH%Qr8H5+?d@GQ;!{jIf{=67dYT!Q>H ziouUJ{g#8?H9vXER7C$6AmrV0&>tmayCh#>}DY0+8+Zb*@{^O%0xop2UyEbc!uP-3SPQ9w~vA?IdU&bRD6ZLC zcG?c3)?7A;)R~;q>Hn>UK$G8h!gBqK5DZS^Wkd-$^THKve;cBN*=P1fG%I$y(U4yQ_|vWuyfjw9AD>Nh8;0+lof2y zX#|&#hi1cQw{o#8FY{~Rg&$NS3-!0BhAlRsq)v$xESD567Z)+e56vcFHu#?zS*RiZ_05VIxplvKy=PP{?Pa6hNDc| z(kdYdj(k^s@OjbW{BP82EQsGFaPPh5MTAsaH9%~+@5e$P#Z1+nRMS+-W@te|!#ShE zhHL+*-tVL6gI+mr$hK@x#W~i{A=NGATzS1$*{Ox5rN+c8+4rV!HhN&yyCGvEpeXTB z1_a!4ucFdaGKD&cMy67wz}Sv3BL;c$buzjYMy4j|NDta4g zN;!K7>KTDu+j-M>KHY`3TjN)K-DS$9663LvM|0G1QfD#L8g0 zL($F4Ni;9G2GfJfV>Rg@r(V5Ou&d1NiDK8sr4mGVMYx#6oLxI7ie^pOX{29b8wHQh zm#Lw32FOK{W*-p~(@=WP_^g9tB$z+I0@Jy$F#Sf$6yaV+_e0{tRJHf16UJ(B=WfOi zN`)86`JduA5X(i75&7sEIC8S&>!Q*>3!fQ4w6>B4TnT*nk+7>I+i$v~o=KR!*UQvM zis?a9IbY*zMON3pu=O+nxO?+{S@ww>i6FRWpKW)O{j9^_=#$;B|bvO~gZSk86i&HE#xGM9uUt0AiBz=%7C5w5#>12ie50b*banHx-fN zIW&q4anME%!Bk7(+F+>|$)KOjE8L*&kA%<@LmxX23zZ_r8(`q~?Vj=Iy9jbU9R^=I zGT86jZBR->fG0IDkf_<#=+EU{TCEucFTITF*Psq+ZLcD>4~L<=#G5lN6fX)L|7|UH-h=uNh*{bnKNgO8_=N6&8g+f2KcP_YUU(E08 z!Mt^MP_Is72u0nj{1IMbI@C9mS&Cfa7bIL>icxolmf)2ZsaP7hxvFTTzkOs@?23}xd`mys0An9c_~L~((+_Vr0V`uqG)aRA zDFeOv;zS#kt>Ma)EyqOcbf%`h7J*<~shEqN3SoiP4fnW%<7RvNC6Ys)1vE%}Ro^4- zUdIu(7%2hxb(Fl&C^6=(*X}Pd>1o~K!(X;!aiu!G3DFRWG1qPweea^Uk6sn&zJEeb zxCHi){ba;u&z=o}yWkCfQsvW%x7^>oPp}XUsnazn)1M2wj4 z#^o(2pGkyNKt(1*?_DgfL3SWkn5)PS!AId>DZsi%9t^Pz1*L$%@op^=W*4r=A8xwh zYq{mZgMlHKEonN(+8eVpPFGAgMP(WE0sSYRONH%seZ!+f7aX~_BIOzQ#vryO4s zS|zuD?&{N$vARN)>RGisuTmkxpwnnSyghl}*2R_r0=xAfO~=oW%s4nq==KzujQHJt3u|_bcp9TKe!YXHwN4L4%rjLzI~VbUMoz0 zQ#z2`_b+UFgZr}mp&QHH`rT_EwZHQL-1n~q{15lNCV~IlFUNM&gf+^;96{!1`WRLBLWtL#AU8as$WR<_$_EFc%o4hV)U zAUuiLZkw^(hz1(@e%jMr&xQffsmBH=asRS#z@CBws8(iU0cP5O==@^4?Zt8{HBgZW z^e|p`zHtIJ*S9Gk+ifqF8_~ZABrA}c3xv4`8&Hh=&ny2GeXSP)1om$3|BnV6zf;Z| zobfmMd1Er_?_BbC?)qB|C!iPp%}f7`WZrOT`K1xE1JC}4By(3w=IMj?XuxFDfq8L_ z@=yCA&5yX}xqFS!Ot8Sgmp(xAQ=}KXHP#Hg=X)t!g z)6$uA_nxk4l~-uUvU~D9Y@7zF;@5>gh%jYg`nHuNAX4rr^R!1mkGkbG2Oi)P@(a0S<5ULl@|C8%#6N%4ABS)%f($ zRB{T1DN(2Kg>)p%Q&Xwr`Eew($pU7URY4=SZK(`PlWjZZ35xHsbC{MU)G$m};KETv%j9QkwaX0CDi)*R z)QsG~!-bo}%+B`Qq%TS&;|0KW4sjf;kQ+wAq1kKTMA4BCX%wV$#BILS3%WroSQS%u zS=PTwtF+tXi`j5uUsN76cl=~oU#vQuSR3k6{h@W)J^ir4W0Y;6MDe!lL$2KGdOk(6 z;_iK*DN_v(8sdA*=U&o^Qm(B_CFr3$J>=o`cznui<($!T-N9$>)pMVmm&OA%f-f9D zOnh`4HEu{LRh{T&3%SFa1Lz$?42ZLTXf*IpU}@>=jw76M_^SV+n>34BxYzljG!SP5 z0p{D#C7Dc49cD%A(d>*8vN_cXVmQT-DOKIDvZs0lZzn(X@g>T3D zY|J^O*xqVjM11wzxQRV$%DPKK(X`Oi2ll)Ywim63s|y2Mvd;-R33KHcZEmIUIr~($ zN!iE$7-WJ}`1od+rb36{>Agf(9juIO z9n}w@_oSeR7DR6i$d#h;N5hjq@7DR`QB?2t+*(5~4jEF*tc>$D^Ta8}QXZSX;1OT! z9C2(H@9G)ZSB>cqVUQwDS0IRCM2=zORFl_Gu+Z!h(>}CUMV0g>h0~m6x9MpsyB7BN*TcO+IQ1U#-Nij z8-v8itk4Cmb5pIggFE^Po(J91s_NIGjsvM@RiUQ_TIxu(r3^auq8*FL-56xjLT@uX z9Ql?Hizbx~_PGZ85G+6<>^StjmpVy%W2`o#o)?Y0ZlgV9Q|>I{btDmrQ$^HnfB*I? zl90#=<1Kz2+>tw8Ni>t7q40kC%xS|}U?5ne(qV2Hh$N9~ZgkKqwuBBq*R{AJ$LvVx zcns=GU#qHTtJ7|^gvSIRA3l*dlp>4~ST^DEBg2eSl752m-q`O$6wo94s=erEpPqlW z69+z9T2Y@|78Z-3SGE(I?H!f|wne{i1y5l?M5$$*Yoo6Q_Pl-tZFc&)B76-2c z+aK})jxJ=Mbm$n7oe(}XWNd97OMA>t-UVy~j2uNJE$sh3$ zlK16Rst0tWU;+pMPk%Py>#SfQEUXZQZoGJ;{Ot4cLNF>K7z^K4x5!qS)IdRRFU|vo zuibfKGV2Hhl%4EUsl?b4&+3pR$OP6&5Y}A^_4vUNt5F!3m*W}{lvpwu zvM%_|y;zblR$*3wf{%qqfV`0wu=tzlZRVB8OZ)JeHGeQPmR`n<=PrhLUIbMQ!zB3CPp}ex!uXVJTf8c6c`}(@c zGnHCd7TtMrg$9I81e0UQ^;%sRz2B23@YOI|rN%1N4wI3~vxthXB%9OUcJuBJudN(W zhX%sI<4mCF4#HZiz`@io(pwBcnLd?Ib4H{{Bhgh5q<@YAymHfL!$1?GHvwPQPXu;S zZkr}0=TpcdSgV9kjeV|%-kGozjKtt#LOYqKw1k^!PRwiv8cX8BMZC?!dTnd9ji;=- z^-ka$2DUA%m^8Qb=I)h6z$R$#a&nT5xBubI)vbo;#ydUj*`dj`T{oL$h@nNflAWu* zXjp-|N=FLVSsD516!Tf5D$Mt{j3}>rL>46rJbQEdyW1R7kq@I6Y_sC5m@AiC99ujv z-f_Hv%dxC6iGKUu+#1qQm@r0J2!U#5yQ=AMO%qcmLYBC4D&yUtaO5f{0lMiBrFGu; zb&`D>e(|31F|Vbu$As~w>Y{2&@wb}7;psh@7ctiPlamfAmVFFX_Tf&l+_1HrqcY>SAM!^F@-~h&JBm+W<>9sa){RW?Lgmy zH5?60Rm9D7%B{un-rDsoELqj?YzL|aq48TfPE&u=1sEf#ri%}&@8Uj}FB{^f=(gS5 zT97o56AiB*v6+4xhdTBhls66N14Z}d`BGX3Z<@ZbhJkxJJ(DHYbPb7zSeh{{Jb3zE z%zv>JQH7Ny@sAgNZ0_IqpBB7uDWfhAA(X@0CS#wd?w}(7n|I z!Sn&(o2$kUw3T~^QJF(i>df+RYdyS#4nq`$ZxuYI%cnR^bibK$W|$Yj!OLolf0>UE!PA( ztX&`r+~ww*2AP@cSO=PPKeb>`)L-pByYG{IS8>oPvOe!ydK7VJ_fqDD_WizOaHoZJ z%w5(gy%L;+m}B_(zU`WQ{*D;^`VrYRqtAX8@!<{H@I2ncFx{SN6Id ztW3-R56$0eWz4@S5kA^DK*)rS6Ci&6-6QC`An9*3>sKYh$I*auON82Wd2!b;(I^oqow~01~eaYK4Du5=yClIXZA-l6M&L`ml6DZ zHY*u2ZyW3S+V@JP?Pb@yY&GEOp$?h|DByzB9oGp_223aUn@eQtM9|9@| zyK2d$Tu&M>i9yHmZzda)IpNxO<(cu0hB2QSDlOvRa$f(gfW(#YsT<+DzbrVsa5J zty&do7aINo*COq&H=xSCaZp~IVQh=~${cSadU4IlQVny%$p*_+#E zY8~cLwd?7yi6<!kPZrIU9Vg!z_5cBGxYtsKfrjN9 z@g$vs2oAeEr{wnX@*}X3zhQ#$%xNDM0Ko@hKBp)4@d*S&gMsdO-`80*3;MPa7q4b| z%3xh*s9B4UjQq%n9vw59$~{a_n@A>qLbu65pM5*89X8_dk^@gSybdh_m{9~wZ}`(o zlnbCY;f-HC$)qF+%x$hv)vqsF4vQKaG|)`4qlL#PfNN5dQkFSj-L zQzO4l=qa|P2-bIGllVF_f$L$OR_?`~UGJ_f!;WLiAwj$`3M2E8Y@?P+*b8;Wx2f>) z1i>c$WOzCn`Vo1++Y^Om@5@N&vL)im0mqKd3r*;aeQ2L!46yd|B~?;oLBx1pSO)~6 z2)3DLKJPeRju5@_nbZK^VxI}6Mw%UzL%{f?EEqNZD#VTdjftTgg~w-m5&}k?jg_G# z3cl@BC}9@Qm<+jw7TeK{Egx9}0h8zq=9~+>fiD!^hH%BayqKVG>{sKQDytXgZ>lq6 zGU?_lXd}6m7A?=Mh=cT;&P7MX3s=4v6j#l_Sya>PVkMAh&mPHhPI?@`poC-^dVjF! zU#n-@8=O4oi{4wyGY=WgzH?nxN^3?hYHw9G+wIN6fupEV82>EqJJ_E@wfVtMDD#0n zi#R*GO%Y2XUWnz5r%#?~7c~Nj{RQ|uz#_aRZ|=Pr5(w&i#U<;+R zl^%=SQPxz=5&on!_`H4DR%k+KKhXF}LTpgVmZhax=Bg5)rO5IF!eC*<)}T@%?oO{_ z2YmaNg;p0DrSI0fm?bL)Uy(EJVBBPp_e~O!RIfk zF0RY?oB@Tf7eRJYuPW3)JOnynjA3R2C9pT+CF0ToOj!n@`)5e-h2?`hEqW&1-Z%n9 z!XS<;Onob1a1VpBx637HB(zhT-I+Jk*Lv}o;LnQcU%J;C;-Ov0e6v;Ln10Wv6^k_o zjr;zie{3BN1FvMuy;AbH?-rP>U@Yx$MyX|u_LxIr=ZSA#>}I>N?#7g}W4&);lK2st zPoCx7Ox0eIGg$g!GGOElWz!eGrD_NN+>;9`bIA6Znd%1ByRsn|)XOVB_HKBgi{QPF zK=uUB+ESvm0jShQO!-k;Qg%+JPdH`+X?giy^3%Zy5d7X0As z2ipIUm7TT-}5na1*oIdVn8?(27aRBGcu?LQS1^<3{ z^u5U)BNIFo9`K7%de~vxH|!^Poe1ak$5zI6R7OBYJoKN?aO8!)*x0w9n2gd#Fncej z?mb}PrlB#ys}7@-*IJsqc0Rko43XYIv7s8wRPurnSVfcGz!;t7i0=%(1Mh<0a6{#s zfJSXHNg}2qQ4+CB-V;%>nT#ZB5e7$zMA|;K5Nld?zLOuv!FsX1Zy$0R9TfaE>v{X_ zb25|9)K4J!NAiD9Bl#cS+>ep`56Qv*j^vq{zr&-KKZzAG|0?;%{9^-u!sGu^eEC)K z?}_N|a)SVo@TZ{Oud;nlMzaFI+EZ%T0DZTg0L*uo`TNcRl!24+DN*rCtZag52@~;j6IR#EtDw1AkcZ#C!g#36aepj-uO;t>u%K zMAnD?92H@^*znSdvsHTb*pc}i*EoCHK#OzR+nOdB1WT5>dD8?~DY)a)faeqaOvJ5gJi7Ea)U5~UJ*}m^3A89wl47u)g^r^TGYkMPVxH)uhR=e^Nu93uO;6<`2%TaY9(!h>2GjIV1}mIWw#0W4@OpgcgxAZFDcE zV1Z0kv)U6OnVGW(zI|)g9+U;>5JEyIYP#?N4#!Ds*M4JGRp{J6oz~9KM4G@riXB*t z%EZ(`S(@l3?vE>aPE`%aM{c`zgU3(y3*S@eJAR=HlwQxTs_3X2vSBw9iu7%c0)`Si zq;1TQCc}j!%7o_Q9fATGjGhFk2Lg+8fdPvQfzAoh&tkz;w8a#{;vfxDM2m% zW?s!DL6~}Gn->u)0W>;@W}!c`+qdskxLsbj0kq6vsB!L6zqwFc741C5!GY(tCSn`t zI0Pe12iTs7#J!qiPmdSka55-E;S9SH+9@l%wB3o=)6Ez8vFM4%tMWV;CNH)gMb*$)6IEovN@|wXj-A>qmj=fyl ziGYsK4$!)Ofx{`Mg17E_%v2poAj;CxanH1@kJ_W9k`M7gi(>ap1)NQ%7As2mT67b? z(~x;5FKXwtw^&D8X?3kcm@inJloVLv>SV}#10+K$K#@v9pM@RjfmC5$sSbFN z7Nx;Q4CLX`M0pW^kj^=+y(8gInvxX}BNWJb4#uH8z*&fu)T+*ROFZ2X4tjML-lz;K ze=8P}R^jhFfTj~XaRQ}UY7)DV??R(3Is|vr*cHm^2h5l2!PzpiL}{3nhj;W&Q>w1V z>|H%P{quEwC_x6Li^R!HzI)+~+PuT1eLMz*i!K`Iu8Ycu>+NqXmwv8bwUuQIG_xwR z2#J@k#VV9f>~QUw;h^49zsu`vqO8!XreMzeRKUNUhOVP*AaGTV@v3z5EPgQMD23$X z(25p#Z@lJizrS4dET{S_(t6N$2NvYU0jAF)V}kD}j)6ELg~7Yjp5a3J!PVO=deI)~)qftz9#}YZ{u~BeSn% z7hy*395!UMPjtv^rxkr=Kf@;d8(U?e;ONERj)}N-N<><16Ujzi>YiYU46k zq{lh5y(MODVKL3oK)Pk$C7iqWHB0h{P>lQ87i{A&}})n1;!Ed!n}xZnqK{1N5R7IEN{w zTdNk_C%*B0m{zxx%#a$gn^!d2EAPp0LQlAF?2p9^JBWC^6a@=sj0BZqawmitb&|xA z7*Z)x3E<&Lu4vh~#RD32^!gp;))8|~IkTQs;p1)cDR7iDKY=11iL*Y9B7XcYe~cmk zX@~FVfd0Qou>FA|e#!>|d{chQ2mbi%|0o{_7+wCZ#tN_%0kkGC14Q5eqGo^@cP3_l zP!}W1-zNkC(Bap7;IG=T%s8ozKzBxf?GRv3zg;&VP5Ad0 z_Gd8Q!Z@C={$c)A)bP>Lf23f)H`%a0b=^Pyi~QdVCzQqR!RjLE0*;@G9F_tvpmb&(Ik@RA+)_i+v1Ka z{jEnJ++gw<6zb)RviKGX<47~G%N~s=!%HSCH!i|2N=N9#mhVZ-AmY@_2^*XGe_-G^ zu#TL5y3)$&Z)Y3koGCIYIz8aEY$n1{C-Z|kbB;EMQ0R%=N1*Nm>fgz14hzRo3iD+kyFNl3jsCFwoV3g>AJZ1k7;- zShmy&E?A7>2t=zyn=?^*z$q4A74A}%b5nH0n;yDpEKU_rgE#_1v2u^I@4OO<8_#SJ ztGkNiMXx1`wk1Rvrnk-?&f|`w^&|7)Ish702*>8<(9_D67Y<2}+~6F?CCAi15fu$K z#>Ma6mGmi;x9MOh?YftCNtM^i)lG#8OG2kc2FwyLejukG7udu=*?3jJXe$~bD>^{Y zVI=uhmIIH`I>$v^uGb~6Nh0~GHl9Gr9}IbcVMn`dl3%)jhl*miE+eQpqpUfjkAedK zWqaolr-QdJ4p4N&eTnzWGUy?UxE*(3 zzzb1q>~y{0%x}<%IJdqvGPZnssht?QcQBc!MYlkS&g99sNK%P`3d5frq2FW%c8Fe= z&Bp1LXa~88u|XHJQv50SKJdI;fibF*E=u)Yb=c|^&->apxfAp2oQg_|BlpmdAc++1 z&bh)bX&SE9rn?MRtX>4&Ik{+l)TXd(S(0X(;Phb;byjr$>{hKF@0l1oyDxR-^x~ob z{@Y+K@`I8)uX<_inHjCUrj8aki&x666KCT`)n@gNF#-lya)}rOAm*x_H$`zX#31FZ zL`3}N_!8%Y_JpfJ1~n%N4Gw00Faz=lNHBnzl}fP&P$E?BfQ%OLoMe(V&DZbwpGUm3 z!mFv<$*bGR4oTtqSho`hCz`4}5L=K@r=8;k={GV&t0^ASJRNv@MRLlXxQHP$3#!65(fPn4KINPx@#H_Fe;DcvZ@EmM$5CLiFbe zR~ll+FpsadAS99^IQJEF*hm9Ml(V)Z_+K=>P&f(d8~F&HZod;aOty$g!7X^yFnx=e zl{?IVr()1~FT!>=xZOKArbC>M__ZNv6y_~a6RGFjc<@*l2PYjO zJ|wPkUbD_3>bYWKvPF&L6?facNQsweXy?mhv(Zte;9Z6sKQ~LhuNv0k=7{DQ4q#>x&+H2t*@Ci;#zo0^N6AxP``+f!|;Dg6g#Rh-|$IYXyacK3s5B zhWkb(SN_siJhAD;9G1{LqE&#vMOTZfEtZ*_y&Tua{KA@T&Oj&<8YL^6N%4vGb#ERp zk*q8&Z=o_@3`pWHwp4KW9Yn+YCB}`1#UK@JTb+@F4SSSkjf)H3Co@DB44p5M0{eSo zA1|Moft;L;GIH z^=XZ%M9D3{4o^?WTr81}IyGNJE+VC5ifXh$r^N3WPC}5#=bgQdXl6FeU@gu?u(KAO zOfT5-?Ow)(B>{@rxxMK*q-u&k*~scOu6|J~kpeqJ#s?OhzT!gU|1n*O{;a<@vJUji zQSl{v@dme1d~V-ymw=@2Cus2%<5^}xV^H&TCRbG}Zq~I3EY3TJ7Bwp}g2HQQ* z_o&HF-F-AaXx}Qqqm-AYFYeIFguF7Q)tPzR4SXI(SWU3~df85WrG2(@a~&qy!d3f% zWJ3L13iK6wuKsifn2pyFnOW0hT{wr@w)P^^jzHXcD@@uJ-ZOE{`EFAZUy&R9WD92V zC#VsiYWf#6dYT&j_>zB2jeaOK|8r^tNT>bV4Tc$j<^NjmI|}@>Qhx#l{xT^1DEbc|$HES9`gp>+l9~1A3h~oB2N>l5dLK9dy&1nl z&|iBWetvGi94s9`vzOqzq7^FuJ^dC9Kzsk~)Bqmt0M%cPCm`r=Iqjd9{^PM3IRWkM zPn_AWI?GR<86)7kpXI52|E%c!zsw9jD)s+e()VXz`!hm*1ag1s4S3XI{@A?ZXR!TK z1HwPc3Epiy!kM-JMIT<;T~bzO9YYupdg$;3Y3Fu{6$a61tUhvtaUoQ#Na?F>fgk zV<1vR-T4C#dyqi#b%VeLakR6c~js8A4={r3R5bR7N?78M2!kw zc&)_~4D~3l)Zc7w?$%QC)5#~HVo1iV#;@^{C{7-H-Q6gy(pXJgR*r*OSaEK3(3AjK zU~Db)Xt{pNaO!m#fijnDyf4K&>MOFhwiG7*I{T0!msCOlGXUcwGO*nTNunH!_-hdX z#1MJHPut$WMX!d&L6HRO16{>y_r!Bub%|4%HEpxTCYK}M<^@AIA|7hKq`Y+Vd+UL? zSx>4<-|;plu7VC=SlNS}UY4ul|5pFBy~-oXP2**OClH^bGrUgLsAa-f0Nv(o2#Xi^Kb){!?tZJ z7X&vELTU>PGg6_bd__rq$o=N;GxH&G@9wYxE!jX$FGNo+SkxjaE&}}u))?)<$uqf= zdYZV3`->(ujZNDo8%fRl<_$z;Fp&5Tyi3j%zDnx&yospnd&ze{paGV^w zDn2psp@#QD9bwmdYE8?A3d|T?nPQikT+!!;ZdfUoOoq(7(u*WbI8iW*e_J?25C*~6 zU)FQYxKBBjO|l!#d12?!JyX80zz#ff5bt`2=VQD&FMUMYwBC^;TTfR{!7l!%*f)Y>nT__KGa)o)$EKB_Nb)~fAT4CK=u z6u8M@s@^gX1s|j}>=VS<3@}q+R)PkdyVw#(5VXv1zZbbf7+CIqe#(%WgguJ6U1qvf zwvI9a`pgq^e}`66kPK=p6IPU2l+IVMemGY)ij10gYSda<9gf=PJT?m(6uWrJ8aQjyen%7+CB z>lzU=PZqIyUDm?x_OOs9qwRL;RDBVfMT@v3znGGlAR4-Mui?_>*5L(9$KRAE@uDr* zEi*gs{+T6BU>kX(w&&kAH zCK1T&8gHbMRtybEiv30dF$x6qGT3r`lhu8Lx-5e=C*Ihc)^3jtu8xWLJh(ZHVcws; zXSpQEwvlBCU(s^<0wnX#Lmld71#9MxbuIoP-&_Isv!2 zgoqjo;L9$5S~d=tTcT7@G)^$*==@?78B?qfUKRW4T>kCYjU*`}h!1n% z_AXc%2q?$3CSxPVXvG|vAcHs^4xq&Iue>z;Ni8*7=J5x6*(Tg;20Nvnm*U?$(CUp@ zBnGa)6OLz7#*xbvvA1KAtBy#m;Y zIvrUntk_rWuTqxS-dB@6ljvC$+EZg+Pvhl2CJ;(}@r)Z%$m?88#{(mL=z0v=uD&5a z0@*4<=a63c~;we1&;|rO%udE zE#g?*I4q+g+^JkhBpsju%DTsT$s{0%>5dp@szpRDOu>#zhsSaH5evzYyKh zuje!^S_-dxvuu@$hSw8FW}cwt3D)z-!Q*Mx^8>;?W<7vz(Emw6=qJ_#kZbx24}Rwk zKQ{0u>-o=B7G}1e`YV29?H@<~=Q0cP&#JJ08_f#H+5@~DpI{!pvYw~b{yvt=3Fs{U zowxkTdY+8_?ojwt_wuiT)4!bBzbhpGC(Wm__P^>)KN$>gU5|N0-3Cct>~pU+MI2Wk4Q$o&tC36mNU_Vc1>fOZ-J_6nS;w>qgD z%9UM(5?VzxMae>d7HmNz78KLiI18Q4+AT+RC>G`0{jlg*B6WPoJvq%bkIO_Pl_e>YHx?yT>Aghz7>v}s$kPF2W%!+PY~Y6Lx=DiaDrD$s z=0X?9kewvPnoUjW%esK`z5BX~7>x!#cJ1iiCPSR)ujYIo6OQsY{bi<|6a&apUT`P~ zCcGq=8aOSEdq*=Jw=jOoUM(3B%~Fz$bV3DTHX5C*UsDvxO7Gd}hgzJK++oJqAp1sq zA)l1%mQXtb`m6qNdrwTJZw$lzVC}lz3EOBcv_8(O0Odyb^8RYlWaaz!&x`F8NoLzf zDmnw6aVoo>I_{>&5q!Mzuss#9buvpU&eB*TnwK zS9gdQ5Is+uxaUr|`I({niJ|YgS;Xe6sevI^gXg33l!Fyx8FNUUMX@Au4<80$<0}Fc zM56%Dt>7t^b)LM09Zhf;tMT@;c138{SCa8jco|p#5?T?^=9L^w+|&*K+^|;@2tP^SyuC_P(#BvK>JbJqnN|x0)d8OKhKd<@{j6?s34I++nzpN*+i|~so+Q=AFlH~hiib(>5UvMk)P8L8qiE#l%3D2m%Apz0QV2g z$=%SvL!8;Ux0VFA_)!Y(&)?5BvZ2zlZ&aLChU&jMswkO0<(rmj9WZC3FQw&_tRp$b z8*oL0Nd*Vm7f-`n6vx#RqjaG?e*+DQrv!9g+>S~@Vq2k*(gkA!Wz?l0Wg3uU9Jp*C zd?BuTT(!7{nBRpKxxKU&jUsdVFf|#%Ceh87Ve}=nJIict4<~7;>&ZL0Q>c{wbYb5d8@q=+Z}-8?k7iCYgt&%c4$y|6 zaQdvpMeTle3?!(kJXTl%(Xu!rX7=fU>7$}GUNg>L+9q`Je1ZL;>aMos+xq>GHsNf= zr|hkZGtmU=#$up_)z;Zt#d{K_v^ykx{o!9;Qy_)byp7fpt!lU&jV&_J7i@G%Q^_uS zb8U-2U>Cx=_O6q^O7C{8dZ4y@xF<18>mcqVZ%)~bMrC@VfzD6e(k`<3wRe&-V+wjP z@bh-g8M3P-WNt8YkUAMTTf|gsD2gwXbZaZ2VK#`VK1j)2vN!pqQdW`12 zV6TrK1|+99kqUEV^qbs_SA&8h(G;Tb7rx2@{G*4}oCaYRlobh9!r zS1OvXQDw=^+tCdrvP<{{1jVoyF35!Fft-vP9cFS5s3^PimEBZLPtn#ERVgaymnyD) z7_8ern|#)78M4TU45uK?9Tb{ypp*hXPkGg^&SS)RZ|I^kGsnVO18ux)Gq$nr>%IoA zl%tK(yK;+tbSgA1#^@K%(I$3Lh-?*Z`j#=&>+9vo;tNm7c`&ta)HR7;S$ME=qvgZF z94lZV=dMj7gZ#OCk>TxARC&yZIq8J=sS#NSi8h*-WSw#v?Jb6UA;jSP7_)pLK;Q&K zw^N*n7ArRb&n;TrsZ`#(HI9P&4Z@J+`OK+IG{58M9#$-8E~&t7;;)fK+Y#wp7c_yP%b=mvJ(x`21f0htW!gvot}*v#7kos zszmsfLYTY0zNr*y_~-`k*>keh&EnI-R9dw6x7iO$@XmV>x}&xcR%ysk+yq!7ghmMS zIFskVD46H?QREo3@PP%NsG_4Tma@-%j1Y9>%lU?6*Nq%5oMHA6TE0%(B(6oOXoAMfxgkAfxELXPn4v9EuQE| z9($LWUlurjM6}DyJrt8@0%n%={P}U8u9w(&W{N%w+%dp`XF;G=nJA&?;z*m>Rsx$P zV8d>WeJLUbKNq%0n(cayll~|@vGL3tS<|5wmD~|c{($dDjd`y0^NVGWD%%QLCq*ua z2AWK`D__4~eyu#VaM4<(iCo-w zostvBM`%FmoYVVenv8-BmtBEnJ8|wj(GZ5{HzJQ5dZs=oTV0Fx z`B=^qk9AMFx7R2y+3EeFyDw@W&g*C&J}cw*W~)0k7UT~Wy?K~%dv!sDYon_h6vcRb zS;X~?yCMA+i+pr=`i4063sI(H`h)Lqiw(bffLt^VOUt%Dh%FRCZQq*cWp*oqt4B@h zw){&CWJ`OrUMCj5$ojMy+eA*qAq%~DOFdTY^IU#|y%=&7cS@iD?ux=`8i7@o{LgOB zTY7_%>Bm+)oM2EuumLjfZ(&f-K4Nv>Ov}ifB9SF}Mn`1W;*TFuL-1o%mEspDPgv}H zR&8USi)<-&LE7bD62?E5S9b?IXzXp0(8;;g&3cvaX&!iV;c9v&*lHAc*Xu} z0qMsE{-kmLrFiwLp$eeC>|c0VOGkKKi6S?T^k@`1+dNem$DNZKvV1Y=$~J&-=YDEPT%LD znE+$Ij8Ao}{ZIn_xm)hha|8T6SpehCOyAX|p6Zr+5!YePaIFjBJLo*|T6!5-8b@`f93nf`irWiE@ zD6!iIvAbHQ`n0&i(&)ndHR@sC?Gkz7q4E&#FnWf`)^u^_>2dkP_U@J8C*!@Nk%5if z@rN(FZ(OQX&_Nvi39uYKl*-^rAQmMf-$loDKu=b@0x4Wy(Uf&*?oy{WsbYy{8Y=^$e975^&$SXJ9G2?y*eFoQ@v1g1-Yprz zdwmN>vMP{9o*B0MD{Q;&Qtxz-=)%}r2f&iqTX$iqav$tjA(2(vplkN>Tu9u4cW1xbjty#_!Em{B&yapQbQ^c>Es(-um1U;W$nIO& zHcztcrAFKXN*2?BKu-m`xZ2mv5Yx{9!zSs=&M`I-@i`FwW1`_i7e%U79`s_*PGYKM z`m_t!STskPZ7xh!UtCh3+uK83_jNsYjaRu22yq23Xal?|8429Adc~4hKvcV^8euaA zc9Nc*Oo$hTgr0PZIH048gi%9_ON7m7+a3DX4GC#&5`H2VTCh@vw(oIyrH87XNX?{n zAr0#gF$tIfylL1{Ato25f~3&YO%S0fFtoL)xx6Q)g+Cdb1}6n!Z!JtnufHp>apI(1 zI=I_#F>=_{z+e!}g)6cRLy;|E4rJhlVpE2khmZx5=jbk3VFB-Zmww>okCDg$(jcL3 z&L`m)2Rbp!)&ehseswKk(j4VG#u=Rt9(F6m271JX)>9#9cnP&esOQb~T7`hT_rlFw z?TucC+K}TYI+~h_O(rZXB3B)Gup=6CQ!fK9Dsvi@@w?*%xrK_m_0ueFuGT(z84{xp zni3EK*@ec_A0ZBiAVGFsU0HUUE8Zqp2#TAEu+&~rK?Q~n4V>I-3k7j;QSuxqA1!qQwuftrEQMUzIfV|ykB%goDPIAR&%PjntqBK7 z-yBT^vSgZB_K;Xe=`2}{dXPgsM3~PS;2k%5Z|5lQ?z%I7-`%8CBcTC6eG zY~rxYPf4~@2Wmc2BDysIGb;{$!c0s6es`(>tff91tJMG3aULZNrvs-eY<({ySS<8siYC*E5Zc5I#)3Z zypU82ytM1j9PmghDYKM`lQn$Es=(RT+<-Wn4?dJ*C|^M)%z{(+mA&H#eiJLorD96? z#c3FQONmfJHeBPVPv@{;n$ zBc$+NXhU98cIa<(F@xocYq*!O0rl+MA3mxXzMh;bSA+wi85WjuOuoUWP)kVIcVkdjTb5Uf;U9MF<5(L}#+pqp;qi*U zU1jCgB#Rux9W-U(-rW@l_0CYhOlY6Sq3?xyLx6lJKqkj`CeNIBQ8cnM|F)REvDb$1Og(5Kpyhr1kxqU zXv>2G0m2o_O=g0^aE}6(BLXp^Xwy8~I5^#3o?x22?uJqrc3cjxjG!4Ok9jDXuxiw#7 zs({{uWAg@7FKYt8en zOzcb(_lFGIk6{hfAnYCJTTE!rEbCY42vhDei)_{JdueXp<;)w%&>E>y{ZF8qjg-mYvh)GF1?b zajJ&A^d&N$PK*WSs?J_mgk?xl)8vu*lCGP~)yvs%Dz`wh*K4bCe{@>Y#KBRo#h3PF zt8|h>_pV>0o|}f=HN8iV&e{Hjzdv&mr~-`^vRd8EbJVyLN*cFw0T492N#@tVf~D$h z4P{Pv$8CD1Lk~cS^O=NC6rdhilswH`e&CwN%;kqI%KsB{`PG-?`&`S9T>f|N!3bzO zV+S;?u>-gV1AwLc1}8axh44Q|f0s7>4usjhLs`IY{vQ2vi{W=D`zV@;iH-vRl>w1} z7PzOPe}(Xmq5;6489?z^0YxB&r$&LQG_}kimIVw&-agCJ`&^Y*nqY5*Chy8u@ zA0YfYa|6u${{Gm%lEt4l{)e#$U?K-Fsq+Ng16;@7Fa2jUK(L7Q$qW0HEIzq5BQxC- zT1hNF%fkLB82%j02)HK(fUPVO8-TDqL3;p1?muk&k27QXKE)0Yul@DVSRT2A{CZ!1 zL^HAibbOy6O)S4jCqLRbfbM;N%K?K?bWdE@kH4+|n>n5TJDT(}`TB_%J(^qpM;(dZ zT~_~kpZ;J;41k^fLzXnDA!U!uiO{m83di2q0abVbUlzFN^C6eQJaPCL#~WXv)bMrE zNSJSzRibB6#w_XO1}3ZgYY4gdlh@aKrJ6#O^q9jQd>J2(TJi9?-+nOdp(y`cv46#4 zKoDF*rWk`5MfT!8)%{)5dr7t=dK1+LSw7rWm#XFP z$V%csY(9$+N2&TeQqfwrqEG9jT;pt*ewApV%Uq*G9;|N2&LQG;>n@W~A40AJT8S&; zus}+`dk2YP7e#s%v@HVcmX8tHg{eqE(Ru=lVesd?2#b2bnzc5{(u5|dv`8}1>1bE3 zVa~1Clu8#StW?B)L+X-pPAUFL>Q`hVWK4GN**dB}s-zClHLFguhlavlDoEek<})PS z;9GsP+Oq8GgVN>%BK0x91jhf^v|4+%VHZFKC#JUMlMsxNp+U6r+N*_@z%%wV4O4$N z$TKG5ny(rc_WW4X3n1 zEeW&P8e)AO+3Xjj?emVGUV0=pjGtl|ruW2GdQ}F6MN$m;t;HZ8lM~mH+qMI82F9xZ z1_e!ZEn*pQ=K3a)`}U#MW4>1-`AB3s)?10>;P@Obpx8pdC3i3!OFurGNgWUN>#HQ! z^GPyQkYPnfGt1_bz2LX3_;i67yhK13{H9EWn=9Xdfr2f3LQ66}08?#^*HU>z?|^qi zF-57%uBDx9ugE(v;+8&@Trc;?rwa5fF3~;ES zYO350?!r##iC)q#*IE%i$4vcU(MvPzp*&c@>LvIP9l{+jK+1D?O5F6j`1x1n6i72_iPkW z?#k<*r4REsQ)u$wG>b`qSH*~(<(Ikc%wNjsTb4J;@E;&yAdF5pd}AD{nyc$GlHfoq zYp!#9Z#Ro1y1^hSBG2-Ey*%T(PHyU%l=Q?2PmT;Uaxbz(z)K%}Np+nqBN?v5SB67G z{pDPa%hj(3?>tjK4lI`*q9y7K@YSE%UYiEQlOEey$8!>ik5kY<~X*UR%eYi?yD0-!Rs^=DgaUy0WfNHDY7_|04Xm;UZ zMpj~_9-aCIkSc~wP@ma+FLA1FzvS?`XF{MM3JZJdSjX1>waRoWx}thaIDUJA;1cc! zzK!^aY)>%yFoicFIfsL6=Vgj0MW8l|(;za`(pKKeqmx5*NH*bq!`6LG?uBP{eIEoh zySI=dwWPY_ye18Sp0l7SWQv|L>u0;o#AQl913VvA8mt$*1H&PIGLjvr#s!m z&N)ki3bSm@i=u&(ER%~tvKhK)>~1g17^uDGtVqZ>Xhn)Fcr|+u`PKFQP@fjuKf!y6 z(i#*qmd7ZqYOP0SAV4+bSy;FRBZ^o(>)2*1xK1eX^|!iNgeHA0LVHh6dFhh16a6kl zO0EPH&904smg#r-L5divA7c{DpDE| z!yMA+N3A#Q%;OA1tv|R`B#%SDhzLQC&E_@3m|MIAV|z|H(?X%dn9y))ac1R`;NkWa zHU-UJ9kgkFiR@Gi){-qm41N!3VyoUE_bL-0++j#bJ*6OORIR8%g%8>PAvt%aCNwwHr!bb1nv@ty zF;H7!qZW^H`|?ONn)isu(}P?`zn?i_`hsUJX8t&sYV>2Ne56^}-6pLB=;Czajgjmm zUaeViI1ZC}OR>l?Ub#6>66)dYL%D2nMQ7o_nZO`qIFDLC89d%WM}mtI+twm{o-{A4ey8&SYn{oM4q$i$I16b*ry%+g@5M5@t&hT@ zw`1Vp(Ps5wO~Tx~(s6Iwj^YQM5dzh#vt4g~VUzD#`U{9~Czet>BqHS0Um0r)%&Bpq zKW-1 zs|&IQ>AQkuX@NDyUlD5t={+FQkM=kGiDrI`e*F7#@g$o0$Nl3GngRTbs`y`{8Ng55 z&|h7e0KaEN{9^ed6D{1>P~AsQ!Uw06;?GPh}Y3_ppdZ)j;>qpHenf05I+W zD6;zFe*1e^#G~rJ?zgN!GUO>r0q}cR#FN#4AHz66Joe|>zoEFNtAUC*4xmlIpVhyi zxF@TDWDh;i!S#vi-%#As)xa5gz!MQ0fS<0VzfdWUs{aB*Ktuq&^G~$NjHj z;OrFp6A%#ayI=03rI~=ftBgRQAro+E0MNbQ&qMpWSM3Lc`jKDH1ONh)CxO^6hxR{Y zasK}ZNq)LV{Pk4-f+Va!@3#LEk{oI+MB}!gc(2r$y&dH@Pw(eOqu@ss289=TeF$+% zc&%TACt`U-wye|r38+EvP9qQTP8+Vqc*l@F_d?eBVa^Ncj-q6t#paa@aB3LJ0T%0Th48fqc01~w;#z2h26Yf_C61EdI6t3gYfMv6hUT^ ztu{8kId?z5D;$PQ7Q9<oaq>C8&DN@-@2LXeIVLiPc)h|tWN(_lB+d^b`fUEJdCy z3=tD?t<2PTQi($Nq6d>Ap4I7VVeQD#w>t2|w1JuLOUQ>_P-Mh=waJ&@BYffm8^rti zUD<1%vFT2=Z>3vn)Isy;<1U53^|)lN5e<(6_t~fEeBSX0Y#be8Lp26TGuYn9x+S^% zqonf@DGdm=23bsleS50-bY8I&@LBm>H@10qnRm9g>P+s{t2?@hirX~BN;|MdRe5~n z;*w^Aa^;`4BF{{#(u`83#wv7nNQe$|pOYJB$fq}tv4n;T}Q?Es%ohnv;1jyGlfK#!C$xe$(R)?u5zWW)9X zeV%GE^4Q@dJKcjBC}ahxLR5Gx*jpQ)&(b#p+ooNa3INe0fZ6_P<@0cRYv4$+sjbh( zG+F0e@wzn8xKEUjEj3c^v-X+_g0W7^`Jq6Jw^a3Y}cl# z98@pvT68RL@)@Ogqy+({Cc8|q>a?lGI}ZI*wA@NT8ebDja=VN^H&PFOZn`kIsA)>T ztMlnRq$=Tjj;er2j`6M(;(YoH*%{g7t-Mi+$!ZwjJS8qzUw+%}IeCHV%f%#oiuikw zmuf{F^ojzET}?#uL|kwLZCT&;-D?Q=-Xe|rT7k2P9*ZlBVw_Yesj)|B#ElIWd`4&% zaZ;c}#T;%Bul;8D$$SHh%2bJIR3*6TeTE1|ynFbBT_(k=nBzW0`H*VKmkNOg7R4z^ z4#<=&ROITi15_#rmDkKW>uZP`nK0H+;5E2l1HnU-6bVk-aK`E5$hXy!`>+ue8Q-;E zS>tbE;p-t3fu1(q5>x4VmJa*lrP#~T=7Hn&!-QE4$5j;yK(~=dphWFR<^|WiFD_4! z8#7OGFp3#XN$Z�pyxsee3tYBqA0s*-YOcdmxs3qpJ5R2;AM*bu#u_U5TSwT+o&G zGQ4jetwnoRv#=Z-L{J&dOC_pRZqZ|P0U;OxA7S3948hlP^zH{LNJZ+w)ltEl@*%^U zTXYo8IFeJvYOPj$zEJqB(@Q0@+*WUZ%z|-H9~c!z3tQ_hl`u6uQjG=rrw@rQKSzje zH}FqyScih1+IV5$y2*6LugXz27w3nyXfmk>OOtRJ#;UJ7L7y3y2Ot`kL36(2eWsUZ z3`mOPYFTnG&;5)&XIEiaRFC3Y}A$@7EPIk6HdvhP&te$t#<0fJ!k{aMt zpUOZ5^Iyk0Nbea7(+s)<%bOk`2VO3con=#1&dAymmXTHu9(2A4!sfLQQjUz+-~UJ! zTrfLLe&9-McfbM-n5c&+F@vA$2W-C*+2Bh4 z#JCGMlQ~5r?Mp7H_Jom(kzT9Cm-(g>EI1bq3 zC7;FL<@7ZP(<@j zcAAWikkV6uA&r8UcE{V_&fSwsn#qNRD$SjudOchw6r>Y7zb9W3eE*!ts72qc_w);6 z*|a3%#LzZ(MPJ%GY(mJ=h4vRZ)LQE0jl0MrBo8GMDa$nKISLFSBT{FyG)6@ohM4vQ z(v*#%ce7qFv=~T&PzAcO(8M>qhvX0^h2tbdtD_({#uRH1Y~1e()1}JhoB4d&UlcT~ zCOBQzk@F>vYLHR`f&i2I&hdiOHa&Q4!_(MbV2jFlJg)i+b}-zPxaoQNIuu#j6$A$w zZXqVKM$fa#dW_C!#`;>{^|F5XOv+7G-vt@lT2>jR)-%pM;KAjnp0fcE8c*?S4n2P85v!KNt! zW}U=p%|65Qyylq2{Kg#)$btvu&dc4YRrILIH;DE#Z&^m$QFY1biI1!Xa&*v1LAsdG z88kKa72O(!`N4zmBQ2~uY4|~+*N)HxSCNAGO^`ci_>mXsz+zWwKlffU8I7eD7ei_<9S<`B&8-jzRoB9k4urfiIr48l9xq{E&iAx6? zyl@(w)k55b?Aa(}KoEker9X;W&R#QFIvX?*?EE!^u639jZ;yL`yKomoTNx&WCm$7? z_$&A!8z?9Bm`Rq}i^T_pmVV3h7p;a5p%4!nS*sHmTp+>?lo_}j_mx&#W|o0fJxyK? zlUc1ZC*fntOCv-nd5ds@6H85$WUabhw{P4<1xF0zQ+REFe?|rl@(LP{5J}=F{HIk^dZ^FGobQ4x%j@U+>KaQ+LKRRd5N9THhd80%l)H$gB6j9a6VOUMonD z%6bcMFR&wzm{pil3>1C#jXsWUER#j4yl5OpBG5^huARNQK#PzyNQSUvJ*ek6XDfY2 zx&@S}>N_ZYi<;OIAQRaC{x@uU8f5;%j|`SU(b&<}*}>4*k?_Z@{J)vm`U_ z)67>9_#J-S!XJlw{NvyLy1M>jFaO8k9_&o?K*u$p5)2q00n~E+gfYN@CT3Qkj~XY_ z-g8|N2HMrJ0_iLOkdOoJ-- z74^?Y^N(LVzm3&B9>n`)`0iJT4?J+DfBJv_cl6*RTb_SnaTaFaXZSC%_%u*NN%9ZF zl9f^i=mMOhJ{OftH>J(`mUwmc1*mF(=BGUIv_uzcit8hDkTa0rR3a*iw__r>@r2_$ z12eDK33cC=xm~nidL7^NZ$`-JTIhnBMst_a+fwuQM>Zs>zLTHZJAHFwb9r?b^tx<&{dNL|%of{*KOOD(LqHm5aj&Utv6$G@xvgjP)$z zlBOD`Te-+A^OH}e0ijh8d{acg!!*1kMFvTVG@R0?0Mn=lZkw5?0dtm7`~fo*A+|I;g6Gtg^;)ax*2aI5GNM@AKpuv5ZN;f}U z-ax8 zuzC61ER}fxB8KdHdM!IByHMHSayX1~+S{us(oZV>FQVG;^cE2#{MpQ1H9dJ>B;1T4 zQ>yTjM)?!DA51+TGXAt9QQ9bt9BeuNY=E4sgPu~CQS*o~SZUP)OqcM}xjXXmh_F1O zsti;HO<}n=`~Zpk!1xu+0d7esaWF}PHhx}cFYv!OMG}W|-uCK$OK8*px9@Fq`j|KB zQjAnE`W*+^S4TdK9pgci&?Ze$Oav({q2d{#O(hJZEmKqET0Ex*7eenV%tVRI*>%3) zqd7DxxiVO@O!34`nHz;TDArVC>zUq@b#tUxUU8E+#Fi~s=}PmS0iL)>EQCX zVQ!x+%ix)~#_=~fzD&SZ5mR=zsIDbJ+0J2+<@C7Q+7~CbO;B~Xc`sATbW0FzNhqnG z8qvtE45BoZOeCLt_UpWJw|DI-mlBPohPTxB%L^@lY~YF)Z7wLTP?P-9$DWb*Y6eMU z+qrvZG&e`eW|wkxid6ekL9Rhfgk8VXncE)erM@0zL!(8kxkFf(dYLS!FSSLy##}#% z+l=wXnBo|{?Y?tmr`mA4ps+bKpSWLn5FbLo*y!|$o0TIUXPP<)LfsO_Jq%wXwB0qF2e90=XoQ2T0)M0g|#gZ z?B#xG*S>g7!4y$*KIC%k(xx6a4cIG70_~`}D7@X0+K+eYpq)J>3U_YMsAB6JI;&1P zx&$+c2r;OYxA7Yr_N9fP!@^{wayXB$i6&IyJf@_wNP@&?sM<+&+3Jf8IfSU+Bi3QXqj78=E#R8Ap-NHC`NVGB_dqUM#&V6w1vbwVb`gQJNChj6EX^zHoG$ zKNSi$37e0$Egg(EoI1`AAGhL`h+fm2V(21v2ZEo3J>!1UMMz%HG($%xP;x$CSKC@G zJw2SB#N%qEg>~mO_vF2}a-X_+k13-Q`?Rf|nGDU~)VQHWm{k=(x|qy^6krkJrJE_j z7`uclS66F}5fXAcu6Y@gXL&%-S=zEc`o%)Tt|2mqcIHAZCIUkME$tq&3$}=6I1Hy^ z+-Xzv3Q^+PrlIPHIkBb_?%pgvJs<|B>y*VGdE{m*lF(sQ5h{noAPu4*q)9?esmxzf zux%hwf%slU+vJ5kR&F{iw_LFIM}?>th^Tx_^e+X<>U6N8Y4_nxHa`=2)YA+L7ttA& z9(uP;L+8=#X5IRCyJ9Thoz@G(Xc6NLio=JShbV3m6|)a=-)@DK4e#sVk<$*(hRW+i@hGzE7lV#vjA&PtmUdi|}jtS0pZ|3q6{I-ZV2i)^gdTeBJ z2JF7-9liS;LzVDDZ9b=NvmCXE>GIC#kFFUPTlx*Uy8SJ~7t_tU2g&>Fomsp7lGXd} zN{C$DJs6pV9+n~OS$NbSDeV2|h0o$V!Vw!r;+w=@(o@F}3dXvnr7sZM%x+3Ww6efU zb(;6Rs})fTH{OAo^!KXK}(Qj8FqK=8Lb zNF7_*(4#O|w=o88u20BN`23}_G>nB3NoR*3b!dPgy&kWt7v2>A8y60(ZJn0BwZ zyf|@Zn!DprW4|+!=7~Q4ZmySlvbqjtGWtRk+2yP?T1j^xF5=tnf`{*JYuoge&Wg{M z7nm?1s$@RaLON%-_;&ba8_6VH2kp`VS{WA$TxORtZ-=wG(rJw5%Xrjtyo5JnID~9) zlpwCo7uE`lA z_Y56lcbdS?gb_lJY)47Z6!ZHhxm2L!W!HPfG|%`&Q42>-I|5?m9V@K7PIc{e(i@Y zUpk#wd%vTX_Ag$=K@X-}+n!8>As!C58Da|$Peg>^Q768BxT74x?)(PSvNL#5^kOFV z1d4&6is=ACGAR zI7DH~K7~Q8o9!2&Vcx6pvi(Bz)u%3+fM2*XQMt}5GZP=s5G`(ZZ3}Q1tfXy?SdZU%OVaMY28oA7}BHoA~A6@qQ z*3+={6ItfH76-~>jKtW0GYKt_L%lT7H@56czC2M^m$=5#IXn~mc%bT4i%biCJP>XW z-g~d46)sA#9JI<^FP&>9J+>#MuRNn{c8*$nyrS3B4t94iOCcJ7gpTDS9;GLN>5o3r&z=6?=_3JtsEmPAoB$4> zvp-Ox4eXr(cggfKii(wq?eDh5{Cipjkgfl%FYym=TEc(!k^X)F7Xa)wJnm}zTFuM| z6oYfJ6SA=Y=oz2tY5=D-|8w=fdO5&MUbZKa7XUzX{-3Lvf!!E3ppKgrnA`B;HGVY|`XT6kT>a0U2!I7x{e*-b@YAyCuXo`;RRg8+ z^lVRf&;ICW{@v$h2PPN;=XY6vZz^yS_s`G$dk5^-&;29ymI?S~{m@Zx08_pGtp2;V z?zj{xP)6#(L#-BFGf0#i1+SK}Y@9DSE-e1-1zgR{6 zcO9xneqMj6MOc6qVgDN)ss&M0pgWYFtr2JH$gP4d9-EeZxuRBeVP!_vGa*5u3d)`> zlKAi59{3<8?}%U&V%gh5kw5M2?mpZwEs<#7DXgxS;4I$Wt$p3Pbw$MlCka5H`uY`4 z5JFKDQxRD>i2m#I{(+$wxrUIB`xZ9~OCMLd3b=~5!Sp5kGDr$TspY1>SRk`>@mP(4s3pY&43Lxg7q$cRb|%R(D3JoFb-Tl;B~h`o^J@?ToOHkV%Rh zg|(8BN(?N7m)BiT6gDWbCmL}ul~U55R4F@rvpT;sO-2zG8%TN=<`kBYoSEfc^x}1Gk8co3g!|m3CNCJnEfeV9( zpG7|l$%yG%GXQ1qrDt51ejXEj4hp^|_-^veH@mY6F-2<8UMVcl_eho#xx~qunNmvf zus0~#2WZ8B66q+$)Ho0!nd)&P0yFjZnjQ&SD4&T1MKm+;ETim|Zc zt$IIqy-nG+5+EcsLP_}w&NKeuMcnQ|y{ws6aGZePg$mNLo8raMnZ7j5WdBCIBcD6_ zw3VW*qoM)?{>N9ZXzfr0jD!?z{mZr*qFSbGc1e7Vy0vG?M#!0!65#{5ri*fI?*l0O zDInjAlp$O5>_GTwprcEi9kfaVh+{Dz3blr&hu0l?;n4eVa8H%&HISl*NdpmYu*=7U zzlz7$zGI=vG7=#PL;84nAifWEO$zdyxiAMj8YCCQ1pbA7{^-R)Da1w}kx54;CAMze z3ptuB0qg?PBznS;^x-h@=Sht@;?X=<2MM`Ef;SMQEbnkAJkU#9Iz)qSEQxueO6QCG zq4#na-=`?)sXCwx93@2azdr$Y??y{yLtHIr6&$t-WjMCohnw{SfJ*B&gn>3}QNb7? zgKn3`D+srC&No2|EvDLQ!?6fA;V(2*mwk22MpJOkb`%L>5TK-#gfz1O(Zn&S+tV%U zksCj{u=LCSh<^B?tN@%}f@6~pt=1cdvfxd9W;iW@)=}8myAn|nL%HKfkUg+SzA1{) zIX2QUvOWM09u#O;A+jk7c@cxq1_t**7ChE$vC0-!iN9>BwEGgQP}iC9xmCmQ^o5Ux zb;YfRma$WQ8qFC;{%Evm8!FTTNQJ*;IAi9)SSu{JHIK zd%M2Vt`V4h2q?-nA!}a|W|lOzZZ7EixuEDzQo~I&BXgVR*FDK7NzJD$LQ`z3q~nYc z7ndDV?$mj>D(r7-owave`KF)E#ezXN2IgVmK9i=aAz_3#r|e_3vv{k)Td3#c`cN?A7i-3Yp?>PjDzTwCb-e3pv@N4S3gj`P$OJyJEJBs(Mrzc3;XlsZXwFJmfmECpL zB@nL)wMWg7FF1n@pn9_uTS<{qu6N(2cSfAK=21BA8#Y`t2F5fwdgB}g!hS_S4=d<7 ziYidFQ~r+7>e-x9v=q2H5v@gVKjwJGgoUrF#0;Y-IG%mTy{nD5&p!epm>7A6MS}y{mIPNmhjJO`jWagO^ zy2{bV6*xUyl%@AMt`&!fmBTP;Ja4RQa>{%m341;syS%z(r@z>bz3Htm{#MazV$6V~ z+@9sDKN)Zjj@h&!C6_e74#9vCnbTBuH92NWnrQHS?hp}4|2{#87Pcq^g>*=2g#+1Z zl-=z*cX}sDzvKwDBVsM4;-1+ygkzNVZC0{yx#&&yvln)Fmn}m$q_Q}90;{JMSkgiw zMW=5Pu!iWvvMt@NWRgC-(DXr>8!|DE-xlo;=FZKe?p_NtZ)e*M2aPHWWj#sy)5QW@`Vg z1(}$Ei`C}%!eFieXyiSDL);FKH&qYihX`oTplEI;e4h+pwd zuNmZ|st-@HDH%IxzU(?9(OU6*UQ|GhE^w^XSB^GEm`qAxzCl|4yCQoEZe$ig_fv-i$uvJgT5w=++yL-tg;Q$bqrc7>ddF zMMEtZ_u>mP>?N`<@a7Y}V@R*w(j&@*kPE(RPA6z?SAowP4}EPYG#T-lfk4ZDCw}sa zOVd>qjDL{xkkQ=mm-{%V5~D>3F>HAwp}yA+W|?r}q;LHI9|F(kqPcb^hEBXN^>E{K zJP8C?#JTS6hKW=1z!e_+v5P{$28mBkF)*2e!?oS9@=3E9pjYq^NvI133pKA2ME_8 zHl`W>)L;*$bpP05XU`%C4O4}{EDHTtY!rA>QBVi0UjBn{y<>A zRx<;B10=gJ60(%EfIQRn7P=3QPkJbjxA2S1= z3KKASg$+0u@#osVW9DD0|Am5pS%-{IOi%-UzA682QP3mjqF+6U9wDN~oI5k&Piv>2 z80e9w(XY7a-&p6rgEx;{vi^cMoIv%-e+h3!wKQzC*q{4c)yOX!H5#-rm~*|eqLWAO zZe(Rdk{}4&D7F_%R+5lizq`2}Y>z`fA|6IKjU7xba~$e*>^#d7aXPv6r}t^io!fs| zP2YK~I|=kLQW$uyX8Syn#voJ2tRGs<#s0$M!~mG5W-z>G^7eLR(^l=J&lzvaiC7__ zGAA^=CFfeTZW4@(Fvnaqv5!PcjCMZBhzr>FP90kt->$a{wqGsV!Ursy2o;?jbj$r}1G8R}F&KQm3v^e!{il`u@XZC6WKq+j{mg|}Rd)SsZp!*6^=v(bZW zYE}S8k3RCQJGwXD+8)ymrbS(3xRZuATB66OcupBvTYA3_gHVMkzfH3;l^8z5Qcf~w z1^;u%{=(s;$qFoi>-(K8qY;A@&5~Q$i}oH73$wJj_c<#NN4Hng{W+KqK5Hd*a^imB zO^JaFx=Y#}-=gSszsS9$r;HP1;0p|5Us`65c*WpTjY7)pLnC3<(~7I`%%`z@viH!2 zKP@@!;A?cX$byZ;wWOVCkC7{}TcHFRqIswVQw-jI=rgn`NH$4X(#f`D@XGw@_&`|o z@}iA(E`^?V#RotR36RwS+aqm@9;sbjnK=AiSF^5C?_QJPrM4~G14V)Q*nbta<+lT#jHI=tJ$IaJ^?Z+WnM`8qbdlqV4UF{3Xw;qQXH#W6!-C^TC-2Rkv zvy1ep+t^5$VC~nl(2J^C3}>|ix<$&vIpz6|%(Lw-_Xxh8Z3b>eDElZvRxuU`#8gRh ziMjbYr&1CH!RnLxLo>!^Q*V8jS-Cx4HWobCv$&i)nv1~*v$?&CBo;jF562PA+CRx{ z)c;1C91X!J)ff(vSRaoSl>6!Miw{WKhW(C2ZR2tTX*k=Z2RqQTcTuIW@}M=6vbZEy z>p8xw6LUJ>*G@v3OdG{Sa>$%;V}y`If5z-N;+e3@y7st9CffM(POCfF*)$I|3f^i? z0vpz5h?$HBH4&;0E;Cw-wOf6&+9GFf^*(1i;(W9=?wjbx%(Z7JJXuag6?kXYk5(im ztxZuFUt0^Zf^7#*~Xl$omW+cr>Akc57XxhY~RbkZ;B^%fEh*q7~SQ;a*71Z4& z+A{lj?G~eh>7^oi>XVq1hmRF0~%HApyE(-;m@25JDM)D zQI_Y!6j43Cr18O0Altz|cMxO!g1$JkreyXUx(IBxTk-u|3ofrP4HaLX_t1ta?s74m z<-uU)R_4NcPFqPaNF(`j{9X!Khp|})TS-(urTOD);+M(yS(dEX=oF@B-Q`&0I?|p{ zX9icfn*1JLN$C;s7mWKD22c%Ud04YN_bM|Jm7fKVB@S{5j`S(SDOAXNo@zum?MV-= zq3?H#qu;%kba}qzR3E$L5N9y963j>eIhOxjA1#y|tpu6b$RWldTvgR0{L3Lrm@-~y zStB1N6J25J4JtS{9FvyBY{w@&gKF>up<0Gi#M&B)ukWOB!T1qkeF9k;{U=Bw73wiu zL4;-pU~B0)Dqf!DWQBZRI9|y(L9II8EX|*nNX1vJbb@g0k7| zh3Y9pxiDp$VGkOy2m&b(D6=pOC8C#@@Cs^yvzH4$PbJz{aSl?>#;J{^m3YVU(2cOc zF;#)=8IsqTRJ4jI8#6_h(6Q6bRmc=88k}j&?a_cWE0=V-!8tGQj_Rk_}!uN*9VfJVg z^@a{3nJYjL^sN=h4+dQ~yf{J_U$OI!1~IQNu8O?pCTZ}tj@NY{%OK!5T5(sT#d!Bt z*pwE1Sx#SHpnH&0#gjQF;^qs8K^&KZ&BAM!w>1(yGEK{0wbsWkzD@We;|>!7NV8zr zr>=}Nw$g^y2{(}jU&YLqDCis4LvZV8dq}jUSFiFA>`h)$cxWE@dA{F+3B_~bU9)^W zNXuhv;V|PE{lUt3L5+_%`c2yY|B+Jb>UBM2gf5y$l{$93A}rGszi+{5u>v<~qLL(K)M%2pBe zVP#F!GgsVm0lf0C;LN@fFke}fdp>No>!dol9euAzzuGehOwvzizt4Lx_Eje+&oBuE zol@aE1Z}xCyx4QO<$7h79Kv;PljAb0)77PG%XW2G<2t&%l31c+_TkkQ1>~z4;h~S- z-)3aeI%x3QCp-e%9FK86&p~mUd^J}c8@7i4@NbLRKF2tAh?bCJiCGP9+9RzW&0SO7vDVV`V)+ z+1N0|45R!h7E#O$n(pL4YVf?OvR9 zKtu1&A~_Tk2NeXDQ0W&CBILOni7gO_lW1>6?D9yFz~GzX$-zy(Fu?w(a7#W^nOIpS z|IUL)p$-I*SL4|h>$O6RN*}sud%T0be)Hz#SR(+eX{nB>Fu_9x+d3sZf= z!G*HZ4-m32O!x(RN2GnX;Y;%0mhr86j-(WrD&Z=>P{Z4B=Z&58sm8PNB38A(A->>?0J5_ zyNFgM!L9X2xUYvDsd+FAx;TG1i*vT6|Ubx)yYA%`d8@ zJ`8vgf9`LHH{^|@5BH%iS@@96T>b5%7?$>T_=58<*Pq4f$(XG-^+_f^-{axFzETAfKokkFct?g7Wv$*o2ooF!yvY88tp=!CbP6T?3DcXeBUrXddu z<-pcN&huye{3*6C5bUeCsQPet(sA9p=mmxh=PYhr7nj*2iiD;57i?ay+_bUqKjg4M zyU{@4z^^z2)UmB4Eo_j;uYLzLb6=Ex0vbPZ%zYXf|Ge=(hQ>c#dVzl>V{BxuFKFvV zsP%(2WCI!{v2!v5nNoRu2V)y2!oMiyU!d{tHo1VG8~7JA{$CKI9KVxve^vv@Nubyr z2-*Gwc|hXsG1c`{H2`Rn%Lb%Z|A2_U+vGml`Hx6Tb|6&*01|{8Ps#Ivgynx;n;95O z^COd;1!%VWB)I+6^XVt3f3$NTt;z}n?!Xc4r>D|?noIo(>VK{Nt0lk;B;h%qK*o<; zYky$+CyRkPb+)HE0>9h2J*sB@VW|c*()z)0G69v~e;oPmc5aWV|Aop~Ie@I{6OS9n zH2>!#|5r88WQ&>U34Q*rM%4e0n9cuAZT~A+e?)Tr!c0E$*#ds?h}rx_djCs*;J-ur zz&GOGXZRP|X91Gi|0UX=){=00a28K2;|8Oheq?nKNl!uQqM^3hRsO{X`Rod6^AZ0!0? zGodn}u@e!5fb!1zP4PElm;2^6a zc-|tYM+!%n7itK(evfgNC`^A_LuD>(9{Zk-s!Bpw*dJwI{9#jKJ&LL@$((Y$V*^!d z?sFN2lp*p!J|z{cb>R2094acTz2vuYbra&{!K-SK65(O|+Q-3^WniG%^P@93d0d6D z&{7lf9n$4-gaX1bLva)0!tMjaLnQNqM*84zR2*X3y{_OB!t8HI7UO%aB*VZlcV`?> zonN_wDct%K8tiRmW>t4~b>7^5fPI#&EMFA+2^kMvdlB7MRjunTI0EMz4s8HOLO+yP zn?+M2t_~(AMAu za|)Mb=Hh`7f(6!j5JQ=}L+o*ebaCmoI={4Lg*$dc-&a@D*YiyP=eTl{CQVc}uSM9r zlqk9qVTzaa9Dw%TIRahvN&t^AJJUeG!`YcLEHDZr$ybMOduereU1$H&=5||F&I~fo zARJX&^xaWduy+oqq)}<>E#SX5qA*eHIh&;TJ?>x%3FxqdRF+(~J>QNzF}bR?0}o$#yQ0 zMqm@t5)i@+rHI-ek6{+pj8bDn%i)eEqk1^x1v+FIVL`gi-c-tH>LytAP|Wq=W@Sz9 za1b{WLr0h!p!N0DE+RC@f2};}C;c+a^u@P($bc5^8Ho!uN@~y88oR`%5}EO$MnPao zU#jDVvI9?xGG7bedNH1wGDDdNTr8fCxy{OLj`j_vNXXnKS;BB98C@g9&}N(B8;K%h zDYvVH&zKe+orHRx_V@&5Zg}5bvwOtelk@g692?!#IfrnSa+B*TBEf+j5xG;~8tBJ* zWA%u>B6AK+5XLS|i@X`(fsf}SeHS&hrcYO6Dwal7y&rH}6o0*8B`&^Uu zdxKY1i;%agkej=IiG8a!Gm@$W3Jrag1jqIE&)AJ z(D#Z70nkx_#a|a$H)r5&NYL68v@iV}brD*-tq>PR`}S*0605C)P7pL%05-BXbTU5! z_5iJl{%EhaE%B}wvZi#iX4l;^N8qzjfXsPf@leTmH!^Kj@}zNcWr{^TeGetMI8KHZ zm@F&DS;_6&>LAHp%ILl(D$3Dk zxoS&1p+#VwfVkTYPn%zTu`F#)sAYgW`Fdl5$Gm{znV=CEED8|`dcB_rm3;e}U6v+1 z1U=dsF2`ha^Px9BM1~d_FO-5fC8q{2XXIxJekWT}8Ahw1o;IPp_h@O8o!hpH(^96) zS*a#mpICGx%M{+HQf*-HJ|{fw#pUBdK-*3Y=6xu{pK&s0MCT;G3}E1>FL^VtJ?H7u zEU-tVp=(ZRb@k5qCJcX+!sE-r_X)@eA%s5qwMeJKgx)$1GI@RRg(J35gBR08`TDpm zIj!;HOiGO7oPOzrGd>2don&rdfI((~p+|iEwD6?i@U+qxcm`|SRvaJwXA6|G`UHi- z3g=GzrCZZQ5h%x}mMUhZEt3%C721#SjtL`f%)5x+kAhnJW+Uu@ei1Z>b z>P4W=7$Me2Dw2z5#!DGB@$$wE@d9`ORK~z?;RW2*1(^?{*bz)_Rod&YB0)=M4m ztH#h1Hwh<$7K(YNlDy@9W#KnMX5L+yDX&3}6JU53RGuR~bk=;f#ibYKH_+lGL`172 zL0p#EJB%U8Z|AN{yRC&R`>Hr5BzQ5Q)AZs(FMu&q8WaQf1U|!WjCQ&2H6wB)Z3B}>SscU=+TA9+0#3|@II5GA}!&c(bh`x|Ue$+D?Mf-4=0qkZm zoZ>Da)Mdi-d>iLQM1`fQAPSC+FDT;`?T0o;IL!nHg{7w-f$=)rHXbjp&I&z}*S}vn z!|F!DR7BZa1t{sKu=pOfEiYPEu-~?i&g)WdFZQ=+v4`{ohXllm_130?_3mlt&F+=} zeL+A|)S?Jr=u;jxs~yI*rnkt$iN`!x7&4#7SjORb!?OyB9y^Pd=(JYYRD(8EPF8u| zuml`++no|AQ83wuX+1EZMLVUe;&IjtuYKvyJnqXw^Bk$#6NAKUlkS^#m~B)%CjV6U zo(pU04FJde@78J;dXhZ?HHk;n%wmn z$1~UKIOnbi@;0&Gk<#Vcx#$8(E)=!W>^1sP{Z-BoNjJIQwkkr@1?Gbq+~z~+d%F=! zU&WcjILIa5&nrvhHM~OhvO5w(M{8u3&hl>XkRt-d@6)h`MjFERrea4 zC}>n~qRDUizYe^?MF6v0#0*<=RegU zwd|OH5Z9=@*>xr<1U%7*u#;#lgt+jli~^d1x3Bkw?=t1=@e>H`k-_fM2<_)B?J+_F zBAEX(@{;v;S6#r*4g3qC{XKaJbOih5!uSI&JgNpFGobSr&_kICIEMVE^B3#yuDXw^ znVA`Z1R}7S4LE=fz9==llEGfS>Q#{~hY{-%KQf=&xeXU#ZVWkm*-W^H;^_FDU1C zVD#@f=Kl)+us$-f`wRatv;WsopG%q=wm9s_K(=%CQbM$z_NV}JyjaFBAA0^hKS4ZC z>E(PJNfj!db0&V*+g?MYuMW;4vRQny@v0<jz zW#EcC%6k@|>Qh#buoBBmEM9^^r8vnTttl|uFfsvljc#`*LJSqiFG*;ZjL=n86ULrn z6Nw|&*~14jlF)ULQw*bQHlliDFh&a}hJC??%82gyI$!nPg=Z^q;#0te9W0EBmPI^U zfWOmRH+++rO#)L->+&ePkuUdRF*)M(*sb}C{fI?Zyn5(Piqu}5Fz`tz(jj@=V{Vpr z3sdR}gxV!CeInKcP(wUnQ=~Kan?tuj$V<-!w+x|)V)d-UGJB_9j5-8iZR#E~(72u6 z&kbduS#oE_MJj}GxG#_t%v?t#?vo7UG&7Qju?+C5KZ#PnP+%f@7;BZbR%*z^b8Aty&4{L&IcH zeAHb%0PDO(>F9ecwahW};!eOsDqE(ZB$o9A8j?Cx9`-ps8v;=PNpJ{AjFjUzayn7j z-12_tU}GN@GhM5L+3LaFei>nb0h?}zWLw~~`a!NKs|nAtv3HQ<%0ktylB_XbL$S-9 zbX0t(O&aV;vw4R>KU9)ud+=q;;;nSmeFDvyS#xH+s!i zlHtylU=;Jr{Hv0>MPZS#;JZ%&YsFvst&gsdGZ^U)Uv3u+U-v*AU3*=6Xm&)AxX(4E zhtfvo@#aR~axJZ3d}LbNBy}PRRu33TeAe`OS6Jollbg4V%(saP!eh(meT~L)<3e2= zte}HEJ->bRZ{+wZzS!%i@vV{`&~!(rAh+J&TISC|!U|*zaYX}ScK~?xd6He^x57J8 z^Hpi@Ru87+UsIMRdnRH_5>-hrLaArCa{vk)2VbufPho)Ry7pt|qlzaJH16waX=0x( zke@S~!!ly8I?DQ?sTE06yxp)63-lc$3&<$ROmn0V})k-E|@DnmUu%4xD5!w{Le{*4VOWURtK{U`OlE^}q3|UZrJ+x*|WUQ%IIjK+C zzi~OVER(-@Y}mxq!hZ8C28~w}V|W^Q9JO5Ant*@4^+0q8LVP$aP`Tw|v8bKqK*9~2 zoz43@)1~;7tX?Hs08^rRezQN5qijTXtCS-@<_c&eoh1<-V|2(~Kpm7W=#mUXM;SZzCR#|WE*93=7jp}ZUqPuzQn?gYqXpkK z5ii+;_K`bOHBIq6OU(BWYlx%VIbgASr1<8YPd@TQXtA`xCU!uE^6MHtY5iTW9c)Kh zoxSbGg*7$QPv~e8*B>>j#gM#^*o`x6HgNoypzI0v(%h1j=N1#@vg{&bwrjdtD{(9C z^@g5S$=5c;!QZ>u>K=>v-C!WV;<~MFLwAbnUm<_o&`yt-tA@R@re_UFne_=y70s`$ zq=;g-vWD%UvwQp@`@APgNo2+0;%LCes2#^cZb*WA7hY`6@~O+FxWXi#OOX8R=0Tsr zY{X=l34){4Bcl=q7|K10q9iHM{TDKywLdfS!qI-h_rny14y#pj=9X>3p}yhatZueK zs_DAs;j;wCf5o2pnH2HH0k`g^7&E@#FjnxUYY|6TYnHPxAo*_(>k&KrvI3M4q9Ko56 z8!O5RywEe9MDegS^t?q&s;NiFlRs=XySy#4eUTlZ%KOo)gK2s=br4g7G$6LFGK~8= zaM1bjHoZPsEiIJ;XWdCu>nGU|u4l@i&%|_Dc6~xB&>z*<@>$j-qqEdDa=5XsX z;2G5y9MEZ4mxE#(ZFhHmZ49Po_=v**_abn?tI>-mQFag6?Bzh>n#`mqbuONVHrbAo zDYNfx=}SYpsnQreaER(kh8T~OecR~-M9F}*GivR+y;PsK<4#E;JAs5P*qqE32Md7-^Rgn5b&@5xkePt;phTxw zZO=t`LsTtR<}XBfG}iL5LZL^kHq%H_j*!)AE07)Wck$j!X@q%^Zq$QK z``k&IF1&)*X%%%yNO%Gg1_qj-DJs~+*&g-j!i3@;^ngNu{!h{Z1eN>*Djy^*e?hBX zNDJF{%i{koD}6KW{Z4MaTUj{}Y625we~kgLeveTBCK$g5qWtEC_5Evp$RL01>Hpdb z3z$J;0X&n~0P|%|;I{qSgx9x8Mz(J-nVI81%?h%x{_Z*TOZ3bCZeOfGKnx>bL;Yi4 z-{h!oj@JKRU(8H@?Ca;LwEx|{n1J*cEa}hGJ0~W}@Ux73nE{^|rTz`yK z0@Gz#8|0|l5>w!!qHs+syjQn2tL&E!JK*#ui zgvSP?{`~u0|6ugYz;Fsj@E2zLb4%~f zql|y^+TTVQe~|)zG3)w;V*jiW{!Od@8AtwZ4EE#a>JN_03LM`*)Cl)A`t5;R&>NL_YX|j=_7zi<6vM$u^NCjM@D4X;#)5iLlN0d=RhDT(md}1XMN>Y@(nuI8+;{%63PNp!flPh`gd3M_f~H5`fd2V zvt7O4k!#>sD!#wuP%hT#$l7PM+t2DQd)CvoME@S0k~oKMBivN4t-Mxr@ zXmf6Q=3rS!mOTQ@-(tu!K1Le3K&f)2Hrz1D_6D&xykPicI*%lB;C+J#|0co{|Im%% zJ^BbaGHwI=I5u*U&~4)h?n6`vhe;Z1-`8cS12eH>#>+lv%e=koIcV##XcPC-p)hS+ znMoW)cRhHld5qa^p_!GDaWxRrof-Vf*m$&|2w`DfjyF-|OdWBd6f5LyYHh5$P)NjY z?X#4heCX7Y6U+I;iO?5f;_s!u>9ut|W=|gJFXe^g)paGf?2($^J+%2OcxK+X>BC}i zyz1Qxt_J$jnsxnJtwsM*jNM&ZJ8wuo{XGHWbSaTxJe^3HWy}WOuD7q{eLL6&k{XGAl_k+WIpF(CMvYZydlJlQqy0c)Kz0 zquW&|FTEP=z%gWx>)r!yP8F=wJ?m2kZjKaTp;fMj1S8&wq=g*;dSsq$b9Cv!6mJ;axd+k zY!%Uq3Yt5idk(;4nYDNgxwm1Uq-NqUtA=pS1FYs3_w%@i~7 z>NSxC6E`!$A+^U7ubBsI!;{$3!;a)HQZ8mY&yIJzLhcJ^n|n{wlY^|9=3Jr)++kmq z6qW>X8`JYTm4R(q4P#yJS)8n|EcX>T?B4SRdNiQie)(E>Q(PiE^2Rq=}O<=?bl>Ie0T3g(58K4SvRRWTLkcC zmeSEdIzaBepf_V1pk_R3wAS37EpDL&UDoB2jgT*s}b z;t+8&bg-|X^W1X?4~1RVYA@qSt)6m4`7Ri1T>$x;`O(zP$EQnQhV4pQTY{!4G9wqB zi=~y~ArE`3j)ajDRS~{n$w_DZTu?~A6RxJ}FM{IxF4I>ad7a!(Z$VS#jc#A+WQH}xIWg_5o3vWkqI+Kn=y zNjZxr^THU+$DSC~BtVtI8ec!VO{vT-5za#%aAQFcB;>}gb&?_A@qfQ=eOr6|HAL*v zi(!4a=zznL{mrw_K~4NgY8D=uEd5I3!%v%1LnJoyNzAd#4 zR`u%li*g+O#oj1J_i#%YWg9z$OCJe`rL#RgmP0-2mH~w_qOyRfXPBC*2E*1I!`O77 zx!NmQM0X)jSues?)B@kxd42Z$3#$^rsQ^jg5br3%@f}6iSG#7bh0Dvb7ta|@khrqk z$IbGwit>_!R-5d(?W`Lx0wOKJ8OoBJ&c+1TDRH_lP__2?AuO3xcCW>t+@zBMA)mUmX~Eo49pg}ZkaPA$)} zM9`N#YZ9!8?*cYb#3c`QN_>wwfCPcJSznTU403uz$|J6FUS5L&rvj&XKiEHKOR2|eZ zCG9wBMjUwJK{a1&%O0I2?yTca$$$#;g80%-hG&||78LDvu!mS z^LOI?Upqm6Q1-t&LBBDDzt{VQ?Z0o}e|X$~(HQ|${O_xOV0(5TVTc2`3iyLd0aX1T zR0Gz%%z%r?AJyLtw|@ZM-*?W;@y(za;E;e#&x5Q4@H6@EYXjY&^h^)5W3mAqfd8Nx zur7Ki)rk!lyZrCf-#TEwT^juP+`qHmpFgo5XAbDPKt}CDr}p#v^~b3JL!q3&nm~*Z zkd5>J^ZwcJ_*)0;Z*R+AL$NI1OqU<%zGVYg(7%7~A3TzU1yD#INOfZS?$-YAKJOpZ z%wn<6zki4PtNQ8v9;6wh&O)o|#S!8A%lfD>gsIqvLod|?w_$Pp(>X`2?Ud(Dg z0{;jhA#pDBm6#SItkUCPk&7m2-kA0J8V&EMcU|+>12JnB(U9y2qp6~B7|DFY#Bc1c za@Xjb-upQkT|WvU`}O+Qyo2k#dBB77-o#i$XJF%5aAUFY+(v`U)8y3;bBnAe4GqR+ zg;TrkT{3qC#nw-&rLl-fbpzCnK+7AA#4GSS{*vHY0i6~BNa@e&RF zqF4dcC_)j2$N;9-%>21EqaA|hP0B5~&M_T*vO*Hv0PXyYc1Wd4#ViNj*f-(5qPY0-~guuv3pAajx>RSNNItuq69y?92+{ zi@}wmgfdOy_yeSKXdVFON-o08eM@CziA~fO^=5c3 z{7F;jJnS_H%er!SA75%GHKCAE^SW~wiu1IN$SydLVpk1uZ0w~ur1fY1#ws-f3f!xb z>|jHPETsy?(4sk*L0M6W4sEG?!cdf-aBRYAx{f!K`%(??hPBDZ8k6|dq(!i_JO_H2~TXP@57CNH3xqTGHB&20EzMfinYE(h(LiW;t zzF?3`pAJhN8>R=Dgh%z3WeL34Li47Eq3}`O@`a*xNmLQ|^)nsoh(=z$rbkRcO4n(R z7ibl-$Bk3XRGVZ1`BSu<{rjxi&$6^cBV3$Pu8_iBU9RdW)^@gjWs;@qr@v8Z9+>Vl zdzof$yFoe`Xq~xe=ps7l~TFkv9A2oYeP7JXKX7PQ{12%mK^rnv1Fd zL~4$FO|3>gb$bnTC|pdO3Kijwi41 zt*{wFb0gfj3v@g~D4{7^96;?4(;h9;YUxRogho-j*v)MA|0w4v=f+NuArQIxk}($S zBx`47KZp>jClchOtGnjNfr#o{=imUnf%6$LCHvjr`_kdt0Why)TmL>Q8nQ3G%T z@(COS0i7er?Pc1}h(C#x5chlpYpFZ1JrEC&L~4I|F4!tL_)hjz>6E4IjW1)yla%3V zS%Sf@HdCrC+E*FSur0AA9Q)w4&8a4 zl};<+zFG=QunkqCdtn)lpu~AsQPX3IL@Hwjqtn~w=IJ+*Aqn^5=3R*{{;dA(<$EaT zn*Oc!RMt@+=6FtZj240zPA&0k5kU-&o9W&NBxMH2CM3eT%16sfFhPoMp5f>j_-_`? z9_63!&ft1|IOiXXa^R5sEW?Gun$Z}D?48QFEk^4c$Yv+0vm-VLI;rWyn8y>i?JrIF z4HV1av!A(PMPj)Q^<>wwQz*%WkN78vlvc`5LO*S~w+U6?CC~RtWz+ zoLxPFw@RJ`3DLFQl}s}Bo3G50=d|gGm;^e{Pw`T>nb9jwv?LSnk1$7uWVGoFzPvp^ z6mJJ(m@HUCJbnuMa$Xgz`6c!xxkr)jClg`=FO=pRcNLjZiUj6?ZVon5jpDBse8*}`K7F~=ho*q;w)6B5Dw6en*(UdlMK++QwjcXBC{jlO zOCt_4@exEL3#I%K@`<02bH~>KZz~!mllL9|T3}PPGPzd<;q(;aD~}KZD>jJ9^tY#Q ziy%ZPG~PdgdHfg`Y#%1jK3^yySwDcAB&zTc(61mC>Nw{521|x^hpPnS?PV|TTBR@k zj@5L&g+ykvqyBiaGE&7!9%5bF`!mz4(&UL@F_BQil|f8~qP)zTW7K*k8- zk^Xn77g4+s1n9}yxD!Q};k9F*zXnFD8eb3}7@atkoAaqxHFT?-Xpxvs%fD#2)Uveh zvqDzv>8su2u$$BNvkC32n2t0M5npxS^NbHFHd5oR?DDWLjK%l`77u$3=r8eyv~?G z4QW|e@vUi0l6U+N8?|Si$ncR^OFJV*y+NHdjbHYS-Tf{$0oU?S1!J)m`ltj{5?bg9x?2f=(sj6wd zwE#O#^uL))COr=KB}y$R)~<_x8b!>bF^Zu&j~16!cmuNO5mNMm9Sr4ib(ZBy`$~$< zsdeVbCu4954TYxc?wAbXYD?E4ig>(iojkj{ItO@knHV*LkvUIL_Is#3I6Hy|C>GGX z_csiEm|}fLQ@^UB-&1A&xhnb-#ri$fh3)$W{)b}y7pd&Kwc^jP_s?p8<^YK@!2H&q zWa0Nrmyt(4leTaI~7Kits z3G1B3ew(+;^@KZ~HCiG-5%8S8)@UVJF@nez1IWtx;mf=5R9;3u5m_yKx^>>X7!DYm*+5r<&AD+N7g}$buFwMc`dBMd|i0hR7 zxwGH;n2%+gPyT%`Ul>Q|#PKtaJ(47b!?d~67`I$&~iLGGU;}47#&|Jn)SXWB<;jE$JWDQ?ZH%aN;x^#p>uaJV!!uREo z=M1b6VkSX9F?X)DUI@KK6OW(cMb^Q_9iQiu@=akhxaU>j7NMqwpi#1{B9DOqBjpsr z!GbrrR91rTq#{9hspCAE`rHM9x(drMTKcx8QuxXduUA>~&BkCB*D^WGQgS$SsOjYe zZRIJ!Fz0BDp#&s8--TJ>b0>*L<=*PR=POkqtXisdMDu~+T2^hZIr_~%Xcxyc(wYEc zNp-a?7I&x4l{z*rU)|ul-H6EYk;%&~St4-h^^?{&4CruZo{=(rY* z`eq8}c9>>#D^`znp51mL@{g=QBFYavp>q7vtmE!I@O*dWI?P5$^GW}tb)adqGc*ii zh9PK{#AS|-=n33hL6KMwtcgWCN;jEq6ru~1w(Uw`+GP)`hpSL{O#7^wDlx2^o5_;rFrKl>jPp7vidAQBnEU-zi(~4A;uZq{x zT~sD`lg=J-;1vir3x(?EZb$0#=)z1LCs;S(=?aPNs>GFJB}vR(pXsS<52GO>Vr?OC za7^$x=GVDC3DvwA@rogXd*!?q{Hi;JuvNgS2$EwoccP{1hX1`nz-UuS&#yP9&i16q@d7o{Xn8v05gv7wL{3B(C zN};A`Z(1L!F2$wdU~bUh26?g!Vr6(KV+a#Ddr2G7(8n1k0YbOp!Gm_!aiQCF8{Dop3Do#8B>JOXUtO^S?@BA4o_ zj#nz1QI33#aG}S(N_M&fRA%>6hSzBWdrLmSg(oMeb+z6D`)K;+;#)oQ=@4}jANvz} zGspRyzwjAd$!`(G_%MP?Rwu>q5PEFq4IyeOWzTw`a=B3w4i@;wYN>$wOb1n)``))) z!4T^`<|?l|C=FRDtx zA<-Sh+cM7j`cc=F#0Pz`?93_U^XJQji?7p$`dTP(yVN=E`C{6~DT8Ek7z1|^$k>-g zp=>)ni&;&3<>zeM8}G~rXi}`M)pmIFPl+>Mzpk~Vr1@ay-)ax0>33tm)@;5P!fyOya&1wqCuf5)o^dudQ;v;(-0FI;lFbUMosH7soplywWc+C0)-&6*?Fvu?leeEYVZ* zb41{H*0Wxsg^)E&A4EZCDmd3%aZ2;MsxWE`5iKy33lS^FB|>tQWxgRsz@=egg^w;1 zyp4Fr10TBB%#HY5+qTD;l%N)aXPihstI57oZDz&FeE!+BvwJic#;{-ST>*`BQcK z3|~#a*WOtc#P%UJxSe*6M#)9nSTrVTK;IlxS|H|r#lb4cLzO-ULz6ylN0+Xt)kSGT z*}X&+j=+$9=4+P_hIHjZmvFh=4QW-R5gUP`8PAHl-JnNAlqF)@e*cIYyx-{oBoEB0 z{0(*fcO|G8!B zS3>YNSpQ|>>7OC@UqT!Hh1{7q0I}~MBKHaPS^HUbB+m=gBl)Da&{cbA4qN>fX3JDKiZ1no)%( z(K00Oj=8fHO^spXy{T6|c&b#T8>>{MZw;dniwjG=KzU!_C7Y-sykAQG~pE1XliNn_n>mcce=|yZ%y|aQB&lK zut#RNLm+S5SpGF(k_kM-Dj zpLn=A=@`g5db!FpB=)|MhVju`S^t$4gJ-iD`S^PlbZF8SI6AIMkV}AB7tNs+hsjybhr{7oloxDBKHL& z=n2)VCuAxp)U{apg^{J~Gp{xEMWoBP5Cwg# zR!E)9&uVonMy{-cD$B;Mm`^@;Wm^{?>_V{bs|?c?lIL6EKaaDIE!O$YJbQ&OEH_^X zzgB!_?!#yMFS$A&l8e}1pWpbPNb&UJZSo5E$;-gGOuDh1Uqf)(Fq}ijXwy~Hi4cRM z(Bo0Ves(CkEap;vsX!sPM~vU#q>fQc4_4_$7=O2F@1jnbL(!2>J1|2)9%F7;a~qj5 zwQ7!$^R-g$EC})udg}_ZvUgu-T@iJ%zJ#;Ln7RWOSHn{mw}a0{jTd%J+lxwm#zN1L zuDMypqH%bxynM!s=)6bkMhE?|nVm(J%A4Poz0xk6BWKM_sy0twbL7$}uR!Y^V<+X*lQ(?K4&6|T z!8s^`6IP#5?N66Zx6Yzq=?tTvVWawp7d^`y&THgMCwS^17zTTD3GLL9Z~0|1Z0L)L zoMHb;uB-d0$8(VY#mD2(C?SqPk6*uBl4Z&VZIEklVajjIsuOf`I}(hBktxlAeS%F? z_7uDLWNCipW3~E2Sbx9BF6{+lY z{#>RO`0D8Fc!M}Lj-tQQ-C4f0qC6vNE0UwNSR?6;b!^S+R}rI4uxuRiP=m9<(4zws z2?o2q+2t%5pLLoes zD|Bhu_G2?p@Vo(fzp4}*EYg`Zm6&A8N<7O@V{j9Y&f4~NqKk9!3vp*$^)m`&k|1D^U>dE3$~$foVIO`}%GxxDl!9ue|TNym?+6axl1%TQgfrLqb|N z^$}y$xwRO47QT!0q0*Yjjqz66!_z(xsBny6L6Df-Me=w=W%1Pk?5#dY@vXl=m^sI2 zb5x!Go7FDqNmKHQ29z8Hk}mR{PvyP3Mt=3rkU~sK@T=+2pOG`X+PsI53If-80NVk- zW&egO4`aLUzcGKscHdK%{`oEK-}&vpxB#%;ud^zD{o4=B_17N$Z)a72+& z+^gAvJKb*$@85IMfp&dnrf+U-f`q)hgba#=3}QA)HiSTT1*M^pu^BxO75;nP7LXtQ z)7gAOlHU*Oe{kr3zES?8`{d8!|8SxFd%V*FO9Ry`96;yGpJrfezsEa0Sj`F?)wdwB zKY%FkKmPqn{QlU?z|;g6@D+bWOFeKM4fI0%`|2M+l!c8EIPV9#Zh-y#_v&wR`riVo z{@nTRm)Q@UITHska{^5A|55#Ol-U0g1p|QkyDdKOu80Ca{JY8hw?F?f-tccn8h)O8 z`1ep5@G1Dwk|g@e%{K7R|FW(7XNdS03;rK>*^GcF@lO%4hLp{$C{pvaDkBFB9R<&| z4mcO9z*rV^DCCz+foMO=v4~mmXOvtLFYcQv`-AGn6|!i>faH=(%!8q!mn(calwynUf<1>Aj!-q-V+Jm=u< z;Sc+K45S(Bjx@ZNS#>(k9f&#%YmQs&nKhL*J2$f$8@16UX3i>#txFdtRQvRum18Hg z7Sq!`IfbxeSO;@Pbp0*R8dK7ny!tC>>aP^L1R@X8eYaBX;GpR$FJ_7={A<5YA;1ORD#(kJVQt_!-ISLS7P&7NVgB3mQgV{U`HBukwEs>Pr6yJRP`6AiQ zXOzv$qaF47;I^I;qw;KjB@o}px`MiIR$m#fG;AWtzYM!D5BxDwa`{)+kT1rsY=mF9 z`lIc}dYKBU&rg)5VK*p5i#~b%X;boUC?=>lUq6vb1A{v;dkf)#idyk_K+x zqz%M}t-F7yYdS?V;i|>?e_f~H8 z(7TQXJzfwy_rv&rUqwwLBi?-m@tBlEWmHRQ7_$D0&LDstCYMes+yd1j(lkS_MIDKrRgLn4v6Rz`AMQ#CNfbaCQTLIT`M`$HQO@YVuo z{cH3Ys;9?dXQNg^K!+eF3enzWRWfsk;KgkW zBf{8c6N(KE93T`;6g(UFL?AlNsSMvCZ$kdO^4;F2JvAU{Nx|^(fmAR~0Ip|BV058r zZ8rBp?pH?B&Z`d4F-#ZN?UafMC3yC<#uu@+CaYX3hjda6&F@y@Fj6rc*P2(1xIUVsSjcLBjePAWmm{7dKp7S3sFyDV?{=vf;D%cm>Vo$x8+ekR7Z|q;McD-ay)F~wwG|*2X$w5d^umSK(BflUlbV3#tbr9tMsu zb~*$!i*2p+@uDo0>cVd8`uUwbd#up$ZYqwLtVSwo3S^RF)UxDg(WWQdfoxTs7GW9Z z=NNFEX}KyIT_9$Gt~c3+0w^uYLth6gopU0^>Y~p;Hj`=IL~HpcRBUz2Fc72K5qZgZ zoGg8koQ?E;&E6Q#7~bCPjaggExGcF^K7TBl1ky>kf3q6c~$wzVvW%eMlf@@TIN zN3y;S;*ABhFMHkGw!TF(ihII}e<6R2=f5dn= z0MjbKDw_G5Q5XRHnSjh!;7*m90~k7IXM1p4Ms`kmj%GI20O|SGzW>`OJlpS~N^C!% zteUz8fI0um_51IkO21YAb^Xo`+=V~XNAr88(l5o#j6g0eFl)>ToIEq|#D4(z-!qkd ztp*Zhza<>A0JdxoIViLJo~iUp^^b;szz5;`DD_u>q_Ucvl#KG+%&D z|55$3|MK^S|6i&By2A;4e*ohdz@YvEP50l?{*Slm8)5so`p3=z_Dj$FPzTU28At!F znu!ZA3I|B(pF96uZTWfaA9Rn26{voIr+)vY|JTOa=PNQjDg;`G z4C>`2X&y5nhSq((ww6sZ2Px|_=J4KE{oxpAW3!7Fr{Q5P5cJI-T4U~CEG+PPQ`reJ z7TU>#&elR?f);4}6_RTm-&u6r8DxCoHBax=aC>(pRk(VlMMz5}R|!jn;wsOS**~SW z#4sr|Ym=Ng+w2z<9#@pRxK}fu+Av$|Idz~%Wam#2E*{8=MMY9+Y(YaIncd7EJX~g|G5IOku7z64#;Y zA#)`V>9vSfs0cjQwM)CQYcO%!C^(~LjEIg>u+f=YxN$Q8hnmGeeewx~K>%%1+$A|# z6^PS?VQ7I8u_q6MYH(B(_ownJa{AIg_*{KU(^~+&c8U(N|w>3 z2MIl=HjZ3pec5q17F!IF6XlMN4EkOT(o4Sg1~d##N=YbouysY8##lZ@p^{UuC#=ekQS1IJ!se^K#gt{=;+kS9FFW?ohIfhK!Yym zr6q=n(Ge%-v76WdU!`w%mbiA4&XZjN!an%Kgyg*%=NDF&HE|aA1wP!#Sf5J;*FxZ%L!LDwIF^S{zy$Y^vCsSl}0r)rdPnQl20ZZPoS$?1suM zglX(}G%*Ld1BHrDMTfW%(%%w61T~9@<}R$UgAtrGk%B?qGHGl~O#7o zdvK~(k28ErF1Q>>H_uLmS0M!Ev2NG;t78IJ&|)4H0?w1Vfg4uaaL0d^Hz%ohg0od+yK=R#}rSr z-td_t@93s`6G zKQg~>I9#ZQKzv)#fY5bP+iJVpqOB6WG*w{5J~%mxFKN$Jb!)7T#1em^A11yRWA9zQ z$a8mCZ@hK46BxxyquOw0f9UMK6*zH#kLzT6u>>cyI1fK>-7pM)`pCrGK^VR(TQA}) z%GlkJdrWF|A)?cedF(oJM($Y_lL@Xkm6LHaL;*_Su-?eMNxg)uEC;_~4UY=O;1Pbs zg_$R{trI@YsrqCfj7~y)dWT~OKVI3SAq@zgvIa?R!D4JyaQv!nF=fyl5|U=;BW4Nw zpo8A&+sr`~SA^D5(THXqyCnCIkNCpfj(;JbG{tspZkhkW@!~_UMWh{=ffWf z4pSU6n0NGSN2vgE*K;L4)G;TV6kp_utMr|$2bO?R0b`IlkF&T27EzAIOgRJe}OxpwDv|uCPzyKv6G6(V`uOQ%v0M4BbmqJjO=Wdh5;Nf9y~mh;*#6M1_u}C~v8JL5jkw5qEsr9S_TYKK z$KuL$-mnsoPX_0%2nOTE2d_Hc&-SD4Sk~<7El82e!G?PidAlw)wuh4ZaUPmnOYL}TY;!jO@h!@i2%06_VCASRHgd9X~jxQH)lkB!z$+^G__nbFxPw?^ec7m77D!72O5HS)d~OA4NADeys45pj5Gis3Q+| z_8Jhx?k~y8Q>}-!Hi{ z57WQDf;xYpf8Voi{(+$M-PTOuXNvcG)(qSC4g5oqhVA#PnFp!?pDDoii1i`kqu;Y; z9O% z%{*NFO`LjYxcTQ;qyMi!|IgCOFN46p;Q60@q<&FQe&z!|0sWt~oPP%Te>RL}_|a^{ z3B3RR5cE%|&)WdaM&5@nGR3g+)xIR}CBb8sA?#P^V;(bR%=;x%7HEh`(&d@mU(ZL4 zLm6>9$K=lHSgLd5^)@Wd-yUcgW2h(Ie$7wuynlJT)$5>aTt!+_#md7qOc^7r3AD+; z#E|oF_3LbU(~}Ms^{;>SLD6s5VI9q8Aw658 zI4p#Or#K#L=+i7K;?q$bG>iKjN{BkAXe&uOy+E~#k{j!EfJD9rLoVIMQEnI;pb$$u&*pds5UR4MJ?wPv}dJ8Q$poQg*pJ;ElvmQTidt)iKat zf#i>Bi0yXfQmRRS43E!DV(yCUB4`m?dd;x!=UVM3-k2TNb7`ygmsrz(3VXZ3Fw`_h zf24@;MFT;1Zk5>y>FWget+ic?dQ6Kp>cHB*lY>fX00qwdT9p;L^kzExQKQBSrFnxo z1~(lBQ!hTW>h|8!Kz>#OSl?pRAk++pjw0?Hsz6!L*^}gSs7Q@j#_m^L;Q^z zwW`)J6Ygh5dcp_3g8GcEAZ6$FinXurofb-NJCCiVN=i855HVe_S<)bdx}N5HT<=hY zlPy8K$_Qa54jspe0NHxxPFUIQQ)~mpJP*n|3tAE3bHfKgEGr7`i8i{r{>b#m168u* zoj6y{xk;~#m|M)y{sQTA!v=InDOya0dCcL*@%qV9xb6bH%3mOKNpU~(BYhp}@{&-Y) z=RFGqcFg)vuA0cC(}bR`pz9^IU#)grYuJf%HRaNKWe+en+QxePQ-QL8%{%#k=X^R- z>2He)XM|;aZ?gLEJUJ@Y|FH-DiN>em;>M@vmm*Vuty znPd2Jr(ChhWcFoYN-q(b0XaKgyC5zgL=JFPR>XGnAc-W&7N;ZAq6OAQP|?k$Bvsi~Pd z6+=IGG#2)j)@t8RGW%=^jUJolwqpz}bC;sjmb^RJqUTDKX4hRW(eobRzsnU0z*8@* zis9<{h#^oulQ}I=!z*1LjCME%H(0IfGGourTrO_x*_z>YKd%i|Gj68s#sL0d^Q?Z> z^;PncGrc+}9Hm`klawHB%(XM(9ct!hAEEWR1HB`MITv~+0!UglxOTtGqdWR)A6huo zfb1FeA!gPzKHJJ#8RfZ^_jss8NBi@lK94dCDy&cXbee;HTAjmO_o-Ezy z%lmCSg33+LTz}`o*s?0*kB?z#crF=r@1Jf&B1kAa?!iVX_6vcO8?@BLTc7J@-V&V9 z7%V)qI#J>eeJqq}#7~HTHaBQqZ+^nbYdv(+Y2HmF$&y-;t7=lhf`7C$da!=%fRg8x zfrVpaF-<v#C`UNz1t#%3G zME%&gPPB6E!gIoeI1`Nmf*YHKnCtoH)fkNfExKr^5v#UT?cT_?tL7gT#yMfy2%qv1k zK;GI-C)eFSqM%m0=XtR+9beF*MH)2*Irh$pE!SyC3L4H9)fPJY>nGEwf;s>Dkk5L- zd=V|T*}-%2Nybbnval1fk8?xDsRa-4FT54VVjMyG<})zDlx-JnByM%j%W|Q{||3(8JG38t_vd|p>#=?fOL0vw{&-RcY}0ycQ?}A zp)^P%A>E~vcpjWdrPCj|G_FvWXEC9m$6FeP8z##b{Pv_yz|5Xieyk%neooU1PIQitswdwAi zd7dE31H6X*i?wMP7$|7~RkVO=0CfBPWk0s{`E}#>I#*i2VbKCCai8!)Vtkx?@?hVz zbaa&T0Dsr}VK?&=XU6cW_3{57!1q^p`vB2C0KqhX4c|Y^dwSBt+4rxL^M7bae*}CP z0f+d{`{Uoh7ohk4L*RSxZ%)xMG2XPn=ZH;fBaC{HkW2wL;>a&6O7F|2vQ@++Cp&gcFG{cz1SdAo#w4*y!X8zKqM0nWf3|qj@K>^;Ff`mliEG_;s@^ z zRG0Q4;(gg3PFxsozf%d#CrlhPsY|9PzSOhEE{bRJoQXbWw55QQ?**+U>s*7Rd{adv zS5pfmWt&Pq9?w)k;3Sb7?WoO9Q=9LS?!M%g>ybvgyLFRXVC2bTgWq^AM6*I z_Y!1joLex+$DT+Hu3Mbori6%&f>wn7a|_t$u?#;`{s$A@bw3|Sd|bm!mz2puTsz$< z*d$x}Rp5B-o+t|x-8jP zMAMT&cKc@qxsfXCya>h?h*YE1*>8!vU{1NdL*C7VH-&m3IMjeG69#2FylW(nnsD>+ z@g2tAT;$4qH~+nt`rAy#&Ry}$ci5dDJn|L92`uK;1TRsGrBo3`FfTpO?CqJY-pqhf z-JD8%x`5UW|BUBf&}J4$i*e;SERZUoBfTWPdYZ&rcs;8*v|IX7d6oq~35Z5p;ov>B zknA~pGZzTg2PfzB1J9AjtCS5eF#ScPstKjPa$}o8&49_B=T7t5JfWX#Hp6TfH6g zF`pndg#xL)p+fYNCWC1~v$2r2U8l({NBR~+DOH1qglSLEWd_O-!;wf#nin`hTd=sA ze9x(pp&;ffR4U{&TccYqf?-P(-)(zge@%hbHnO^8T~S6n#@s|00cS5(U81RP^5Lh2 zd2h+YZf>dR9@s~;6%~N$t>N7{ojWftR54V1f{I%nZG`vHvy>b_jA=kw@soW>!h%v-6aQOS<7Um4fVtnLK1qSVk`piG;@>b%5v73#` z^s6(0S|y6&xukac9A$e4^>j+Z>0U=CEp{+ z=Y~5<+{?X})KIu8VH)Js`fowcTuo1>k_|!_rqRvyfT`x=k3Q7x9s*Z|f5gI#=c65T zi*<_5dGki-2jZApyxj6lYT^Ts;tHh{{A zD)WRJNn3MTOm3j*Uf&pY^Vof5Ttw=oXM^oV-{*Ac!0ckZJgu@@zpbD=$;#9mjwC5d z4{aumGR{{cEak6-qYq!#%)3Y`lFMqv-%KFZ)1nbjoZJx6ex#@MUU@N8fuW44u)Sfv zntp*#t9X=#AD%1OcO(b(f|*_x0$DT1zYD_s&?Jcf4;A1L#uU zi{!C6Stje9?9irF)m%e(MRInChBY~b@Z1q}S07cXBkpRpEE z)nIofp2tt{zG<~LOaZiMZN*tGvA*ZYO5C(4npMN(_ScXu&YLytOl&Fi`E{3WTv~cq zH<#h<2h$l*duVR`Owtrh^W%CJK9pVf%}IsNo3rePC>Q0MV+{%{VW2I@n9S#Z33lw# zC2TOahnK>~&u$yg?}k=+ef$X+$c-0=keg#%GCEY{x;?Ba5BQ@}nMYxFQ|%8BxsrJa z)K+l>_q4TvuCCX#d(2*dPruF;V;~20CgqczCnRc7{>ztukBiXL$AaG?QZbEka z(0Cis-`g7*=x?Fa7a9T2Gp;E4Q&>K?}= zJXo6+!2AFZvKg4EDFIfPzt=v3lMibFL2@*J5i`Jwl9KKT&I#k=kc5ZTfU0}AN`G&Y z`GjddW|uF&cnK;6BXn zx9Xqo(f=LV$bTZ_KfufXfZxY?1HVG-2jKbPIQbVO{SQy&&w%t#7uvs@yuWE93;_1Z z9|GwORk0Y1dib`Z3e?X5$gqCjx~pa5n4@0D4Q6-xZ1-q`O4sibZm``Jz9TBdOBwk)YZP~ zxpD2@h!?}F8sAP*UsP*F1W{A1@li@{`psYGPU#@BBDIZ~{E*T=80L7`i z30!_4bv2WyX9YL^4E_<(b4vQ^`DSNt&qQROw_UaVVQ~B+ukO|oZ0gd$&%|GJink?t zTvBVcy)lwX_@U3JT2`@Qduh|$r3k&LN}kVbvMxBMO4XtLW$Nreg5fq_ZS=#CNNk{4 z1(bHUA&P_7^9_&E)Iqz{Ae!t%pJ}*!Jvd#+j2va{PG^D0ODV!mR)lDy5tHs#EfPm= zORvGs&PEs;9K^TAUC)Voc#4l0$Nhq($E_&@5Oq7{%1?syZQzL14B_H!Uhp;0E0>H( zBFVu#+w;YRgvs*RK3_7hcde(e170vD#OzaaryB(;f1ag!e?7^r2Ng!+u$n2%-$7~KX%2#C7; z#dpo-~SDI(g2xYhT9jO|DByzjT+K2D#Pezeg3Ik*%yDVx( zi1a&9V!L|9$W$WNBS}qDfd}A`6pCojyoshWJRNIJolR>+5TU3G7869(Q)(wIU`OUG zrYjeiJZgE$wY^P2`J0}(B@@ZO5g7u#59FHPe};@APyk!FmrIJyUKlTtpYM{<(sMTD z7Ogb*%y0(j?)N_JCQq{g#y1|f*@-pFC# zdN5ZC?;%I_U{m1_awj9ENhVrBpMyeI0+s4D1o^TnD01hYsU@UD^}KM_#5?iU>pf>) z-Ef7V`gR4gs5v#|ETusAT6x$DOOL6HM>toQiXYSv#&DXqUt?^6L(5_7Js4XD`lhsL zYQ~Qv`DVlcd;>zT7bGyVowK^vPB^yjKV>%k*e*+*s2yq=n6GtX*MFDWX@ruQkC7}w z`EmowXM;zt4wBU)ZB}MR|IQ3Y**!hc*Y(GKZuYgN4z*aWMdbMvY|uESb<6P12Y1~T z(YMo_t{$kUJB=KD^=)3qt_2ZGtSs;C-wC?E``AM)9AwVtYLsyWf3t{? z_-v`tVr*+$n4nM~mjwntW43_5V#O!a7Y27O#&<-L%vYIw18@2nI?Do7mwvV7W}u8g z`;2Rk4!ASN0=UxG5B(+J+;|s6L za68LBWV}dwwaabz9KqEXJS4C%60YNTg58*{G?RmWy7W%FmkBE8R(t%r) zjqNkR4fuV^n6l0hFpoIBQJ`3`wP3P|W9KAtRZweG#g(&*8#NN|Q_A*%Z%(jcAO5YK#>7uQSTeYnWTKhiu zluq~|flpB`TNKX}%+AN1+&?p?i_4S6s~!uJVhV z#P2w#7HhW54>_zg;Mh{1jf*T4l*Bryh?_?tfrs(#?%BpTuTiYJ*6BrVRk`y^Eyrv_ z1HX#RfY}Fwl31BeHKFo2uWCH~q5dtZLI^~^zUD`M%W{CP*A7u?u|$cl_o;4U`Y@Be ztGF~)lf2ZYjq_r)n5abowEZAX5=R*^P%aXCZv~eO4G@^+je`5Sf@pr1iwc z=r2n;qIBxvXZ2T2sjFe6MSvfp6YZvSO9ipp(lhhMIR|3#QsB!7vm@rP0+B8CeJ^sz z=Uj4qh7vKiYR0llulaT9Rw!VMn|M^VM2eEyC!dp44!#p?zMZ!Jo<>!|+~+5I!cZZn zBQF=K)?W>Fnd>Y^SED-&V5YHv!ivMv)PVJ}>1_0088q|M4BURZ`brd(VKg6b$7LlF zJ}vjE_$8rp{mWS{g;&)qx0tk{tr6Pn*g5j~^$?g><{PYzk#QGh8kF_*89p5c^bLxq z=t7-@fHW6<+2;pII<>JC){^fUaYe3idyQ~oBSex%osEyZmLl;<+g+p7){vD=S-*V+ zLN0y(4EZ?Zm=<$ed_DW)mb&9D)6Upb;7#JO$#T60#*sBCc>{DZY!IKZ{`d_c%~orY zwcXo@Bja5T3(uBa52juNJ$gxUZl3yiH_RL?%^x@dnGV#uj^MM5cXKAa1-#3AvksyZ)3BO3#N? zt2kbS8QXL%!b+0ChQHrf^}}3tClIF6JBGf**=-|Qh80d!O9Tk#P2~&FFDMbtNr#t4 zE^v2~T(Q+^9G$~mHGCl)5WxpUt6{wvq5BM&%cr=$Nuy(06ex$Es zVsNqPCZ4Tc_}#ts6)uoVpYYPVvuNeWd**!3E9fCOl;%61svnM6P<+>7C6f=Vdk6c1 z0RQNT=I^I6^l#Ysbo2KUSw3w3{xsj5h%gudZua*hWX7L4Vh`orfBoCTz5Gw* z-E=en6HI_Uff3MH-COC<0^Ij$a2fCO0~qO^)H?i2+|BSfi14qS{x9tc&@BB+c|il{ zP43-+7y+ysT7Xv%z}xfxYjfX@TyIswu0 zzjKNh9|uJ|sHO#^E#4~t0IGOOKoH#TUD@NHhzHewD*@;Mex%G#NC6lD4b#JJ^w*u! z0vd>j<<Q|NfgBz(|30wbbee}FKgjw0r4ViP&7ioF((?IpI+OK zj(w5mjmd~G+PdyO8TS57vGmx|fiiP#%Xm#lYF5dsARO5b zmn%^)eJVQU9OvJXbd2jlAiFVTcx(Mh6b%k!B9($o#<+SR@DTY@v#x-`q+|zE0nIp# z39_ohs$<%FL57TZ#CDWjeM*k0Zs(@sS5X#pKlTsg>sXUW(hc+&XGHVc)8o3%v?%%f z3iBMRjwby~6vCV^Qb0{6%F#P>lJzPbRik7iShLfL1UW*7UkAlqu$u|*J9Lvl*9_7^AkJxX=!8>ndDTt+J-dW7iDhjE&FkpN&l>ah1YPP2fzT0$06B;zBDh>B7 zX=HfU!Jd)_X3R*(cCF?jmEL@sp$r*>8+m?>pRz{FaV~w4aT2{Eq!}s1+q`7uo>OW+ z0b1fWE{N93kX)tSKiE*@xd8r1fnw!E%tKM96DlJH-g(gnISW;(XcnWlXn!$to|jK8L~<9wWpnVcmu*FCg^|0zW!~^dFAWRF>bT0KWsk{3S?FCZhC7}We39p)E65n7_UJfZ2S8M zxxL=L(+3$i!B;Pp{2s6ILg|gbIFEpej$67J8xoAk-Q_u`F94*bIj_j;ob&^AO7-okkXEyM z*xaz_{1irsGG)pU0YmisrJ#T6`g22UVh4@EWs`fms3q38qz{gw|GDjH0N!iQ`=6YaAT_T zmE}_p_%_USvQpQme}{a{!b}f}Eac%g*tvu;9K9TdlW%X6eQn9|N}{A0ga=qimEp=V zcfaR_8spq)6(YkS(X?S~B`gVla%Sr`)Wuum30$=QmY=;LCb?e{gkD_`++66Fim>!0 zf3H@?$&u=l-KTdl>(n5Q$SV82XpRu6Sp%fiik90-5j`n2cHay;TvyLmP#DhzQJ=xWZp{RRRqS*UG;0R^?G~MWMA!Tyr&ljQ@YM=6mOGSB`-OUOfUV1)(BWGqlzEm_H84Xr}%X#-4nj6UQ ziFWEiDAv>M)L$`Dzls_F_DuKS`+stm_N%Y{y&jnH=LY`tF6}3u=Wnd@xSAHwtk458 z<5>W-uqSS29t2!HuB8FoW6=Zj74!@MB{l$>{f0*$XD~e2_q}x#z*Pv4wnljm_kS;b z45WX3(f8X1n4bdV_kdP_`H4%R#}Nzd`1-~JR-D-TA0se^C*rdVlNii+6PChoL}>z`ZM1-`KB`$wm-l&S$d0hj*Mm_F z|MF9H{MPHZ!S$7{cgXzm8@Ivd&+d~HCv%F6Uo&1sQ-7dA!oGF=Zj~y}8))NkTv45B zxwduf-l|CsYkzxQxzxY99x=>x4VnB=Q|Tsef%XH|ssGP3JS7lf!$L+r+oWPx>SC*Vmw z*!4Za*gTgB{bd@X-?*GDVV=c=8uh7kFptxZpp)-wMVc9gz4IdU*>l)cf4Oa;`J;L< zJ(-&M)4O#%81nf@C$^FXiaq94E0v198)mEdT14tQZ8&0xwAvqc?|B0|OL^fSVdWO# zUxxU?mu#?NiwZkUprP-VQopUq4hHfMN-;>@k$CI(Y{5zaQaaAaaXVDD~Fb$8Skz#$6|kz-`P@HtdYd>826ieAJ0Bw}8|2 z{PRPJa{{bM{SViWV8+57tFVFTYg0i`yu;#j0b$T|8UpKY&A`&P{9cbVLd{+7a8v|+ z0>d*2~jWJbh?FV#q#LM-iU+dw4Q9jic=3;RAj_xO&x`4 z#hyeRqz7reC%kUF6p&hb#Sx{cA+_~tfR~J)R4bd4u~^NFNn`(Z?Z@;D&hBt_ILKMp zD>1?NZ(>l%cYp*x&i(8L70iT_IpyA=>32zSaJF$1<+lrbsV^A<`nh^w7v43nPJPOn zgW#!ynt<;9z;|1IcSWyR%QFHBT&5ki&KOMpDX30x&;E4yWhZlk+4+i%FCV2s0iW)U zv{`=Fl%>(Ll0XcPE04D2vfa`#0e+KZ#HM`~zjBs()_yfOEshL_;oQ$Q<9b2WOW`d^ zS? z_ikL5?6YV`@iCk%8?SHGe+)P&O)OEfY<`x}S-Xr0NjhPnMlF*ahFYRM0Gth{EQ^6( zCOMMW1r)rB1yx_h?QICBjXbmMhb{!;++FY^3pyqVd86)NqHfFCe1a0z(>VEZ$>IV} zM9bkd=LaZD4vQf-zZ{`SLdaG}w3aTweJSmD=UW*Yc&tKO>8t4t zQJiiqTuVPZuoEgg!ccA9tSqf28)Ku~6#Ebv7$!R(f{cDz;a99W&4jWJP+x&rJ~|J& zv3}lU9~CHcJ@@p+?rxen02ATU5yn?xbd3vRp?aRy&Q>*QdW!pvg!&l@B2Yl+`_<|V zm&5uHXDd-mR!@}W~&SNBkL!IWM z-NqnARZIK|++`;hov~E5)5C-tn<3=UgRu){Vf^Vs;|NJZW%`ca->dY7M~N;%_?Ow!@bN4-MkD>fc~Ik&pJV!oRqCBCP^Kv@n7bK%ZzhEz9)F8YQzy)?Rt zRXFkP*3^*Ku{%?gN>W}91{zIj^u!2TSXCLz0+uL)nd7)*KbkY|JlA)#6GTNVWS``n zk#$M=tVbuZ?BJBsF-G%*d5MPm?3ay3I*uZ-Gg(@^!c=ZMtD*~D8Q!?TaeVLilp(;M zz4UO1g>M!)Ntinpz+f@-UZj#Lzctpu7$jEd!)odys&N;k3xG1zUjc1_1u3vPTV7l^ zTKCP;@7b&HFv7OjPwD5$w>n^#;7dCYkTz(r%^~fBcRqYyZ|TmZ+QwJn z8raOfU%z*0fvpL1QB}hbLU^2+W;GNIm6(JmC^3In=h`jBquuQ%sO#CRUe9HgreJ@g zI@=~W+i-Bkj?Y=fYF%$O*ebN>%kM{tRM-_qumxW62EREv$W4c6x1dH?OX9^5Zp@HA z3ealG9QGGvIkhWR&PKE{P2_?*%BXh>$^y!x{>nJj+97MXZ(e_{DVQM30|if7&H<&Y zIEUqEtQrI_XJtB|ssSa-wC>gO`OdYL+#Thw@ZCrA-S?Pihg?sezBee9)Zj$e->*cn zR~g(|YAilgGu{TW*OoMY(oT}z+Idrm&Eo3xqicgP4`$mM88pnY(%6*-;k75Q`=usI z{$&4~;&or*Gkdi>?XUPLug6_urcs*n>y(x~JZdx3Pgd(>x`ydv*uygmE%SZX&%MDQ`=?p{uZa2Q2L6q=|7*)5MgSoD2L|0^=7-gPi6Q=jXlr zGtdHt&wyZq-+=4mu!AR;rUSrsMu7U@_v*)p`>Bo7GSdLaYfp@>0YLJ<-}!xH0zKfW z>G!oCL++>6reOlKDNmyPU#?01FCq7@(E3+8*aL^42RIpU=zyL8@Z#?^6A#e%uQ;3T zA2bd4U%x{0fB0m72D5)Prv0~ym<6B;|3jEPt)gm)ArI#HqaSmF3$6JCI2f z9IrIK_taOs_mUXB4jmE`0h*&su4m~Nb72w_FEsXNlhV=v?yO7+wdBhv)t7g|Fw5;6 zEH3Avyji({w8d**N~Kj^n2WELBIxm1pXNK!xRR8yw|AB#x3gYlHQ$cYiG4TCffw!1 zCLrV;yU6pd@XFkM$%>ce6D+#6K656^!qsd}fEY&_tR+Dv8Wt$QuT?o!HsDx0up&L3 zQ8uvdj22b|6GtcMtlfH0`eEl~*PP^%qB7wimZhy|>G4vh$_%GVzQn4)c{Ku!PiS9B zTwT0sgwnd2%-5c9x~5n}?-gc>)UQE|B{%b;Wba8uDF&GEZaH!!UOcyo&GlCds|yhn zCj__RKfsHSKlBLpizv^;ZK*3`3bc`g2DYX=AuVzQn&pN0O!nGmGKgX)Ej3f?C4Qi} zWp2L(C=PK0zO;{T52Q3ijH^fc07(sRQKH`#V@?Tgw?!^|aT`>DA~+gJ4ddL3N>Ye+ z(-6S~k}$E)o*i7i$VH4}$cJGahJHsE!H(cW@he>aXF#Gllih73o=ds6!%9PzXIGuF z8YFKFLn1uG^I8M8bP^(Gbb}m(=Rbd$T)s;D;x598t6x%20+M4jE`<)kjo$o$q{tIX za@Cbs)|qTL-r-GXb}I~K0OQ5+7qG;075-x$pTZ0#+Y*C>=?`;ok-iN#$_D3-@k<%ELGYkY)Fq)1G(0ME?Ji|vFab#%WWR&8nG&V@ovgKSY>4ROZ- zDjN-dWlp3oq?QCaBwVD@B*AYHB#Tbb(X4JjHC}$WaI5H8Xa1YKE)id8rItB> zcZvbMBU0sL!Ey1{JOIZ8v$xLNSjj6*NV{b&fX<(5z2+>T}nS?-Z3HV3qby**ioHNjGb zaY#S#df2=$%7y z_SWKLo{<^N2g@J}8@=Phaf{STOBtDb5$4_R4~G(;T>K*ye5ZHUE+!Ad>r+wrHg1Fj z1%osuMps#GzTv5tbIF3pcScy3xnHr{$1lc6}vz?s_o2si*4o~WBapI5VinrI` za4$P7Oo}GI&4poIeul0C3t_jZH*`(i^x5TBB7LV9bD%+XsB*XJ)@Zh`+}2(y(Z<@U zWs4DXu`!)}cXwKPx4El+R#Ed|<1|`;E4AYDCt8fu@9yP+a0WJeY)1!GlB33}6Na#w zMbKm#vqWY!ovMa!fH$T=aAj4D`EzG2~O`)YsuuR!QE4j1~4& z^+GE6nir_#=krm|io{4T>ua~?+4G|SWSK`wbj-s-BHHLwcXSF)jD{5{`tpC@v+^tw5$+BDO-3~Icdt=s3yL`C>soZ zYWBPC9f^X=;Zu_;X7Ferjhh!5?cT~&5a*nEAvkaVdZRn- zr5T3WPI%MoiEce$JF(Ts$!WYhL1%R-(TWN%=TZifwqucgCFIqS~2^C?Q;9B9g)YhYm+jE_EtpRb|7G4{8!aQ81b-~}My zSxs`OO8lsO0`~q4NBA3tJ`H>SPF|4Jx3#pl(bc!bWdtZ}|76U}_|seeSMMA~0Q7l? z;Qp1)@Gt%GJ#b~fWde+CsR8DgzacmP^X9*+{?7>qfGFKRsRmGJSOAWazpwpRwDJ4S z0lqx|83H3bd~?xE#M?;0G*?hfw)R=>tG%ObcLd{abeY4^sX!K>Vw3 z=)VCmJz%qc2#A-I{!T0?wM39Db9DSV$H;+H76K*^mCuP(X-locil-w|MnG_P^*vr} zLe1ntR4a2^AiHptz5U7{-lx^j=erG&;Abw4G<7wV&fFCq(82PELLa&iW4JT zK4Bw}AG3{#x@WD%vg_wTToe_JF}JsqD&xGOraTvP8IAS9AImvq4?=oeRi?~uuoOZv z``g7ZahfxUfvB@ZYM=k6pk6I=HYz{+Y-F%@dJT$+A%%q>?Yj?n1%YxB8nKJf>1;>e zh}2Ce&pk`6^cpYnr5mJ#rX;L$kkXMCK@-y53%3SICI+mm@aOQ#DF`T<%F2$jk!?X} zx(P2x*r^=gASrnRIpC&*C&#qtzo7YvFDyDr5OZm!eYZs+^CG9-V3^UM)kQ#B9v&_K z{KDZKmnO|Ii1OD)_%yoc#nm=)J(PmRGfjy0c_ch(~%;W9oj3f0@FIie&)i!U{h_zdFY(4_2z4| z%=_2ZlQ3G%{wfX}biCpoC5KFtXz&siGbgH27O!?3FO{htoG|6;Wx+`^Y0Fp8C{?pCv zi|_?J3e2hJ2_v;5bP@AAj+$IdEU*2h2eVY5*B@)|}SHMo?lijZb1)0h_~ z-QA#bS{;39i$97p_R-gTA$;vdqe(Y2)<-ylbOVAr?zX!#LgTPd3#sa&CMWj21_aU!|Ujp>H-fd@AEw372ugiG6rhk6m0bQneVm1BrcMELgs!?ISOI)mst zXzFIk>4`5Zy=LV%dxjlFr$l9jvfhB)^EPq|8d{jJ5mXCo?C2Qt8t;YV>1+?Tr1hDd zxjcF-MBJuNN2=4TTuJXizJ~b57x$+6as~U^JEFT|xE3)-8d3#hFrhf4+(GYO`4qS8Qt& zg$_zJZ+$TkDuAimNK5hIvVV)3Fy-yw8f}Jw9HblzrDIPh20nwqqEgd$tFx%+x@1=$ z+kqH3FnhaSm+~1yP`faU$%DGF%_*Z6*Iz3|Uv9TT#gI*cvTm)$yav2LAqBURCY2>M z(+ZczTF+Egh(OpkFFDR^K$af+hsY}!g7Vs{rWGZ&l#acL?NWC^KZ$&)v6srMe1uVG zM3q^HNnGC`f{DvT1qa!)z}{5CML-=WlT*KMUFyEc^asit5-2gy6s$V@FwPmrBEXF5 zRTO(sX&M1_)RJl$LS~m+cRH10AP69MV47MR#c9BPV$`>D&6=7_J44tXH%bl&fy^AU zRFXX>NY$5T3n2+!+*2x~NJWSrrYymC@SiqUutk1$LIMKr^SJ<@aRhPVCFzPk-Zefl zHXF3d)fevSdJiJcy@E=e6&`<{BYiOlE_o*2U4ho31Z$@oX3Vk;*UuW4UJkoaQznJz zUE`Nxez$1@O&a@3*~I62myU!`T5msbu(YX`PcmMa8&7GS1&K4c+1Fga7~i1cmFKU_8=V=EAlb6qz7$ffaPo@=t2T~( zW3iClT6fPyifQYfz)4Tor%P)a>c61kv$U|&x3B|%qQCv*f5AyV&EWt0@!;P$=@)i0 zfVg=-?D^GNp7H13J;ZANQ&#iODHi}?-A9AoTg=~IlrsSc#rJ080J`gcMIfes?B34! z(|`N#eccZu|K*GSN1if_53+!Mum0C46F>o`eZsz-@v(FKqqYB44G{A(JViZt>>U4O zH3Q%ZpB^wO{0)^owvK2i-%|S*S_fi7Ue4!Oar*?KXGV}ed8Zg(*kH3_a;HKEP!-^C#*9W0Ylw~&BIeiPD=-1sy`7?#`vp; zIf4{&gz+09^kw`vrjDUjg+)*!-W-^*>k{Fjf9H zy8biV{J<;q-+T=K{rwMd^RUWN1R@ihXM4Mjvq?5-AKhL4T9%wNq9*ty)efbZ_HzxIa`DN^{d-q=9UIZr;|N2OLtBdF4s%(Ghk-hMIP(B zCLplU9|)BPTzwwp~Y)aprJERuWSNCPt*Ur6iQ#d|D5J(>Zr(R0$mqUmh+< zuLFwa5z_(pA=$xiK0PekLKRRLTg2{OSNJlges~|Q-GGUK$vx}PI z{Od5e<*;-iie=Au1dD@KA}vF+a(J4FY^hmf`-j$|f%auMpmTQ8K9CVJ&x z{Y78)qN!L1_eS0R!$;h=yq^9@^98*ElYx8p^~V8tle zrgQ{(_=8ESL1gPfR^_igkDgte%E+I%O}sMh6+=@Ge?zTOZhJ_Tw0WKRL(G7G_lNpd zQQ*Ud;8&c51{*!OGs8^rwDZ7TB&Ru$N(RJ&T{G>U1<9)$Nxu7HmT^&{Y#3b7P*Q33 zO98()+1ojgSIg>FU?iYYOe7jZQY1JON>Md_cbRc5*#Yk08^N$4=HA9)up zZt9Ar0)b%?xF$!&fQ+*v($q2r<==7b)QAD6B&{L4 zf=7*pEPx2?=s-2vrx2>}K_Jjow0&garUyK&Rg-xZ?2Nw_m^guJ%;1Kcb!B;4gfmLwOIFb9b#y!!Lz@%jW85eX z6wrBv#(*yrk%XW**QA6K&s-Ot$$Hx`hONXC5~fLn@FIwo-gq-P<9ty{CE>`kVThcBP&toq;0!e{$Q7=w0tP!z+1bW&=&Ms$J}vGI?&?<&$82|8 zcs;N$ki1h`<6P28ik(+3EE!bab9eY&?jN)zE@>z>l&cL7*?&9^ZX82*9q|4}mw*<# zGTZ@5)#mQgKLW}{-o|R<2I_u**^UzkG*XgH)chfp2HzJ9eluhUh7)sYDx$GXLq;3# z1B6(ViMr;nj0Wo5!VH@@gRHl()Ohsjry>RIq4vJ)-Q{yBkK2 zAqZNS>&6GHLkFq|6_|3bLc!WZUnwttL3LyDW*fHR!&*`>5a=F-r&xjUWa3_BJi+bY z0S>#haOZHsTzA*CPc8mn@udps`dV*GJ7>2OU?PKxXNzh?mwm0Sr(McvUp{e>p7R8yO@HKG9C+x6Z4K?p<7~IiNQd*J;mJk+A zg~z8fa5jg1ph4_;ex0o6#HHXuU&h!v0P>O-1+PUf9pza$JR}t z{>mFQ7$yUmAlJmyUXy@}DLgp$1=qq31_?DpzY)Erakp6MEi5QE8&O?(MC02rg-@4P znKpGlz?NO$sEsk}eJomR$SU7^dN~H8<+uie9L_#k6Tr}ZRmz%QRr%>MJ$HqIa#VkfysN<#V>LY z!tK7SJ*mrKc7EWwDn5Cy$0xo!5V@=Kap*`HpqM)*DN{ z0CL5eMA8a_gq;ZFmjd%hl%eKjWoimTegWjyT;N8s#7}fy4^nKNo>2b;84rmWe_68s zw?yc_J1+p3(YMgM2Wa;)%7-xVFYkEVKbufL_Gf4Oy&5o~1_XKmm?OWT#K->ZPZv|) z6BM4nn2-J0pR5LOsqclWPptiTIR4be=@=NFM&^(G*`HkdzR3hc;XbkU5tNs7~BVxv%Ve1D}j9(>%57-;OK=40<&`&wKGXN&pe+r>{kUX8DClKqhZbbhD@*r67v zn_mqUbbFg2Sae{KkG<7(xhpu1&wxUNsGmpEe{$pH)091r!*xg_g4lIkK}SotuF=UY z#{=tHl&Q|HLy&A%?V`gcgfhf?xy>s@Y02G6rKUC9jm$eu%)is# zV$(uCsrqUwezAG8gl;dxqkX(@7$iGES~%p3C|U#cQb|zgJ;aL%4j_M?ocfzM*;Y2S z@=ZLYctpzyNxaL|%{!NG7t088xorzaW|{OdNSrsQxS|fpuM0O8J{ne;VY~NP==$Ke zQIb@b$#Q!}o`MS0lWMEPX_7QiW|wVdNE1}W@M3cbTeHSx+Z+O?sTmBglE0hj0!KW1 zgV*UD^~9I#PfOarM>tP^$^LFbd{6NDA6^4KwjpNx)f4x>3;g?Q-T$3#`k#LG5o78< zT}l0VhxN-x`LUDjuif-N9s3`B;F%sc9sjFmrlA8&y8f_do>mr%Ndcr|A64Ko6*9y) zbETeYuQL}p#fY`&Yw`vU86961}ZmygbAXtyerKQou9A-ENXu zRt2678k~kn7;%&6Hfne>7u_>jGxu}62wjL(PeblBc~%FQV+|_4j5rX_B?~RP_?zDB z>XRMTq+BvXpIt94y~-j@DC)$_k)8zM8tO0|6Qji8*Tr2rjb81fsmtO+H{|4$B_Yl( zTa+U-tHzx6U;T|1-b~?wSa*!v6~Thw36s8sZEXHX1V6o+SL2?r(b%klJm|KYIb5py zRfD#k4~Lan8p&3$>+?%TM_}C{kdtBFmj= z_*Gv%2$Bw`yT?1ZN9o21V5<5LpFt#&E=PZNMnqM;$DTsK zpv*Yo%cI5MH;G#+7elb-nn2e1Vpz33w^W@I%Skj<*N_w!y?M5y!O z;RD0-q~i-Br+mO!L?&2($0c%)e*aP^D@D(B?EQlG`Qkf@c&*Vm#;@mLkg{PK?Prc3 z4~Bcapz*JW!#Tb{oC*}ZnW`J50NDK6Nz0*r=!&=*>K?nelS zv=)|&0ydx$UO?7*NRFP#joFqL73?ENj)k3q5Cjf=N;CKh-6Fb)>brFKiA37STA4mPKeV&#)rTVJd4fU|HkhmjwgJ4 z3AYVq%tCGDPC>$Y$Jp>2d5UDBgAyu?q#bszPnbOp5{9E)Gv0c$U9$8v@6nqtY_w@y z&6Vvc#rFKvtS`*l$IrP+!7)ai@Ro$NL8F?n!-l!js>>JAq=Ap9sUF-<|*UiT;qF z{IJsh^VZPc1O@P`mHmHh;9tt|e=nf{p7}mtH;)wmvx4T=DbGiXSvi0SP(WeCuQ(m> ztBL;O)xcH_=Ogoy0LEW9!lTtJK;KoiMO+Uq`E3{)Ml0Hdvcul|LOK3)y9%4G%4_x@VV{&P;n|B?~{ zhd%zw7Z&{)`#sPpJwTB^BgcPf@c#_?Juv6}t6Rbhv^n}yn%}|$b|Xvh^YLVM-!7X!W>BDkYs{ZVn-I!)YPfRT^BHq z7gG238lB+w+wsLr{jz2o@*7C}p4AIWqC9>2s{l4%i8ajnwBGmga#AE!t3-UaO}Cr- zy6ty5U%%0$vb@HXRv)A$&mGs(>GicV!ji1ffZw!}em)ia&0||dl~zshy5u9n+xMQ` zY0*oY&Zj8%(@}C#+bdM?dutsgHyKYDgo~_Xh%{^g_@49RhB(GO+|}N zHI_v??TQD0JIzL%aO+~s@!k_jk|VP|*k+HXSkAVz&a^d~nOAmLgj3 z@M|=e&(C6(W2!qii|rF9{B&HpYbNxdJ8_eEghp!pC1^h<+mw=hihU-2F<0%6o#gu5 z0G4EA9M$9_suk5niLa4hC=7%e$u^R4+oIQ8W>mABcWxGn28F_>a7H#!GMDfXs-sXIraCQH#FD!wdP6V->3Jwbnw$MO*kHO+w(^Ynqi5Jz ztF!eV#BYViK$BJXnG4*wC8l>tpyIwxAMs{rymcp0JS2zZj-jFXjAy5jM`Tb9sfh2x zA+9uPak0_z$pRpvvsyZ+rxC+LFOpb(Tm-WFf~HDS3#wN$bWJ8|)dr-tOV=NvfVmhC9w!OMe;VWs5xaw{pRrevDJ)$S98$r$$`KCT@v?oeaVGnpPgPrxc{KHXUG^7_oC#Pv$k zh8O{X>SYr7EkD>YGl}L%U4|%)pJ|3F29_h(?7B31#W07eF$^U*(%QhcGEdX`+*9=B zpgYP5HVJ#Jl>@D^T}6!9`6Tdh;n58Xe(jAp?-tAh&O8+hU*!6NQ=dNn16{Yj0o zo0RRHxmY<32uWuR4s}nGH#J21f$ksWBJ*keX&Ix6#2xW`P(ma8+S1YXUoGYdsxAi!~?7wbXJ zt)JBBQgrK#ry?p)UjTkvAfI@jW-fg2aHdJU?=Q@FnbbD;7v zlW`+Kq@E&MoCFFmMf0xQyeFd%{JAU0no2)%a!tG@7P%$w+_r3f7YwSFV(|+B}e#iVLd~) z%gNYR1H;3qm?Pd24d+mW?gMR&SHP5?dOH0^DhYRk6>NI}jweQGW?HTwb>JN+8;&NI z{L?2dH_p}!?cl~ZOd2M8;W7E#_Z)4qjx9Jijx74m5^5|WNSvUZefEs8-???wLZ}w^ z5UAmJ>!_5$?|x`4(JycbNN2|00~wCGLZPK-MNvM>3FBPuK@^UIjw;D<=ZnsXDY`x; z1CQrCtf)`kA8=I_fL#b2iWw(NIhb^sUv znp$;Ao2>=f$-}409ZIwBbcx zE^Q#5kR;7S8Gi82>`*Y$v<&^~#;V1Z*;+(l^r^k8t*yIHl+XVLbKw4dcKjPyMz^QM zdm`OQ*!$(@kw&cv-Mqw(_U39&A~txqMs2(I7JkF?o zAf*S43IKHf|DT;k0)9<3_#T|_U48dQ0ye;}sRqAP|F;AU=qCvP%3gkjs^7<4AL9Fm zYyWpO&Rjf96z=tqt_Aq-TA!`WG$NqieGQN0^x&8A1m9>_Yj2kv+CH3p+4L0?2rO zyXQaVaR1ZJSy+HOe+2c*LC_$S(GL^TObK^OAP*_hGQC3n_mof3x)lW_4J!@>5YYGM+r ztL@xRN5}0QYIBMYGsiz|*1wd?X#eck`#leCX5O(Ef=qBIK{edkSnXv}as957^28Fw zRg%Rwj+<s!P{Yw;pzv`~(D+!LDoAhN!?R8`F4$T^i0Rcy>2NrcQ; zN{wfquZS2br}WAlS?Uve6erAG0(M4%4X7tLtL&)h*ObvDIcaHaBAsMYFH!8IYS2ge zcvnlKocBraZ-Su-u9wG74Np6QttcscizGI^={m4W!4?UvoZ!S*Pfm|eL;~*F7#O-Q zZ?s>m*WbK9@BU(ZOtkf+*cLntO#;4lC^<)16IAs}0s~j^!2$Nyt5S{_txqgx%L?Sf zON9gUP5=>?k9b4w%YkOjdrb|c008qTxjmE^S*sIi@L>N%i@GQTo^23ufq#Lm2 z1Z97-Pah?b(b?Y$rVz^3yvU?x#95#8C3f73$YxQsViDQ?I@%{Vy=0(3!MgrD%?{~h zNoH;lW>RFG>^Dwx6m#QXmKtC@D4Qi@y$ZegD#z6;>dwifx-jsoi>jl6{CFo*b@vk+ z4K44f$hp!tB^{}uGvb|X(9(bw6 z@*!Z9cyzkNWItr&wJ19>x}}GsHm;4Gt21WZ}n8ivpqIE8dY6|`AlX0$ZvRZBnWLK(NT0*=V9#%i6({=0A=KM=|?*+rcw zQ3b&;`&Vs^pjeTin|yk~8m~LX>8VtqqxQTwj2M-u{jH1nsCsEiC9mLJP?EHQw*<1K z{(*OYyyab|+c_yU2Er5!&V;3{O9uU6BFfpFY%ZhvN{p{ zrEQ<0e#nQ|Pipd3MYnNl5V2F3f+Y7N+jp;})lbv~^_Gxq{5G0YjAKUctpUZga{L9y zd!qt0_`11K-m}Q-fa8^!Ev0n{jWy*d*hZ;Fz@bi;zyhoDL|lHz7mER{&t%dXY-+S5 z;2tuSPZ!8~tH{MMulo&Ax_qz+Z<{a?dDWPni+8;hCkD}LU=G4RC-I9NowVQ6>kP-A z38MFT@qF;T)6@PWW2zkm`S(7ew)f2_o;e?LRS33JM=H{Mje3dYQ1Y+Lv4;EM3<>2U zEwGBvwyY27`v?Z5Cu*bn76p6(Jak;i;`uMcOcF9_PIOvBH-GFYZGN1JL6}QC@(2*#I1QO`Ie~`B*42zYjjm@+ zq!}PG?9V=)()vcRSTmMP#lhny)^*nmK;7~ggEx&s>57_XH42y$-m^Ump4Z@!Qx@5B zD$<~IFI9AqQ|jiQ0tbzEKWWK1@Bv%+yf2HDRHGgFA~SYdSj`=~qhy6v#EDmqA3ygf ztHLU~I{vb_K-bzh9-Zfaeds=0=!^8n+-(<#@+qP+@Tra!n6hTX-R5Fu;{6didO%;pBDdNirzFx>ZP6721p!jvPzb4(*P ziIykajNcuu66lH;v=9f*kJMWkugk?)sHTfXW)8;Skw5D2TAhU>IfB4F2ulWyetO6+ z<4whjK3tN%z!yBPKV$JQZ(rBLXySY|&Ff|o?C~sm!Ay>dZ}@?Xc|KV>V+fbZtMcUw zj)oW86y53&f1>b|rgWng6lmET3aOGEd0W8$lZ zqI%PK0Pqu$HbS}oCLtNc4UQCQU!}Y6hh({w^FF)MbZj_VXEHrv>AKnuO=)#7;%`QO_~;Z`|CgvMJ|e zR2W8IkytsM>bKL3yVAnP9Ag!>LUor-Kwk@>383-!^~d89TMmZ2g2l=hs6e}35k4oB z55QSDJNq6aVSB2M>`NVMo33adGJp)NRGR7QUt9^`|H6)ZD`k z+`ZD+#i0D5eW6-oNIg>S+=Z*Q#p+N_g^_KvWtL$%t4%HJ+>~{9>N;;6gHWR&U|)YC zd8Oojm=;5n7`EAzi?+5MN66O1xvIX1BsDdtzvRv?(RXA+;GjqAQ77Es_6?=HNTR}N#{w>oBY(e5LFd=V&;|hXwfTc;;Mfb>BaZa|mS1dt0FPZZFg1am>5*v} zz;6w+$EsPsheZ4?$pbtvas3YVA1h{IWu<3%MA!y+U?Bfb)l9&K8Pg+jK){cu?Eeke zf6({%3E=-s0{$7`|2&NHhl-h>X0`te?LTmV{Yx^#0lY1Li1zpY8|`0~>zxXNZkQbA z3J~BBQZ114Bjr+#pZU~nCkG32=IqV!d~H}=S0e5k(r_AsH!?K_{xoU0xD;M_?b1)B!d|pF1Flb3f(jTK z@!E(X6+}CH5lRUc&>}vd_rT7gppb6&Vliw5+ZT~|sL)|)$ZwFcYneMU=#tUErQ3XR-@rQ@6?%vD{AF<59e%k6Dn79o#9{A7r3wf{ zbL=bVY&(Y8nv&3#gyUDdY2I5w#t96=E?)@79K9J$gvq!Cn39@Bz9!LTTr5- z9N9r7!>tvnn+r&Ud-IgP%jorv?itdVvZ6GO3pbrwHub{v6GO{(i_W~B<+Az0ujL%X zi8i3w+o62aj6c-OH|URSs)M%{Asu!L)5(1v1=_pO#GO7HKrwI^CkyJlOxXedbi56R zMbS)8tZH$>7{W!SLH-i$dKl{@T%N|tn>)owap=rVF*=Xh|}6FI0DF*DjXY~ zP|l@tI1hV6cLRkIr$#Xn)T_y`tH}%n6F>WgGP1tSpv0(S99o!DBzlJ(^zk)+=hl;v zT23rORoY$tu2+KD;O5f@mL$2F#(@#*!-Ug3X`-A@=BjWHuI(0caOYQLI%+|t)UBZ7%7}JSc~FmN+RP61$0JDY0I?Uklm>PCfOTEAwj`=o zb_mHSjKa-z@plE-a4j5jZteYgr>y$0)9>YBLxeRNY-4aoFOHyJeT(R2#$wWaIym_0 zy=Njy6{adm?~8lK?k|V!#OAo~XWGxmzrR_N)SV#)En$(K!_J5m}EMDU4q}LTBEm}<}(rqj1T?e1Y z(o(3{YzqaF;v+3tkQH{!P4mVByMlhIKDsax@{>Y}2FmCKx#s99-tP9(T$2co9<`f67*shx_)>=={2G!) z4v_&`giLzVk3;|GMwXNmGeXrW`X#@Jv~N22xfV{%dhong=#g1>kn6{lUsM+1;@$!{~y=~V$K2?Ez7kR>1 z56P_%XV_{7ivSVTFh?JHdB_|1ic7V{AJKt-=9M7Vp>bC4ZIw#lSwBGp6vhATZl{QW~UqF{o~aeZEo?A`f2mZ5Q4&4F^QU zK3Ju$J%XV8HT3XSX{J(mQwjOy6Uf4d;))SBLea6EC@YUhZqomP{n%RUeWNy37uf(ET9FR$-CQor|Cr4 zYw|>R*~7)aiAv7#S@5C-bS``o;&Ux{yCy>O(rxcrR@UI)5T^0r`cG8a{O7BBhkW5U zS|X2N<_C7~k7MQ^-{uc7^AG9Kf0j!3|>RqCcbk$JYMg8T5!nJm819<$tUO4oyEY zY5hI<=|69rg%PMadQ9mBl*9aUHS_mGE#S+^!~rx~dQ9o{v&!s$Dc<=Rp#BqxeE?7Y z@nHG^y#47g`d8iezmBZ`47URR)8BXMU$_-G$@9m!^)Fi?WFCcgjq{he0*DCXXCWXW z{yF@q;3QK_3L&m}I5!O$<{|s0M(Wvb zrY7y0su#nf)a{fn(;P??uYz1&pf|d`&og#V(CW^WeBxYW5^(SAg56>`d5IRg@w(Z* zQ8X?bEwzo_60mtx3R3wNvt5T1uhk^ZX-ap+8(Ux8dhPwusIK}-mA}^@X`FOEL&x&gKI=ioHBnQAKgPi5TC2rJ-eM=DrtP&5U03IPp!<6I z3!Ve4fch!_GPMc2U$TL=$Fkp{mN=8_)W=0j1=TOanKyjAPgN?10K*9mEjim(BGWnk z*gZ_k_^}o5R3ez=ri$<)+yZBmd*Po^=f(s&Z;MZ8NJ2a}>_Inm{KmGC9S$2Fd@_Kd zW9`9Goz(;u#fVrjlKup>OJA*vf0}S|z##195>tz+7o6jSyFS!zIq#M#Ih5vJFgFcG-kuWQEkW2 z2&t6RnnQi&PS-(Kk&cq~Bi3sRSKw#IPDn%A?h@1{zDo4A;zfLl3}q;v9Vr4C@%4Ei zT)1H%i?~@c*A(8n(@Z5UPn?NMguJv_FE3NmzCLp|vfjt{{&XuKD$R z2z^N)`+^O#+^08p2Px9;lC|OEQNu~Hw>z&UnKCa7&`}uQ*noI3)^tjR9}(5eC)%G8 z+lSdhHHWzQZ%mAnxXBFDfd zU{9c%$~{&Ad9%-XA50gE0{0xW$HK9)%_fH&->@MK!DYG?V(1EXsrYbThj*RHJt!z7 z#HHcAVP3p;g41zwWM?in6#LV>+BGMev0y@R*ERx(j~_0dpVl8;Yetf=oss4Rh7+&B~Oi`Dc~Rk?a`kLk4hTe%$U5zi6+CTo_wV^4x?!X59cWPo*p{-9rP=4 z3W%5bmBC4d<1u$Pmb+XR|mXvl&4%c)08PuR%ybz@ZiK)^CsOQO(+M*grv0 zFimnVSTNP)8l$dm;cYWHb$wbYu3zKjyX+v2MlBLk7sU@cZ_`*|H*LqD;YMqYO z%TA#<5P-X7fec^1`>E?6F69;W1>SC=-gsn{YqH=B`1_%x zjt(~+ecfKT9lM{Ao!uiWN=3c`fr*g>Y<|0GX?nFKQ%OyqR7~tDEfPa?R(#YSy`Egw z7LkH^Z4tE0zbY6SbY{afL96Y{YTVjM>fV#4K-!RpEoOka3ASLu!()IuXv`6LJ1tEj z;HNE;&_QxdjVHAp$wYcSDtuM$Xlv0)SJC0|!RCBV<7U1#GxKWKU%yRlIX!Es6wup+ z0vGem9UGD_WV%eugkzKLHuvo_>-S%HV8#^UZzXDIFQas#UPmC{WZwzkJiQU%yCyZF zd{YO;7q>38Esf8_=-TrkZ@&@}JjKc>3m)GO!-IS-lA5l`Vr&0g+`9L5Y#!GviT)cX zP>CXn#$zdz0s{`3EsE!Fp>XVDbdmgv9gdIl$ze{Lw{Ans{5wrM_xE4p^Eqr|y!IM< z8t*R+)3}=$g<`UPAK34e`&oeLH4c80->ck}j2XX?v!WDDc7J9ofjLw4#NndAZP)qR zGZO~6mrMAAWnT@o9G~wv;Z8I=_F2fl%y%YvuH{2NnK{tqe`B@+wt>t(48mDIztPF( zopoU_7M%M^Ku=vjqT~~9?6Qz1$c0*Npr|WIKB&-5n$n_8fu6E8TF}X>9pL*VuY>v? z#84@@`w;*O1Pp(FXFm>Le|)V!1h79G+y6%Z7ATMYd%f?+fIl|yF97==4t;^Z<)5pW z0YKmi6l${rO^VonoBj>J0&Rr;O*K#<@m;gd#>NKxFOP`0f3}YNp|g0fa{vISaRAyB zaR5c!Kz0A`YyYZ@`MH`I2)P-7v&6vlfrqD$K<@_*=D*&x?-ubu1rZB7FklvVB>UUa zK-~CmE}Ibm6#4@_v)F-4KeF<#CZ!KwFJN#mCy*8}GXfPJz_aDwm;U+b`fcCroIg^q zfN8kEl-9@Y*-x6B|0Q;QfS3QJV+SfRemVdK_9MPaWPWI+9(oJ?6JGu^SPYEo{rmp^ zCEob%;PuC_Si${ONlzbAQN)Xz;ycnM8N)-b zBQ@RIaLBSx-CkAdl7c5vG?T>uUs(sqM&ST3fpl-nif3$7ErNoBgOpnH*$l|EDW|u^ z&+mt7k9X(PWbkxE^QXL-S!1P*r6gnGJAL`cm&K#Wo4nTE&iIZsI~k{IK%fPqE+Bo% z)1gDg%po|Qh|(ifs&L+e5*NmXh85u57K@qY#--}38hpo~1ZI=hh(8n12_{_hS^R5m z&zUeWxy$`}(zi+-EnXDNGe5Slb(td3hMPErSqTfnz=jPaa28?fLqu$KOcF@^6@-G@ zigKA&W(FiIqnrajsLuuP#J6BGFQ63O_Yv;U`n@B8qKf8$u`1;vSbiH-^;+E4qS0yr z*<*S7+eMLoi&1Is6J=z1Jn)zjYe&RAk}YN;P9v4TFnH7%in5-ZtpFPc6A@)5zPxr>g2RG;ed%#Hu8PO^V7r)_pS<7-dg1A>iJBs6(;+fwJ38LDQP@0S`CQY_`I3Z@e~7xX15IGW-#dO)k@&O zid^Hzic!yoD^GS2&?q=4lb*e~r>GS^bj8pGAXHa2REVWXxOKwCcAZQ$r9T2K8 zLD9D_r+mkTKL~o~3}8>{6yLFye;Rm&7?C{*U$}qnwwCdfi$AONMOkrr;d5`~FCRWB zT)R~xlj`o%EmV;-J6*JB&ENOwHdXSEM$+9~YXWkLo79udv31(>2xIbfg70e_?bp6p zY)tka^m7oq4rn4?iX$Tkl0pv%oz!;ovbVey$|yZ1(Sl2w4uLKZf|EXvJiTkF;V;b7OSeKS>$=={t}G4S<=Tysxo@KeEc#BbgHN3XCXLBAd1 zxP9g2cer^opSqN{7|jmdSWPWHJq)r+z7R-w8)M!ZAR6E-UbVVn?|&3TN<$AP%)bFm zT6|Ns7OvGx^n?aqe%#5VzPiqzxRKVRg(8xgbP2b3uNOM^8a4S=0!e69| z9HJ69&~7DOulP8b;=KcPdz*yx*>8U0yc^fGVoQo)kH`p43i1{SL2Vj_S0coftDsp9 z2_?TpiVH)`eQ&i+W#5;(0hMyTac)6cn;deK$;QEAGL7MORm66%jwQzEES0PV)pR`5 zI)jsr(IG=S+3{Z(Vo|+z%nPF9>K09L5F{VMfuZr`6}Ra=L=Ulg&-vibONs`+4#Z; zNxdNW-r+|OtZ$z9eQh8Us{7CnD;SgdTDBQ>tiaC01|%KbS+NKvC@^V0r<9RL_*P-@ zbbB*o6A7#1U_;&^6}Ns*M>z5_Srs>sY?*upiA&MGE>mE0x&&^z1gj1;E(^2IK$Mt< zj7tAVh>J?j_XxMWrk%rz*5|m>3YVG*70S8=?hQDuovv`X4&EiHPpVTal((~^}V zQ+9{D+p>YXU zy6V(=AgAI+->Rr-;T}|t@6P-<*MUOFO;4Eb7-1fElp)=zBsbPLBZ z776RwyNr_0$s9Pyp5)SO!hPbZNUVAJ%op9spE{ZREF@&JPpo1IRZM#*Z(iGVHs_&J z=5Q1H;T=91qPdI8^-9O_(-R3 z

PP9a0}m?qW*HrC|}>S#pZEojeyF)Cm;&*1ab|HB+!k10^vj0PU@ERM-J67~18( zsw}*{d41kj7_2Bp0td&RmswY^)mflb3KEXWn6EO)9oW^Ew=IiYIxc(41hvBo%W`}$ z+z%TwZ$fnzLi~y5ZsB8{N`1Mi&aF>c4n-pszeL}SAr{=BV5H?=MU72 zJWX!7xX6u0v zDZ3#3MxVtaaWn%_rAPi-T-0!dQzaM zrr?(M%xKZV{{BH7+)o!ubs(!1%FF4$LA$l%$3McpfF`wnL&L|}*AMjgkbMCikN$^} zn_tcIzq{oA`E0tJ?&#G<8mzpPf-fW(jW5u;YX1Ha?%G~}^rRyJU`?IRn1V3z-DF*7q0(4X~ttS$hU&HKp4 zf3*{SbZKTF_k65z@vEEggJNc&$OovuXZjv5_L$b^S2N)U#Y~()S6U#qV`5S{75jc>G$Cbm@fu?$r_0OH@kR>xi;}6@ z5H8}<5+t@9Z=#k*g2~l@Dx2rI`-f>^)#b}Jag36*wX}^5(pYMw)#MYQC}q;NmD0R< zn6n~mH|MKC<;zqUD9;Qmm^Wi77h*p_a}mXb&xN}(i}*t@i`G>7>}1lRKa)2m%|)F% zfzYjVf+$4waaE=^g`D|zo@}Z*1(Qs?uwFBX<6jx_x#imRwkWU!KEsv2xeVlfztFhsIS z6|^@|6KD6r%x*C4=qPHnxm)XoDW)#^IUzY@=QTebW6j|y2W*%7Zn`?Z$(zxHlxvuR z79b?O7CST%&8vSl-Z$Fx>1lZdo~Z;Y427ao*gij6Q+X6Bk^`4~!j`XaRaO*N=s1as z2+CIq)?gL`_44ZFtZEoye~#W7!4#89s|hW{6yE+is445YXLpJNhGvY@aUcCW**nLj z;Q}`V4m!D27+K$wW9o=+BD^PewsoovZgw4x&4AFm!r7G;5(pK$fI5JgG+5 zNX$YN9Qw{Qe(q^1)?)GWwa?n5d+L0qVtA{+;d|JKr+)nEv)mqbeBj6PXZ;4PV@qis zvI*`-ND!5|i`z8HpUEn_T3Dqpk!mE_XQ(r~um>pYpfXWtuts3_<~8;pa6=uMF!i=~ z+G=f~Ecuf`@Qj{#an+cCX`E-x7S@e#zh@y);xG3F!w&@6fL7TTKj;!sy0uwsQ`#t= z@n~qKvQ*{l(1Aa&l?^vQJC5Pq!DZGDa%-ajO~{2wd$(ufZDJ+DsZ-Im6v$J)lV4KS zHD?T|v%Y{_sZa7ibg``sBN5KLwJH8^RB!fE0 zJuix5wXxU6k-gLv6|Ii25mMHqQdaDYWjsP*Ii_H}MFUCu)|x@fEgqKjo+C;tHoro zm+eu#`kGem|DnxbhyFDG6)ucI6*!UgZ2MSCVcr}ERCBAD6iPjJF% zt}3khTai6TTGz!5C3yY~L>*32t`+g;NEEl55HUV$pigZGv8g_`xFcyC&9X&2CQN`Ewn! zb*wFwyRPjhM)uL!vUuHP-!f&{{<_cXJt2)1taPfqO##I+&Wfs^CGhD5B0M4?orV%~ zY*;qFFl%w$@2aTIuG??eL=;}5OS+iZS8Hc#r_WmqRZ$BNKhLu8)$FN%u!^<8Jb+jI8w;EaySjwJ!yp%&j+)99kX}XaKVBZ>6&v|W`PhCB>3iC&OMGwyME1E3aRr< zfB_%2m)OQDY@cv_3QtK^sg0GMP7Uq}U6g2+AnXKCI&Y;{5!;uI;2>bW-y(`*@*L2B z-n%M#N)7j+A((c!&5F&%-mp8;5UihK@NY^2g@n;tH83c%%=bTEgG!FL(;3;u!KIor zETfHl-5NFxZlli^Fxv!Y;cgniTs-)|{&D9MoId8K*LBFCr=!dt4-7b-oo%S>J=JTW zNx#Du172bj9#dT&sn$usaToS#K(08H#1ns>K;c&CAf83R?!p1RpimGe|23aZv7nyN zUJT;+c1uew^hQ4c{51bV>YW)6mGWWtnUz5-5_(gVu9ufe&xW-rF~liN`d)Ud)JhQCIwzgaR)3+H zCUpdSPt2;APbk96AZb6D|0W%gIaOiP!`~=p?56!luz21R|-ZNh4b8wTcQkm|7PW1ZC%Se~MiBq1BEn0)<6@j{-(9{P2D ziqMg0lXkerk)uJ^)Shw<4S4h(USz4EQO>6l+umciUlm{3%NiPfX~wt*uaVk&Jv#uN z>tJwnwQ^1Nu5H!&W4GMb9BbmK-4^WL3=k+reQ({7k*%rVLEW9b;oKzky3P7|{dSKA z3r>zaxOJS%{!S)F} z2fRX7-Tn3F`8uU1qdZra(oL>D96Hg~UtpHJs!v*JnC59m74+yi;Csb&j_nn$t=ec8 zt7O~YPCaQ&Lf?Y!iNEH5zU0tmeg6ccO7f`YN}b~ZuhFW{IrJMsK~MJi5RrYg!a1iC zneyONf-Z#>B51wzeD0$4ey4U6>C?WtHs9h!-`Mz^P31t7aNS7{rX`71*%@ zw$FZ}oWEvdJYEf)l>qkN9;yDh>GPd6{(jehfi;{gz?tsfEuR2CEQ9}g6#lUq*t%l| zK1jds{MWha$JYMN8`*$z!r!WYJkZ5uRLCdq}{p1OT1*@f1r&;2- znh7!M;;BX(%T|6Xpz zU`76w0hIYb(EN>4`G zKZMYL*-S7_ABlg;Gc`Kp&T>s+uC9*UQYEXFgi+9GD+f@a&=kU|D=5P^G9Mk@#?Nzu z=NsO*t1?-1@r2LWN?=v+O&Jp&GJCxa3LZ6N^z;b=YkwPS3x-o30VC4ONv2Wk7?whD zQ}u~?|#uR}_|EZH2SD zF3M);R!2nfZ{{Z6N8%&nCch=?>M0?*={_#zX@`VTwW}`oYAysMEIUetbd)G%m!OtM zI%=aXQC=NOuz45Ih`u6;#<#lUa2Dm;Z$Cm z5*8at5#`KM4b04&;pgx~9W&YHmX6LWR%<~@{8$OOAhz=#12%_;!HvWrl$l()q>aLD%r| zvm-=h>yu{c7@_N~IP55|Ds)wuGK*8Vr)+I3 zqHM4UonP;b%B0W4atXI?fx1??a*J1V6*CtH8EPET2RzE0?WP(;*}K}HNkp#26oE7& zjMFp^G=zZOA#6X+(8L>DUypDh)y;sBzVBr0RU~ufx$7p#*4YY{}t?%HOM}y@J z^=r5DV;XC*5+f9Xjr#abKwn{pl~wIwW7r81I2?d&vsyrbJnI9O#u4sU2)(o2wRM;^ z5=?7ylAAPG`J|39OUA(L5(>%};anAh#fE)6Erh~gNG0R1uf!O|hqDoamV6l#O~JFi zT`3jSWYKLTm}*nw+p|GOn6~~Vy-qAj*1 zM{kx61v;=5^R303eI`{(tAkLYo zI_s_Cv+12N1}{IQb;A~)OvrD~?)sExFvM1E*d(gRAj_H7 zYbx1i7J|mdE8IjdCRmccyUpR7@4|B+>l}q2D)S2JsXV6ih4{P@3NKX>A9r)rermdU zB`!;aH}t&lWnXD$ZTcE~uY(aCpi=F2in|O}82`lxdQlv0z9NQO{ILWnDsd)%xqUzH zS|@K*HY%nakCxIicKdsoirhB;E_NZI;e*+pPa!7W<7D|Y+Dzb@Gty2_?h+a^Dk2B0 z!LRTbIO#DuMP%gc(~M?BS5S&4zGW$Z=WNH-*`x;!j%VxkYSY#_EYJX;+U6Tc&dwc^ zzOf1vQWeY%mP;N8jn1az6LIXxCZZI<9_QArzB8^J%D4m_&MbLxM)aPepNY`|#Up+# zGVWt*#6_;DO<%lgMv8C{x;JHg+HPIqd|j074VYqp#ryikMgpE4Um~W<=A^JN+QcRF zZE}J_?d!XdA)yNEx=R%kR0HWIomYG=HZMQdmlp1J$91+y2xsZPX^|x$Y-&J6LRQ=M zM(bFOO2;4c;tHAvI7Ia{6+9P|-h_ll6=rH-Hjt)(w~mo76Z~QnhpP<8F;5Vp^Nsfp z?^_EBj)Lb?xT4lJ^I<_Ery(OS*h7)_6LrfiZoql}?iipjdt*_R8L5o|;hVQP4%)ho zG6?(#z6S-dd&m60fh1eyQdJhE#GAvTECDLE|d`AJx;FE;M>*4NFnu?s);3+@!An~a?V2n6p6 zcoKybYR2u?;CfG8Ene3Xtp*5=(~m;7F6rL!(i#a^2-2^Tw8mnS;?%TGk*>hUzO~+# zdOmkaF&m>u0-RPWOLDq+J-?4GJ!JpPz?M?_UQwUobabcLg2}d8XCyRbc6V|0vt>f5 z+A|D>G|4{WSU9~bVIl7lDPO*gMaJ9p#=v}PNk)A#*^wk?1zD7sx=>E~BC7I+r_+KU z(td>|cPi2$qZ`Q%b*aa!BjS1e^;)sMCVEmrmY?L*rV$01*DR!_KXgJUyteS9Rf~z~ zYEY^yV=YpK&7;njOic5f^>*VOGpR^h;(-dNJ=9m4d0#_JkB}Cd++n!_j}LpxY@J+JJ(u!)vk^B2#gTU zcy#^tqrYW8VH*yVavoQY$MXNAf9qwp)xMbedz7&T}5Po7ZSevW{g}KdfA{WDZ=_ z_9PZlin+R<_@v+h8^Pvvm8Gr=?&j3HpI@^XPbNzwEou zG38vHc(ZSD+la|-XqRN<>gGXAWey9qO9-{`Z}Z{3>`x!0(y8Z6zfUUknp|nyL_&~7 zP+&h+uDU%Q?Hb#bwosGCgWR7teYdc$tq+M49G>ck|Q<0~}RM9vo`CEA97| zp(Sg6>?~s>a96YDjfa>01K}RjjJ$EYZIzDkX1|O`Cxt1V+vEhDrN*to@98lnEza*< zWvbn!M6LOr*>%ykg1D)0zTL@E!~IE-+K-k2=l5}4&n+si%DI;ov=xyix#MD-a+CKe zpPQnywRbbo8XfIlORS~{9DIT4o%xEJ*%gy zm3zlj!54(F21NH-Am2TpqHVET16gdg8)~`J!7sB8W6zLH7{#(wJFouKzC+ZgVcA#i_2rbUTrbOycXF54i z{vLwm)aUt%;YS|Ty16&p9<^)RE8zW2v;m4cA(>9-Qr#Q1jOGZ3VY12^Y9+JzcKm?eDiq0y84 z?E7%KSqZy`xmv=&!y$D$UH{-jemsZWXeg&V$Z7>^&Hfy!YxJU4!D8$ac|yJ{!cL>% z&k|2V1(vRP`yL(!m%3yIkZ<3zTnG`4-Ou(*i&eaomzW+cW|sSuxZ$~oM($qE`Lm>etz!OQW3u)CAtA*sbi!zO1GNQcO>*JqbL8b}PzmBn07y)%dLpc=PqV zPO{(SQcD{ziygB77(k8P7^J68SF#jLWKXjlIp#?#$J``V)M zI@7Q&d#(?}b|?(ta#(WVP1VlqxUH!VEZ)UMnVn`In2YF>?)E1n?5zHr$7wB)O%NV3 zrmGDJ`N435Z+$M*wKtTc$a26VT_NRqpDg)qCh@!S4LL(K;j4!wgwI}7d^DG>c%XHk z)5c3Pi2V-6W`eg}QrBUSZfJ(*$Y$`2V}+~pr@Je+ZMWYD_>Is%o|&1vYgACp>M2M5 zKC#W*D8%WD>;CSl{ozOa(bPdpsy4TQ!R{*_b1&QEPEp^W+1ynzBI|8G_JkLC?R zANiYk0|i&D{wJ$5Q25&p$Tw3#|M@%zq62>!4gdWiCFnn&=lDbE|N3Ss=s%z5_;YF4 z!U?#3=%4EEKM(l-v9J&@r@)z;e-(!Q^KFkmmj*VO0I;h5*);T@Z+rZ)v;a6C#s3Gr z9m@L;z5UOn!4nx^>)yYb{^!#ke=N)o%rxFV9L++|$^SoU`+uUUgOh2%f`XAISmXGw zuaNqiMvwe%2l5^`B!&JzQ`_Np1OHlB`lYsm6R!WM+CFew-+l~A2GsWMni1Wn%=qgR zBylWJ+`PpUEA8{fzAm)lp<~(4R`X}F#$N8Pddh1Qu|*ZFK-mr=p?EUMZLT#=X_gx` zsb3_yE!TJFI=%!C8DYyldmT$EypG+-J|#t>$bYVvM7ZorLW}+ttDUEkBimsKDPv8+ z!ml%(9R-9Q6~*V#UR6=*j@r3Vnm5Q%R)j)N<*dQ4^48CzH~~M{s^xW(ZGr{P)#CEJ zPX?VI5|+HzrpODJgD>Apw0!r&^ixNU2QGO4i?-&c1_E>4x@R$vL{f;KC6gjWjLe80 zrg73rUf(O>@5hniY7`?9_LO9cos25y*W{>`ZpzzcJ{8O}&+)jvLavng!YrTGI=DkP zc;o}$WQyi??a;y2OI%TtovRcd-yfJu$oP9Z;B$!TeNu|2I%a-4=R*gLsFx*Mp9&!S ztju)Ke!tBf8WP;{$m`U-0(&wGU*Ks-lCPs3y1hAZMJX#5GrjKpbUZtYoUw!LCTrR! z9?oRCwzTGWJ(mLotzT^Va4DurTUU&+1)t{ZEX{o1UGPu!Bp*YG# z;FuxL){BhqEEyU!4{Xv&d0IPLUrrfKIK`O~l?fS?Qr|2X+UfY>&6CJ#>8o*`=-A|< zl?Wlp^Zm`~4!V-^FWx5x>Wn`Yc^)tFKa~$YoSr2AG>}QeF}7xQo{)fpT1m&A^kNfH z__fcdQ#W0HbXU%Ov5{dCL_@>TD#5jUapV&+`6g0@tZihT+f2FcsR(@k;)`_YZ4hGu_fdWm(MbF3a{gmbfrQk}x2Mpn{Dd*mK9Nrx1pLBAqhjOBb?A4~ zSI0e~q{JE{=RPo((`7MhR*pc;EeM`4iuDac+BYR7!Agp^Tp!1GmNshDkDwRPHpRWnAJTTSGgX5tD@Y;hgqoiV2MKU~eD zs=PDqowrkYr|PwGE}1V@jv&6j96pW8Pdcg(Dd;)e791Ac1v_OlOXPM6{I8izu3sAL zSWBYpr8sA`*}Y3)DI@rjJ&XpA|JxJVm)l`j{IM7LV|&L5@|B~v??9BK&l|mOOyv=x zj(o+ONp`**8c4bNA4?q6+F`|u^i>v)fYYblj zkD&4Ud*Vx^O2LcdPAWR15>R$d@jHAam~U(qesq0-1h}G32&z0qr>aVv79c(idSy^y z81*A1rK+OdJ72SxBjAf-!kb4M;)W}&T=u#ao%i3K-&h{AuF#b*((9GBzxWOciCHnF z{_1Z*@dDfPy#8rqqkE8ha|wx5IV5e3LD8J|)dPmd^sUY-DS~`tzK`M>7<-RBZ@Qj3 zgvS<2qdp~4mW^}ixy2pQ8_RY#OQGoEw$9>xPHna$wxmn*`POLq*IJ$KP&Gn?(Xwo? zt2b!N+u3lZDew(m2SnU%Vy7)>8SW;ye_P;FW&5zYkBC&ZPTeD__dZv}GxkN}*o88g z=-TAMA+JB3#*AH6w5Q}X{<*UHsJUaPj_AT=toO_=?L7tEY{hbv_ex6S#_HO1pW_(H zpNsYiR+q#Nq?*g;Z&k=SY!%5CdU&^?6SwgJccQ=32zxa3+|g~4A+$DM4PTjY)A1{9 z_r@dQlrLQkohBcjX|zb1aOgZ26iOVctKQ?@wN}wrWcF!KTI$)8PJGdCTI-7p>vL+R zH&d3bNzB%Mea37=XIsJ{YMe;j6gBdcV0zrQFO7gGBk4h-0dF965SEF&nDSy`ynMAq zaW!qx@l%S0SCX_-SgjYDxWlPe#vH~qW!+Zq#?8umKbJ1_KAH63_jLO)*_AW$!6WyB zp@RMCW5>oTA*FNr=1V>y9TNrxLtg}NKHpHOGM=>EzO?Lb6Y`9u%he77vtq$XHyeq7gt>diGXz4z58DHO+nmv!8ne2|RVy{!a`;lX| zD`7S0OI9v50k4l8*$%ELn|JK83I)xC#k|dM|2yrGD`xxyH0Q64Gu5=2+EgdJqnn?m zyZOc#m(^Bqa<|j=>O0Pkpv#I(IJx}q+gxeB9y-_7a#wx6OBdyt){%FhnzzL+kTP3k zpLBv!?o=%$b;!Y-c46(Nk@wf?$yVkTOTYd8_t?_+VveuqgycH%b)(cvSnu$;T7=@Q z=X%Buhfqr4^6(Pfa^mt#sjT9PKwUb-7M}aLd=fPrY9btv<3rq0@8bH5`l4@iU*o1y zEa9Z}^7)xaNkh`&Nt&2A-uESMxjbKDoR2i^(Q`@4ynAJ)W9^7TkWPTy7%wvEi`vha zd@uCRHNAB@9>Y4_ySLV>(db97cXUK8J)BV6Q*T*O9j4P1P2=zEXm*xr47i>fReRva z`p_go_3KO1I9>XMZJp_UqK9Sq!VJ0ZzBcA`{?r<(In|u1)muu!Xb(MMQPd+dD_js) zc3ALcC81*#3o~7J5_IAjEWzxI!oEE}p;@}`isU1jT=kcTU;&M$_{UO-I~PTBGeTpyiLc1l-Mjat z^#C1b4I}x+2sY)lVK)6a4ff9GidV5?R>VwPXm>@(6tIn6@=xBp-p7s7ZqFNE2MtrcN4`oiO;ong-u-5o z3c1X$Vo%XZRZ|>6Omtdu$m1MC5w!Q#rtd8?#QEG!*_?cP?h|~1JghH&FjJ6UB;fh8 znSywm0h{NhnUnoP$9rZ@^iV#Saq~Z~!u-KZ`P&0)z*`MPJR0(!z4QV7=Q|<)D2>=1 z1%dE$^Z(%`Kj=T-3Hftr;Aa;ER>i*+_J8>J|5zHf+#>`u<$ss{r>*e!aU*&z1a8pf z11m89D*exQLjK$~cqat+_ze^+E zul29eLcqKMTmE2c8?ZYW{#6=IXa8@_oWEH!$jcK*cFNz@8vd~gfxPO0WdHnUrp@2p zBKc+7faSUW)U?Tqlu$$C!wK9y!VX(iA95h_#=-HqooV-UOp*19?m}(DWRs}J0L_({ zw-o8ptx>E6Nd#4>bvM#y9u2*odxguN7G<$;*Y}J1t!vNIBX5)it*)5YEJNBJ&hW9b zrKc@Ev#{R3Fvk~-e&B^WbCdglp2+4qW3+} z$R0U;!l4t`x0FXtZc0@dr+w!@UPRsx=N5V?R6dbB=ZB;G7){+(i10PtuiuL0@cBrB zwcLWWMJ zK;-{Et_B5$_iqmoY-%8v<_Ann7%)o+IHJh^hx36@RYvz@rV zdB^Xx-yDISp67vu`2$A_6MB6fbz^5|Ge169awmlAL%Q2xD})$*M`XRzY7udAcu&a2m#Q6JBHvPA_b5&7%I3{2aG}(T*4y= zGy)jNg!%aakRh-g!t_u9APMOaIR(Ir#1OENTL`28DhK%?K+-|zMTGeQY7lwOYKGTv z76-e1K`F3fTHvgevv%RF15|fmLO^9#ZA2m+zT2T%t#JN!Z*A}9PS0&Iw!XZaC5fw#-Y z3#LEVJc8&1EJPxsUwbS7!}v`oh&ZCazvGCM|33V8n*dj^2LA8Ev#QVjAlLWzFG%AB zQxy(^zyCoL{d*b$?}+g4U(S9Z3h_h1F@j&Uf=8WULroB%xp=m#Rauqi79COw!Ou;I925VPUmAu?i+SrYOLL*zl!29G0=?5~YI zfWg9s4EFGY5CS_3Krbi^_Vj~oQm{?~0D%EOgaCJjgAxD~fDha;1||+jhwWVg{1O%- zY5=FeVeo+MZTW@SKT^OSCjal5g*?mt58}vmA}9<20OYt3d?aW54e(EZ79ntD89fw? z8Au^vpfl5hYl}fTlpowm2GU{J6oiji2)t$v(!og!1Xtzb1=Io(5aa*|fgcowF;OUx zGQxn0z_utr8t`;*rvNAhLO>eu5Qt28E3nOIAPG(yz@|V(B_jTJ@PTWU!G1Pi577$( z(h`FA3=l791cnnB?-qi+iwI-`xPK1R%MZpT0M=T-SFpzmb}t=FZV7-J;sD{ptP{{d z_yhs+4949AVWS1tCxH5eVbeztobU%VfVCa~7tl-47AOm#hTw+4#sHWH@&ix}m}tnN z_1E4neQ=iosNyW-gLf1W!nx}oC>t~eHtoSf#d`3=I?!LC2#jcj;30U} z1at@y3IPOyJctmfPDIU!P#Crhg7lA%7eE6>x$r;2VDNw_;30A;2zba4AnjivShIs+ z|6d^=*c}JDa`p!yn9oA6eGCfzLBQ1w0Kork2!&6r|0G1z1FIMLAF>VwQw6{R68H~* z3jt&VV9%2Hgy3KP+h4qJOu)D_j96eY8&T_j74iupV2c38-MZsksfUy7ihs0ig z?Og;Xw%}9|`AL12Wo?=OA1^fnygL=J27yv5kx;MC)gG2CNfiOG4m03T#6KIEINM z1jWK61z^^Ir2-KI=p3+ScnCq@7+etp0ZZU8?F0xJkOc@Lm}U=Seh{E~111D#u~2ZI z3}^(-kYE)6i2!&tOa#HCng|p|n!!twwv1<0O>%Xfth>=ofmE# zBE|$BRSS;Awby!QWXwa1Sf()1kfkEF4$KHP#0kG5jp$~AF$;a zhEGriTyqOl5}-H$B@!m5VI(XF$208uTksWZDM#QD_8J)Y1_%$44_p-sW)Hvx@Zmt< zT9zQ_8_3NI8?zu#h5%k+UK&szY#zZBAfToI83k&A=LCKnIF-N@U6?8hpaT*5O@8oK z=6-pt&YXaJ!29^0Ispav1_W;Ms`K9B)#T+vNh7(DFU5V2I5p1qT=+SK%ikSE+#MH# z(Dn@uXpMUNbkZ{43dSf+ve)X>g)2?UFpR3#(Z{y+$@u!7;-jJYAA8epoSvd$%%7f0 z@)n++p8ETOKoVyYglLKQ`5 zogJ;*==Fgo4ZiaU@WEd(a4sB{LrTgXe5VKe2e^7*|AX}33l`$y^gQa0_V+Z+oIxfY zb!l089)Rwtd*ma^9@U5N7(IB*gVR{$iH-~Or0&kst4ktU2Gm1yLHKhoDVp2g#kYRnmf=00apZ413(OJ zy&-Bvls{_$@Ftk41;fEv3y7TXPz3NF&@xgAj7I`P=?oITv54q9^2iV=z@!8`2PTQ& zDmaKC^88LiE(1$NU=D$;Gs;1t4S0QU{{{kAXVe3y3fMOY!e|8E2Y^i&JdlX~FJHi! zf&wSPGvyH`Vi1Z9l6r~AccyA0Oe-W62-yHY2r}5KH~;}>vLE>`OoW{&@-P91)DkS0 z2oT-CZsG;71<;0f09i7^vLG7!9YfBAEP-G-{`L)S0sWs#XXN$~aYU`iRtF*lE}h}t zsp0M= zKqCkGu`o>21x`d5{16#n1|^^bAPNCZ!sAe28UV`?CLn>j08|1XEMU3|%mWC>AIM60 z^vt6U^c8TL76Aj$4l*>5M+9?9!elKN5ugtEUxbVVWD0b31oeQgzs3(wg)asoQbgd^ z8obtbCVF3Yvvyrfp z;49!!0QF}MPMGf%?vsa?JgXZRPe8r`%@RQluv%dM0Ph6a;Mor$xXlFXCSt&UkNy4y zt40vEP71FO5d+sMf!~O7uu3cxKBqXC?N!3a~t;BinPAS&SJ2IK|k8hAC}IT4`<+`vUnf$!m= z=LaMV@B$<^J53`|YHj}c|z zEuO{Ud0=bAFkXg`Pp~-hSHy@AW-2`V4ITiK-`f)qW+}M!2%KpL=8>75g|j7aL&_|Qg2?3?%Oh3Hq; zEXZxb(I!7pOm|)*9&(L;@@!d5gK!ol+^HC?un0}JVo$eXUso5!mXovUl)*1?ABBiz zZEzk%hQ;SnGwOohHFiA5ZO0EEN*ukywo-IZLMXX>VqU&Xm{N1{c`MO9GTPpNnrb<1 zjb7p%W@&DMsg4$}hjyp>qzOI5CnhI{iB6z6CCEV^O~uuUez4qgSFN zjr-2~NGf8m#Sf#Ma))5~5~bRit!}=Q!Zn>*GM>gcUv+UMx5EdId!5A&Z~mG^t*5ik ztK4(nGMKujc#7%`&tue1cAysWzdsoopB(gt7P;*84L7von66t+e=}P(!YVBMfOhVx zB0Fz|M4u`d7mhJ`<}dUsZBfm6a#4ytC}ig%jOEjjPhxbM@jj?;H%x=T_z( zbn)(QJ_<_Mg(!)}1^ch8`r_qtU+|t~HD1LL^j!Z)zBL(Svy8I&;Kx3GQK1WO*Y zldzmQE~X8uaB6PDWTGo!y(GU};2s>9BL zv3Y)v*U=G`Vg#y(lACLA31w}U{L|@9hONo5EA44f%)>$yRJT*b-Dz1ge%Su?=S1YcebV&N=ch$F;{5&x_J{4c{esy%3uqjz}^a=0av_rnNqjOD7qQmgX zDP8rm>e8g4$rrmV51qUw&&hNjazl>{v&nuG43MIY#Ge`_<>s^;az7Q-9X&1!8RWh> zn0(F2%tl8b=TqYxPemhLu(`!5iWWwN?x{m53Wc7Y?n&61*T;6-$pZYByYWYw=#LDO zPjT57jWGC6@3jq2s0}xaj5J)FIu4&CWUUR_@uKPQP4-sh^NDXkojtHS=f=~CZ-nY7 zyEh|U0Yz<3_kMaJ^%cc@!dOLIts7BhSJkwrbcANMfyCw&Q4f~<(*Id@`AB4?@+3_WuUMxBn=X?5NQs7`Y z^+d@n%+~lA-}e}Q;e;nxa+_ZGySMwJH@YVmYglb|c=jelmc8qC&##`KyQ8-MJgwag zFg;;?*tsi3GZD6Hc(6Nr{WRdxdSj~hJCTWChewm7-Je>`yt?KMD~f6?W;WG)Bni4{ z_6ow+onP*9%+dL~rko0X_u`Aclb7gwYTe}7m`|JPOqFZqI?adMCzz-EDk$e9e9bQeJJAcAbU}nt#@2FVup}s4o6s%TTuW=Z z`42cn%RWk^*JgEVdmWanJ>q!9-|zpSh)cnVsYv=@+UctSCiP%sX79o5p>1@kXzAGV zLf&Tryc!QUZ;z?rs5QLhF8Y2rJ)1*mdT|72f?Y0tX138kJu%3Ay@z#GZ_Kb#oJzDT zr%2}ubJ(7NXa_|GVIG~Dicq|nuf#h;9jiF9KO3mu8Jv^wn^eH@ zObc7X&|mqSyK7w`nxI5}g8ArX2hb#GBigr2T@{Lc>va%&Kwhl+KvDme9g!0+IoS!)lCCLQ! zgY5gvZ9)qVWv(H$n-80rv+`@@3QoCRE*{ck;AX1Ct-I=Y9t+i6l~$uQnA>30oU8QD zEbe<*-|3daP<>#XOTF?W6j&Ig^JnHX!qT{uOyD)`u^OjXGQ5w4Cm$Wt61(A%G&g6$=xIhsp=(pl^1}|xb`99M!t%2q;$=M zSyH9@Amx#sqGb5h)+qih@#(0P&njs#%}==~hEg36tqhS{vIuk~}=7&IGzg z853Fke5#~IQBgQ7Uacj;FD7Y44&pO4#d)b)U1Pms)<+sbIdzuA^Of&^%*-w(AoP!J z4d%4nyVnuGKE2w!SfSeb)RU9p=kz05yY5BW!N)0CQ)&z*{BPf_q!xPFcX(cTlg{n( zwsuH3pHKbS!KHRrpQ6&yub<6=)@w~#sjcn1T^`pxXs^;Tcw4aL8+9o{fxX+D+5>|6L?dinht zDfJpw-;1J)11T86wpiCYy(ZAn2iDu@3;Gh9CT0V>T<~<*WarA;+=wctzdP@FULkF~ z+oX2bPpB2K_*_fq>%)bPg?IUt%WCQeoeiipiR{m1R1#-PQx-(C)y1Bv#fF~G&S=uS zY?5I^d7Ct!({>?>ST#^=R7|ecKCC#1zePgNV=b4BzHM-PTRQd#f=|}+-H$M^-HiD1 z;x|eZNRlUp=kc2Icz$xngJI?$7SBFJj*Ggu--hAr)L(ddgS`-S5?w)Q zw#;FPIsE>mY}1zN!jjJyBD614Jz9S^>iF5y-ZlU)S76M8Os%`NkXIrnBTOY>+~Wz> zry$j1`6DbNdC5LomzM1{MfV9(p&NLXGO;Z2*IU7{n_>=1Xo4mEhBom_E5V?nGy=_b z^q6?jrO`>5Z2b2oyzi2>`Z_nsXCHjLpYDsddMSEq8dng1M=!Yh0HaLVMKy=d&5+Yp zALXGT8ds%&RGao^XWRQ9wz~~TrHyGb^SuN29#ct0V-S-RnMS)Uvv@*ECKE}!8A=N* zm52n=5?2`HkMz2noZE|g)8xKBOHY;>uMEIi9X+^fle}N=@se9tcf!qzjiU_z{zkx$ zj`i+H?<#>bj8buh%v6cnma17-3abwH7N>GeM<#q-qlJzm_*TFJ%vc|#@wo`kRUMVk zRghav4g^vYhE^Lo4A`_C9)6byR52dkl8vaAyTxh7XOotb)G||F9A&oqK;@mDmj=fe zT`CW5OgFXVq+6=IF@0}ZXXk>EDCSe9Xj3e$ufc92^i}$kjL`Y@6@PV9Jn@nSqIkLG zEDZl(y+ZqQ7Wb$GV?PRC#J3SdZ=@UPO@C#G{Uf$oWh71S1EHK9#YVqSj@M}RxAhRy z&gl%C&)cFtaV{qQ`ufdQ?;E-<^(c}v_$1{wJxDZXNK?ITvtf35LCz=-mmqje*u&;V57tveUuDem6NL?hcY$TK zyk5i?m!c$)L~S1~-jjPJud4aOeIdF2$J&lTEsPU6`p1GAYL#`j(P{9}$Gt*dzmx9e zckKzUCKnfQOH`24+)na6d1b`yT2P>w{ro1&D(TbFW@AJ_G`zs$#`RlRL-KsRyi5TKL*h~00I#Ci;^V`pbOyf7t zt3uSQn7Uqb#A=ld$>}$5^I-wHT~ciy$=bxU z)(3$(4~7_{u2-}s}`?bTX-4H zLq>J9cd0;wPe^a?3b>J8=UG^a4KbrJr~YSouD-$RHXO~S(G67Rb?@BQCJbQC;}HDB zk7_H7*|9ZJnk4DB^_&7F;UV?nD&595%V*-IknMnbr3P~69|!Vo2{+LXM6JIgx;0$z zQ_I|DUhzCLxvGhu`~5B%&fe!CvdPP?PdW84Xk^uzvBuCY zCnb_aNg8fFpy*V=wNGny;71c-;qoOR_ghu;fhT_F2MM2^jG4LDxErGlSZ3#~ zTRqa2w-(Rl;p&ypV76_>5IQ7HLSfu^&mVO$fxnHDATr&k`_olgJ}$@E8CpU9%LFE( zj0`VEO*KMxmgmm%;uH=s1uO)vm{_WWy1J1}-}+A26>dPcg3t5#ZrsAB*P`K;UmLIO zncSdN{%gH-`agMsxpaR zu6#*O!I@EjyT0wh;O-Q0sL{i$WBr59AAD78>1Nf`mFMu+wqJkdy@fq3md8G`{iUHz zoWMc%oizSk4dvwNzF@QwtrStA=bA@kJ7%s}^+^f>L3BY5bDUTa{2w9vKVzAnY+O(b zM158$Ncr;o!npD~)`mpB(QNs~_O`IqFINkz8e_z%hu=DA=zA&Mq#)A5PLcHrF*l44 zY;__UR|$pmyY%f<2(iiC-)ATz4R2_8;r(%xY_Cq~=Sun@=2B4GTSojB5lXM=lB_ds z1?}g%sU%kHuV<&~$BejCI$73tlFa(tqcdr?DSctFX+Xk?xm|d#(N8k1Ye}4%`!a9x z6|UYrFNU8t5>-qp6}yYLKSS8#PL$a$tPvVqR@RdJCV8Mj9+`3J$D!+SJke-eIO{1@ zD}hvm_nxr8{H1vRXZ#+K!y1Zwho3QI*Ay-%a+Vg@TJWSflOIR6_|vlzopk;f8N`~G z*d8X!XR0>2j9yYPX_=a3S1XCo{)XPj{6`Hf63$G` z)I(Dp;p$4tnD;%b3L)3|8LLhRy?RUC$d&P1%5n}jv%e7M$MWaxQ#7b6lhV4)_T5Ik ztf(fIO<&LWq+%JnWb(vBTi=iR=0o@8S=)mS3>-030ZHjZU%@YIE;kRIk0V6Cb_Me( zU2H^uDtT$(3421Wms~onfmhx3x3ve#=(HCqNYUwPRGeliaa2V6i66a^wu!s4V>F|C z13U@OZvi>xnktaf-$Aiy(THw){G;fK3VP$pTavFgp1qQ)YBubde^nBMliY|&8}i-l z!4u~vJKZzi)AmTIlPKFUYaXPF^QHu}lw7_)7O3nhrY%jMZG^wyx0+KnlsL{aT1LJ} zRlB(#@`!uB!R5hFcA$i%=&|ruMt#&cO6ga0_l@R%*0}a!(AA(EgncYdnCrTUpZP;1 zHF@jAs3bBs3C#*!tH5}Nc})qmWv)1Hi2Kb2F7J)XDojtBBaS++Z;&XFIi_CP;O;Tk zlZWk{<&BN_V&s7{1R_#6qLXn?UngrvUab9OuIb0Bv^)L5XvCRU-S@b$CzVQvgU9T; zgd*z;?!$C#KJ$^ZPviYtB=L`{MA2pJzkDVMl!0hzu_pd#oWfL@loWMNI-F}ac;w9e z^7Ln%bY($?sAQp0s^Lqi5^h4Cvdo{hRJaS5M>wBg_q@wi$39&YQh$7X)_*NHrG{Hw5s@=wuZLQas@+NUiUw=(YXWrk&?37Esn1R>E??4XO@UX+! zZ@29q;WRGa7~H@bO{|W75Gs@@7fq^-{exCrNzdAeiTeZRyAOIw!lqg4UJ=vSCFyq9ME%oQPU^x4$MzMr`&$$4GM9#2W`dGyeNmO? zt&CaZg_5n9{4ANbMErpOtJedCXeTR)j~iDo&V9P(l|dGzapFWq z>8Cn5O8tKJptY5`+4-fI`5g0wpsbF{^-xO}^v#kDjG2u%etdaWGrWX|5wi#Nm~~Q$ zv(t7S^f49d#F}if^3z(23GITAwxHRny=$ajdBBhQ;P3O2rlA;Q>vZ7|2^t~x)Ki?3>(5MVI!h46UsWJV{|V8?CF(chqkfC-!lapxa_i49g(Duk&+0!Mx&mm7}%sXo$z1 zi|y{o#gb}_HOD<3>85hB0>yFh9$5$5N+ut;+I;wMj_l<2Tm51W8jjkCy z8HAPf)r8YA9yN&2exdZ^#Bk$xsW<#?1w9sXlVRU$vpg_%_ron4++}+HVsueDj&gW* ze`++Xj*L&m>Xi@fGL1ns%?Klx25Ll>|0+(Mb-w=8mG&D-yxR--%}bwqnVTpou5&7K zVtMZ9?b&A=&Eb}fwH0=8$WR7-Z2uei6~sHi)?%WAMgm|pC%Px)QdW}V z0aNZ=i^&y(ujwqr9U0c-=t&z5-j){)M@rG(ys*ZwjQ7mrc4|#)98#qj&c9TANo|}d zyR_u?yS!H6^@eVU@eRz#^PQ5hMADi4V?yzEm5IdKpALNJwptGQDK%01FBw{RGYt5A z_fmM5S-k#GquH4hr57mmI)*LBa+7MdE)y^#TVgMud`O*c3730uGM=QVa_ zXaMc&>kd8xKT>;setAb8TDP0v`_MR-%v#IL?Tpxmx#myxw>A8gcJya0$mQ=` zrOGFVDx$r$qL6wa_r>>8LC?|zXS0ZmbjG)>pWMnxg`u^$Pwm7?<`)Dd8zb1X%eg!F z-X`f&)lpLRe=mF@txe0Ph;P$1;W65iC@4kf zt&VfEx01ipn|HBqjq^X=y~)dU10VY0mGGpfzE<8h!`My&GDyVofR^0&qaA*6-F!Ej zlJ>IQ$vta>j5ac_LJ`U}YIKRkVx}t=v03RJhCZ{iMykbul}8;M$3+`tm-)(bz;ad^;p<YElC8i18u5Sx+jBI%3U`;DnCyLaUaP9S=e5BqKK|1QMSagm&(jW!!7=4ANwO}QAg|#BSkhys^Ow`4pU<>NKOJX^%rcF$)Gh-jBCEv^CmSvvX6Fji}JXR@2 zQ>iS#aiO=~HAnx+b-8PP?F*u1f#3oKQ>~x4P5l3N5!DmUji0+|}2~sxuFr$H)$2 z>g+AkTaanAu^7;a>BkHxaLBkA>x~&-(i-FLu`j&!?bO*Rw`)trj&NQ)r_uW`Rc?7R z-IP0Aflyzl!r`q()?RR+1yTIvajhcFIbDo<@0$ED6XNjWRwcAk3Of!xS*;oeWLCBl8ZWH<4|>w;U@a?*XQ29IBxpF zWA<7ki>>NG>xKx;`9c-7%+%z%X!a-3X|KDY=-%hP#54^)bSu&l>VIDSU^w){B8^FN zWF#9$!4P-G3yc~5w~(Gv^h9&{>rrSz>oH z4q6OXC#+4ys_hk>HJ$~+<2yfFJPG)rOCP`X@Wq`xGVZs|XnRy~#T~t!W9)cR@RF8@ z(2=8{50|_-DW@95-zXDi8qB{>jwuh2DmHQtt{1tR zAxTo_aM|^>w|o6D1I0W)I!pWXS|~Yp36<*i`)Gaam0h8+oCezpOaYx;+xp+?&hpf@#wOXDy2OM+Ijsa()ZlvYCG>xUFo|?HSz`HgWSj2$@6(vtSNWemzK`6 z=oHh17n(k%tbDxFar=JDdmp0MxNH;8zU_$Ar#Bu4+r_=X>r643shsnS#PfTp%|*A` zHu%PKk$|fqOo8ua&P5T<@GBFPs4r)&tRj_G^=vimrS;x+Ej*FiCQh?!A`TDvc-NH`mOK%EH7O{Qad)G>7du=VBg=Bc>H@=Z1t+J9WmAs5=HvW)_ zlW3@oU{5(SkA_&GOkU;k?p?1vq3N$FpC0a#D${UN9QQ}{JpUPcTWIS|Wo5sX-YEAS zzTEcx42|;^`j4A2O$?fg##sTM9d$9>)HUB^_{iX>lS!85+q zZu&S?E-XCmhs)wKrsq;x^`^d%-M&LYIh9s2h~`Q+D8H9+^Wi*N@rpuCy~g81N)uV5 z2j6dS7;|!tZ$PZFH8VtHQCyXr0y=CKoML%rt1sQgN^sD;>Q8X{70E~83PH!41MXzO zpUAk+!Gb&ZCae0! z($wqu?>Pf2QOcAH&TjI$MgAIS5G*y`=4-}x@znk1S(WA(3re}!T%R5%I4V_uZzC((CiwOtStSms>l8l}f(m zk82YqT;*tPiW{<+C9Vhz`b?LWI+3j{;j#F>Q6=+mzJRMyyXz(PXhn5*9}Yzz>oG1= z8bT2hVvWZckYJ}#vh!qMAA3>ObgX^3ke;ghc(F)a`}HM>Y0SY_Gz!Rt&gRJawCp5J(;h!6|kz=u=M2oO5zq&h}KFCs%otm1toPfvMnA< zUt-JszDG|IJN4p$ejhI{7hysO2I}cExzAD%9))W^t_zJhP~EtmOeDl0`A*(A`-fW} zt-fiXrl#)o>cDJg_xl!XhckH(>(I=}`&b!w1v}q#2avxJda+JHw8GPpE}NO%0^xBo z=h>=vGrgDIF*je&eC>l=;UP3YvFtOPWvA0ovOzW5e3tB)Euq8q`6&f+H|G2BwED^8+ZVS- z!o1&Q%&9bM-15FZWk!tUoD<5C|I{nm^j+aSR>D_=PuZF;EawxBCl`m+o~kFxqeGcn zKD1BmU_9OHV}Uhxi#X`A0(P7oy0IqbZ$@+36=1L<5~`ddwk zGmnvZ!b{|KoUPd1b6(EAc|L8QGC7os`jg-6U3!F;RDK>~xnh^eNuuam*4|ga_1YM1 zQ&r*TjOUkXeP0*HCT2?4OI_z~msRgmL(kvCNVv;b?A*1DyLMgf;T3^R%6i4k*1`7W zZ4E+|$F_Z~{CoYjRJ~R)WcvC?PJS29JztJUG=MX+d|j-99$L&G--xG;RRjUQ-L26MGbJz%McJk@AkN0K43gt z62?|q-vQ@l$YyTUWY4sp!Fgp~U{KFUk2-o*;QwtnBWEI`GCO^%kl9Pr}uc=hr824nnV!dOCRyzc|)Txy;Wcy;r%_ zD}1UoR+R1QPSr=B-?uJ!7~M5WeC+YFm<(+DSwktC==7{<(*Ia|IWt$nh>)20)vPx^^g}!Qus*DO-%3SLVkniC!g5?mySg+syr7i%Y!JqW96=nnTs@MgwQNHJwbds)3jRxsVb?@*7Hu zFCsY#iF}JGQEBKmxU~37m~eYjHa`udrR|qIY^KJNGu)wXkovJIn0NZj$1`L?4C=Q4CMK(r|$Q%jSo#s&}wfoS}qEs`s5LZ;kO^Y zYp|!#=bIYMtGO!n=<4bbDIvP`!mY*KF=A=?wW0@_ez%S2TrPa>rI&)-h%L63OVGBg zNcChFm)E|7M>VAD!M!~-Jc9cedrH_WT~DciiR0=ELjvV7W;8MF9~RelerED5qiDsg zUwPq{CH!KqM%pBn6zk0_b0UVT2JtZ3$M?xo6w}ex%f8Kcsm5%!dGVO~r06>qkdN48 z=Cwr`2X7oW2AA>UsPcyHcH^+^FW+CJJt8#>mOQO>xz58H~Qk6VUPGiPC zWsZi4YxHI|V5x+n_9`o*f|Mag1Mim%MYZ>>{=?ns6R#&?#KVNe9+wPucPn$>nWAN0 zXIEP`)fGN?q8NF}g1PO*;?oExhIn$lzpZ;3U&7AcjaW!v%`R#r5IyoYK@~B-wr$(CZO^P(W81ckHMVW@%>MTK{x~P!kCSvN=~Q)9I-PWNb=}u>NB5Sk zMtimh-VdVj@$=q7BA4O0GvlU2WAH$EGAqBX!h+&dzgG{!z6Ymg!k2kl6WD1-$G9>~ zGEiqt&MaOQs5_+ASV>bBA*u;TuLm?90!Ty28-Vc{nyrk7VX^ZNmwVPKBcg6Y&Y+c} zjTiKb92Mod^ckhwX0{q7qo`95OhbwiDLzmpZfYndY`g4QM{H^JWoARefG7#1+&}Z> zCs6O7_n&Vp?qMTZ(5Pwlp<;8KBVXbiFy_Nc=wGw##xGx{q3jT;2T+ovVBgF@^2jG? zeA_AB$%iuQ)V1C#6=>N zRiH8VR)^t=^zK~=D4!0hwuU@YP?KUv?=~dC2`i`*5{2H*IDeN*!~dQ5EB+mCZi%SB z5;2qV{%|hCg>6u&$oah^Axh-$@h4`w(SkE&KE%GhW1>-KHz`zDY_n=T?Zu@~w?x12 zmGBmNF?LjyRM_Z}==wK!u}X1C_&#T#3mMLW17i;1MRqp>0i|TxL&;?Ssx{LCs>UQZ zlGW0r?46cMCWc1k?~(SC6|d90yXyNvRTDn9RXZ@7(K$2Z|YQjxjjTN=7+ z3?XqZK${|`sY&yE)G52Ie?SL7xXl7?B%t1Rs8tIJSqAB$+6L1PR3c?EX9F9c+C~wz z)fn3jA}DSjIQ+^ZYjnvSkv|_WiMN?fiwP$z#Z4}CR>DQo%=j}KY~OIBkaZ}Q2;sWr zZ{&?>M|tidno$*eyXbpd#G}Qo;7jerNJ+k2iupj+vyU$!Nk4G0xJ$F+uOyif)w3Vm(uw_|lfLfbZ7V%*YYrr3Y)^Q^Wl@a-d|~0f$j54aVL_2f$=4(wY;wDY zRsW&)Ft#0U!F>TWiqeops7nU zh{JP!&cEf8w)CRdq|}Q`LRy6KLBF0O+}~UVNv{>K6!|REVzH2m(D%0?Irto?5V11<)g{ZzB0n*NVe$SHEew>dwBHI1 zEX=SGJFnKQgSTp!>~h$|!;-ROoDDQNS&)I!qZD7z(AS81^}Tu7q!FiTui-@DsO>pq z@p>_~0+C6p2^~K3&MS;6lSvh*2&5eDpuH}@dLdh#_UMrLS_z;TyPjWDe`adZ`q2JH z%nTm7!&76COM8BzI^ze>=<0fiQT_$hXEeur# zD)c2JRN!_83ZI6=JYL`3vusrU-{Uc@@cc?n_W*H}#|!AtBSTiKWB+x_gYtVBcXwCz z@xS9X`iFr`Gt1i`QG+IYU#Frvb+x|-f*&s@ab^S%QW)$VM*EV zRf^>gxDRv(_Egh~`U(WB%zr*MW9n1KRbBT+LK!Ez+Y=4K$(Q47b@ulQ;)3=PO(pT@ zB!eG9e+8{;6UXDK4B}FBrI7|>tp<8zB%9}NqmpN_F)UpLt0qR<@TcZ@Q*e9ky;bq7 z*m`WPwQgLGhM`teH#(hC1Kj=^=Wd2rIpMphU(W=309SJ{9u6?Rp8c$L&U65SQp-`$ zt(A~Kpii*ftRev9#EKhCwXv~mpEU7CRWzyJhtu$a<*#p9IL?c{C>JwyP zXp*q*92Y7^w6yFd>@VXl2e?D^x?9=vjn$KYo^URDQ_Lsf?Nfw6SweGj=~u5NpfPcOwme<}wWFxfo z0%UpJ2U1F3#{@T&t|(ucgW|#Nxgdx;o?!YlQndy=2mV0zS@1I`OXz1+AerZ23v74~ zi`V&GRNe_sukj?J=JXdi^RXX3bOt4R+u%4USmEW1aY#7y!ol^6Kl9BAN+a0;4K5qG zPMqQZc+Xr`&i|@q;BQ_sm;5ZwKU*uO%TAL<9H!y8ko+rpV>cMC;TjKHX(qmp@(PId zo3;TW4j#V-N@_1RmcAE7;^wb3#jVp5hxDVnOMDC7f0=9kmpm$0cRp# z#FC1Zb|(gjt>u$q>I+AtU?wIA(gj@v7R2BQ^I{q;lz&l6803&)+tAs=Kvh;$Rjyxu z4F#^d8>LO|A2qV54$y{NGMqJcq5R@`HGE7MN4Yn~S7wfru;CFKt!pV^XOR$=zp)lb z(4!ki$T>xH2QJ0frhpqJY$s%mV_W*86tLGRjj{=sqniq%Ryi;iMtz3$v9>9mgeFC3 zlrNNB8LHKSQn8y+SDYf47qfTE&ITKe5{kXZ&1zh=UCNFOo>w-S4RL?BC)MB6MdlZn z^%tiN9!mYK@6krAGlIABYP^I+XzxwawcTN(nWrEtP@u zBmF`MzHe;|0d`%TtUPH;(;u{q7a{+IgvU^&k$&54>oiiC^NsZ>Fl#SDHfN4WFl0rC z6g1Uw=N{9${$WvHkMw~JMhL|-m!!L{=ht1WRJ$L~cUS3d;U|2Zn9cf5Sbb*(wiqcl z|50W`g|rJ|#S(y5RDT<&Dp0)>-_qTI-1g6Ay2L44MTU$el26J>QPEn;2kpNwgvWsW z#nj6EXlqKw5TS^K)*X?Zw%NaYJf>;KVSk*c@2JamK+B|4Y zIuKt&Q9*q^A1tlU=m-MqbBb^uQLqF z6GeoDs#!u?tVBJ@N(^_=BpRsXe@#{q3bJ!q7kd7RWj`n%DpBw%hw(ljGd;X!XqPn7 zW!)&nK*?KFl6D~jhJE2nsW=`V*xVf#b_$4%3}@hXD5QUT#T2HM8VkO5HhW~h%aXJX zvlZ_OiygI_7j({{)F84skmkHJ;?KP|a4aT$-GT)X%U*Lr$5Lb zGaBTNN^s$j1)>_VDa}-3hq_>&Sr6n}!+x$0h40Fa4>vL`}Rb!{Z z8k;a0^r+pM_Jo#{9t}CT?Szndc$EgmRkq`r0_=kn@CRm=Kf|W`i>7}P6!9R~qc@D1FPln|>OT8fmXz!N`lRAMung(jV>?)N%)abv{3RFo zD^u6L^t&dR`k#?nJQ<3I|E2ant6i*cd>-Bx;&YYQeK(@P@zrjqD1IBY6S}bE`!q-m znO)1bPZ4`rHsWG5^6&=l1(TYYxuD@qPVck=O||FGQw}aYoJ&OHW7Ss&FIilbB%Xwd zqJJlQ;f;n?rcVbbSe({pHJsWx@oV>%#zAguixkDq`&*XKz0ZI ziXd;q)Dag3$^WAkCeV{(1e$$10y*b%$DT^ z>|NB#OK>?7T=Ah`>HUmD%N>8ED>HRUTw`zURh|4~ab-fn6X$VnUb^<{iAQy!Q@J(U zhKA;mvBm4i%~L4?hiM6#rTksZ@H6%&0$4A>>lk_E5y-68yM{?qjUn`&O!4Ewy#z?eOB=gaVI}mO zW3s|K^bOkoXkqw-7?#B>2Kvz{&|>@M=B12uwO^gBQbZYV)mBQjHL3A_O!01j@~haX zT{021VbK@r(ucaViyRz9xluCbz!YQRZZQzKPM^d@>lE)m_8>TO(#pd$;I{;8$1zs% z3;VG0&wd5<`b~oB{yI<~rtZOLsUv@4SH)bvF0Eb6F;z_CMP8u1+cf1?2-7!s_JXab z(Rv<1)OEmuQ%mZrFVa_s{6>{W#&p1FORV+-sGQsdCZ2O8bE0a~5^4ol+PX9w zh@0G@5nt! zY*_{!`24XNZ+Vgic}o8hqq`$=ME6QNV`!gfzhJhgI;wI-U1a}&4i3j8^k8D{eJQr} zJ5qBy!ce%g@bMF=KJ;fN$#+uZn>+oJu!b&bdCS! zfF$Td*KDCqZA2?x%)goHmB`TAit{Ng7bkTK?-q^r{l-2vwOnfdsL4Fz$L@{=hthb@ zN-_;@UR}U_&D}vSY`4wY2#O71yUYF9-ABHOu_Hf+9+muo`g`*M*ioUba;z{*SW^sE zhwmkRc|lyA(;AkK%Z{$M+k`%G*OfoB#qIH()LH2@^W7D5p|C|;E9O#l1v25p{ljty zs-_w4L_yVR*UL4diz=6hf3`lH85qc}MhSPVV|OEpx{i630(&V?`i#+>Z$h`K5E9{7 zfh&7ux8uu<=P#2HO;_JSMuPk!)k`1C5>8Gbbak}-7pP*4_P#vJhOV)t;BdL=?s+i4 zlW@o3)>OH<+x-fLXxzEm8+v8*ucN)IU}w3G2Gw4o@d)tzE#beTugO!Cs92Nl;BFtP zCAxP{>-E*-htVB&rQ)ZrA>d=2o0%YIxuM@8R8_^WdzFv zcB^Q|m>bA*)MHc0MYp5*ng};HWi;04QuD*k%7*MyeeXLlZ)|L6{0J!8NIHG8EO|$u zvM;m0OV1*16i4Gfae};b8`Oa|7R>7leUvBEE3k~KAQI#z8~OL-mJbeRW1{Fz%ZS@7 zTb`IyBkrB3(GQ<|V-xC%$ze1K+t5F@!l!Tx{0`Zj?3tP+&KX^Oy<*!!N@mGK#)_>Hsq zjC~C|Dp1F=f^lrIEs1kHX0TM;b5-v~yvbwdkdk}-ZZ3_n^`#J|llC$eh@_)jcRyRS zZ4pK=fg=W%Jg&3O2{%k=0g|BSVmuz6c>j2pUy5gOpNiND@{SuSM3#)Z4k{elTLLq& zV~7)HVhGRQz8r7%KKjh?(i){V` zJ)T)>C8;oE<0dKdk+5y_HYyWrahPOZ*)xUv6abI$+hDA4AIx@QIj8m@rH_}XUd*s- zI3a1t^m#EJH z%o+?aq1)IeY@?8S7rN>$-VMTC(^?F2+aNjYGJREg%8z+mH9HC{g`?PAam@dvc0i&<++NrgBIpaI; zf}7)zA{3@_HXPrUXbYkh_*c2l^9VWr6bXlnTnq^vW`3&gQWi6ID?6VnRd0^QJYTo>YwdLk^&HLGBUAs{=wpZS_&E1i(7A0G!?I04@LzfTxM09rb_j z_Xk@yA^MLP;Qu4k`biP-f5YPck2UOnv3TYmwekP5@c%C?o`r*pfk-CA#7TMr9DmO|#t#R+_Ip3nz>Z%`uBS@!MssGAJa+< zvd>RLJW$~GvRVe(?BhTAu{mI(Yg5Rb9T58)7{?pv`UX(W)m88>qZ23$Fmd3`swrT} zN+1t0$aq+kn8Jc2%$2qI@kh34zb}xJDJ&p75D@Q4KLW_`^`PD*)8CN(D6{`yjK6W_ z;LIUs?O7Wj+B`qgU_A|J)zl~j*x3;g5mo3ETWh9ahY_6%%@liBu-)R2`6e!@Y7Le0~J=%Bp7@ifx1qJ6GgD@Mf1Xju!fcM3$ z`Z3{;edFc?gjb38-TMCiKp0zz|HTW(%Hq`M2Ey&G!J`gBS9$px2pwBQRZULK6lk{Z z15xO2PSpOn$6ub=H3aiF%Nw(^-~Q39I6yC&yW5X#=>b(a+B)hwm6uZ+iEu%H>g(f+l*jlDSL$<6GQM!d?L&EJlS ze(Rl)@xBvu0@XkSuCA_py1+oA*g$uz4TkTe{>5piCvxN?gnP?4AKuw`IY1aSCjK9l z^uKHP#rYV1yCL<#dZcJ=kqQ6Q1J!H@%9g3FSR%J!0MbHoIrSZ+8{uD z1g`$ue(wt4n%_B)@7E2E2pF+I0X_3RmkWN1uHRk|C*QhA5WRlyimu){+DQIi&wp|2 z?`yNVd>uacYl(dDl|JXH9pxG{KlHT)LD6~ zAmhsmq8Yt~In-#vX=JEsqFX=cywKHS7DAX&uj`J1DY!Z3lrf&z5K zFKP+~#|A)ecHMQvoZ^pjmEiP^T|@(x zK>A5vVJ|Dd*33N-puH6DS*<|Ujy(~Wy~QtCx;`|Y6uv+|@c-cVnbISN1IWsv-$I34 z%=W{X(mNrF`y=#+Obwrm--6YW={M3$#q{LdRa4h@!pEEm`@P?;75U$v0tMr{f0>T% zJ7fchz2fKmx$--trtjh_q$XqKTQqjL^;>fP5l7$Y1F}ueMo$mzTe0V8_d)AZvwPvZ zne&VGcDV&H>%QlPjqTsc5 z`+ot;xi5MP=0^|^JzHabTbMNkZ-ig>;6NZAfs^qV$9Pl0f;QbD&09X`lu!Dr1gIIs zt4k6l`nMWjEp5O4_E9n^n?TeA*bOE@bTFwl7oOH^(!H@_3` zaqIxMFaW8sow~u{*sJ zf7xhWlSQuqxidONld4pWHjtl#lZib&)&P;@RKrjN6Rl*Cd&oG?vZ$=Q#dLf{lot0D ztJ4POdppl|cy8F@A7|sz;f5}QeuNg!tEm&Eu<#*!N<6$h_KAeuKO884r5BGm#t~kh z4Vd2ehlU^3Uo^0fI{@}hA&^*fqLs9JYijuua1!+HilcD}roPJNEuticN8usPV0qag z=e{+E&XTc%RL7^aY@{+B-gr%TIVxClI<&L)O!Aa??12g8^zI4%QF3C*-woFJTH9-p zxoKxW%QkGUgXbBSFwNx$^0F@~bE7Ng0v2Ev2glp1%^yVx^m6+UG5cGCaz3Pr zme@+>iXz!(TIea$J%D?8*m0L8)PPh+ZnT^8&Os%Aem|YLZkq>tR0Q#NtkoG;;FSR~ z-5^Box{Q;}u?L5Y;K?_YaR>#MS}hRH74CCbO$83@h*Iou9+^#4T^D_`JP{`LpKPkM z2+4Jpnnb$aLryYn4kxsi)dg}{u&xF>LVjW*_u-57aM3+=4NIhp@m{^qAM`l4ZpTn% zPL(8ii<|IzSynXZ-*W2JcpGu=o8&dvCVN9FQp8G#vrQSZE>}m6Cg=K_w7{!x&DP9m;0;F;O2-I5=Yl zJUnLczV&Ev9#%}T3`q_t*Kga_UGz7-h__p+sKJ@|!FI%AS?gFPGTDP{_tp$U6Hb)k z)a3bch{GsLn7%U|@zVvhyh*yCTvG?1;neG?0|;ZY*g#9P-w(R>-7sdebeJe|AWdXp za;TjkrlNNCb=kNF8Y9EXqI2j7^QSnhUp_r3>!)-0Xc&Ume^0~nt z6RLWpDanOtn!Y1y(+Qc4PXxN+wvf6w8$IB7FpJF`%1J*H)=uHxQHQ|DPsfXX%S3bk z4wn1wuOV|H?+ZVj#YGeS3vUs4KmczGy}( zCJdYgHlaLeruSs8QW5vZ9moXsMTQ?m`UHJ5nI8dRkC9Ib-;ZVu)|DPbZs9}c3M*(B zAQbuKkSe}V%&+7e==rsCzjlCjaSf0tkC&3?}VPW2Y-+$ob{B`yH4t%l-W4**=xIdw6h;pVbgYcL352~h%oqFPi z16NR#;aC%bHp||P?HgL~gRWD_@IglV5sA4+4IoxL(Nyiw+Y zLJ}i7LOq*)JC{@Qs|1&$JctG;K$fd;mye?l8^?=u)7KHMCOgvsNUjyPdA}+LX-K$s zwVb`B(BOAR6AjvcaJGFhI&O(KxpSCDlJAg#B;5L9Oam)*sFiy;ai_nUCJ6=Vh?4&;wg38%*@SG1W&ks_byOYjd^ zFhz`VCxZuni9QzWMOk#(y~3xU(vjPR3DRYfw3T1oWVTRi8l?KRt}a$>OU*KY!gucl z28O^;zQv9IopJ%{x|6O_6-1Y!KPiI8i${0b4b9hGIzTV5unMDGlWzICyu4){FYh&G zlp-1M83D9d7Rqu^;B{!;pXYA4yvJ;jn?^Dq=iXeg9`3?{8BA=BgcA(78V)+=Ctv5M z*kflY^w11w=Ki75)YcrGtVNF?J{E{3<2Hsau@fzk8<}QgiH0IubgniFU01R3}M9|Jz5aqA=Df>@>xdeE$_4V~l&^~3w-x7q; z8OcZb78M_s)d4Wyip^kZ@i0!GR;d?2LAJ}F^QI`{DH5Ui;Vu@d@dRxx*TV`>Y_xy|uU zX41OK=?)dbx&%*-mh$tVs6W##3gZcRxorhPbkS5=lTPjRW9d_HHO5-e?^jt!h#gT!HCn}mLl#8$x}@lYOCjH z{qY_jV!)sS2h7WZwUkDpA5E!wxZQo z_$M7Nl}9A(aJsBnf@Ex0jEN4&CwA#(rF@Cd4qlda!EYQWFNcvDIt>1|Y@YT&Vee=YR1f!?Lye)CWdP>8BpAIV_2+eod8D)gT)zOA*(9t6tlJdMn zKnCJLq;1n)IHRV;rGV#gwAZ~{@)jmAo=Y5F$K_3TLLzkGp=?Ah)}aYQPtZ|&QHoAy z$QTKwIfV!OT*02DY)#pdLu;KXxxiQQ{bDPbE0|fZPa$-3gB4hO(OdY1IkCyIkKT$` z(e^!I%k25RbO#1SP;>LX92r);+n_I*%3_7iTotZ```lsB@@6Rn+KP^2=Tj(GB1dXC zjW5RTCHGl8BcOUncPakgaT4jyF-7JYEH*>Gm{fFNW#B*aHEr^qki$LTYC7t5;0m|8 zPz`+!r@1DlJgsvI2g9VNBr0t(G3=x*}ZHpHv@)&{ujQ;7)+LO(?% z{DQkJxi{Wi65iBHTh%4p@m4)6{L^?6H?XxFqB-||9QCDXeY~*Mn>S2-36hzeYI)xe zb89Qg*ULrNE{~AVgN$s0z~MYyGgS(u5O@$VXws<)5`82y)8%i)?Y7HSz5tcm{LzzXwfk_3(7vmS=ZUwRI>V86rC(ki_PF!pz&6w>fvThmLWC@kE~2&``E9 zi`FZ=>p`0}EXp-|rSc;Drljc*p1O_J85_-L2(-R-7h{4?G_ZhAw7W;kY)Bu)Px!33 zp}fq4Hoc5jdCLCYkC^X%j8@a!e3;CRLuxDL-FEU}LAIH?UCvq|i_Ed~ST6L-;N@T& zjgb*c1Lqs(czR3bPyIpD7SRE_vsZP#eq4`v@{dpJ&zWajC-#@{p$fLIE$m3X>Ag^- zGbPnUxVgZsah$tI{!Vf0=$;3%CqJ^PAn6lQVx#o=?3-Nq*)WU|A9<6o7{t&dwW0eG z%ty?X!cX1Wv#lnJ55Wi|koDf+0I8L%}`IhmK|PHRfJ zQiyDz6ray`giblQ3F(>aTSU3Gt2~S~t5jU#TBCU@q?i>GiK-TT%8O@tDz|PW+tgvZ zn8#h-s=e+2aqGn-fPlhUR1F;lRowfRbDFJg_TzB#f|$C?Umg+btjsA^x2R$1E_N#K zfxHxuP$uJZl3!v#kYV4yUL%>?vm%a;gPdbM(Hz%MMb+iI>zQm4va+uqeW(^D@Vq4O z$?J)jjRU#5AwD!jG&t;vQb(F#iXJ{{faW6_qJ)q$UatFn4pvW+Ad(IKTyP?#YsrmT zEWh#b_0?_HsE%m}LCeR!hP|JjJtA9mh|2i0rXH1k(E~#lYk9$NvzUZwu5RsO#&fjI z3619tIN7Bi0-^pzwHnl+;+cCJ*^Gp5sOr3tRi|L*iMWvP!!y6G)k@8=K5#Wzk;d1y z#&5u|{{VaPRY&uUR{!0?-rzx0NZcfE&_)|k>`4h9i{h8IsPKC~*f2Hfk6f}cJvzso zPIxk6?cl6vX~0?@(115pl&!O}01kP^^yvaSjD6;X>5woADq*70G#>n=!wE7KeN1z| z%&G#FwLPQy732iws93{nb~CQ|#4xp*9j=I)!U3=i4KGPTu*?2Bps?i?xUGJmT4~rU zFB$up!l~pp5Oh|o2J7HeJel0~>g&|9o4W!SXX2cmT>6|lbecDy5$d@c+x{u-WrHo& z`uasXV==zd58t+9rV1kGVY!TU{!q&RI-{`(2Ced<`W@~N92)CKIoH6F<}G3G;F^SR zDoL>3-k&kr9aM_%#uZ~$K>(JmOfMAJJ%C!(S;2L`VRzkwF}V^r^LZ#pT(}Q&QDZv2 zut}R=E}hW5#H!*Q6)<1fr_F0^S6_5$;^3}vmz!9>I#KuuG6F*9UWJwgXH;In5;)9b9`8$#oO!DLnZO%1-!ufBn>T9gPh~%7p(Jj5K6Rwk#9oM0O zv04XcZK)ErlL18Nf1P34q@~sOWBqc&-aUpXPoS53;l+ zTvr|D3U15}U@iO$=~!Z5Kc|)h*T_Ts9GSmDGN<(o0W4XNPzX|?(84Z`zC|$tkF5D~ zStH)>(mynb1H|!Xg%$w%0g4sFw*mO`Q@ml#)HufAe!D3KGmA1DfWOTD+A^{EzJmvT zxzqS&xmvs7$Wpe1yCZgRcdKVBYsk>-?_hxq=?kt9g6`$0Q4jr5`8&{J~XuVEFfo?Uz zLF%UAstPpk;Hu0(Zyzu$)4^gPg6@NI6oH0J2p8d)`c1}GH*f1@=<)27bA3teDI_VJEtayCF|}$Mp0{=zrapny1wjx zsrr|;&bvqmMxgX8kgsL9>LDE>5~2=~gSh4k5Rw@@U%N<_+R- z-#tDv*-qgVy%Zr-O=spwfvzZfuvd{j+xSWwIsiwSt*5|HIyT2!#u$GB7g_8oa4I<`1n$HNq4?CfatlgZd0cqDXj9=N3uYZY zb_LvGK_eGao~f=Lojd?xebwiaTO&BO~3e9zt1D#t9u~2wI7WNQ==z9UyY~CdME>x+AqUd z*rw?{w;al>8NmQGO zcMmJVC-y6-zmtac>~ASb?B}jA%?fI9%8qx#+fz5~V%X8e=u|Kx-oWWPT{JK?grW{D zgWR8Qo@yZkg_0(t9fOc5fRor%-B%Fn8hF7Y0+>foz;O*f+!M(5gWIg)*o~GQF%GQp zBCKCz0Ni7GFeKAqE!rwuqr^eFnQ5z0Zsb=oRe;=%^BNJ$-@%a%vf2#DCzT>!EgZmCmeOw~xdywpW2UcMPeSh8ndJiW&Y4P|<@xsi3n)TIHpj+VgyRKMUT4L2Dkl8jA}5aNHRF8sd=&@5;G z!FK2{Q_5(Ftu-Y2{2X>cEl^)`IKuk7H}udkF9=b=G4k1>UT0)lcGP;i-s8sITOAGh z^5`mqaQX!!Zwk#5h{f0&WMn+EodrTAxXEBz-tXc96z`~7lp~dEi^lV!8iWoI&&F)# zVxP1v0Gb%gLk8kJuI|!NT#t}pG}MQfxz3OiII1j)S{}DZ(Ce;l!5BoThW%rmV}1`i_wP&9?m9SL61hof7XW+eX^ZPlD91h*S_i- zAEgFCr*pj3lVn@&-kWLXc)kLH1s40PF(TLzqK)$en=|gkBCSDGKpZd)k|nUC1~A~p zTv0Q|T1?SjA`QRpBHEQyn<7nN9>hmBV*_y$4Kl%5k5N zULxS*XTsIY@!t%_J1i{_#=-t+vl>827*SHXuwbvej<@yP-YE%t$61bMF=8 z(*~~_K_7_`&aQ{J7*2V|#8o5tvY!=ecTLT2z|D>_Rn*hG6eb z=aNm8Up(#P#*I_mvqBepgyA0yv)K9eA11?wY5UQ0ndLDTwH|!_|#yMY9v-V&X2`9wU#viiD-#A3|xm$0S zzE%fORb_Kap~&AznJ09OjdVcEt)G=ihUR`O6(EnGnv8l z-b*0-{cZ4l?fchI{S5_@yF^IKD`}^~>dz>@Dl%Wev)Y!YnmqkFLmsfGM$GvvZG+hG zj8OzRl}Z-R7pdEU2sdigU78p-EkySSc|T@t7jx7*R%%uRT^W%}W}tc!SFG6C3=US; zy#_tHk)sNueaRmNjc5k%C(r5Uex2>szFguyg%u}grPDl1-vr79de(6ct);Ct>Dnx> ze#{V|UH?)f{FKv$0Bk0)o=-f3Y(BTUIC^=%SR;r(5RT`9QOSm>71vn_!zZtEPvxLB zr4?z_2pSb7SrbcihcY!WcTbGg-y4Wd#_af@^n9jDL~BjHg^C-(uhW$Vm!E__m_JDQ zQGxuedfdDFlg{C{F!<~$N&|YoupZZ9&z1KSSoF{6i375fV|gWFxc!B}Z6ZX_u6iCB z)tKiN52lm;CcUzu-JLZW#VVLFuZVJdv58ornEZ-rPZtPLIml>a8~7ZH8?@ zr-p1Mw+WQ*v}*bNOKZx@j&O@m9=o5x6*AiF0;QX9H#B~yQ`GO9?kpnGsmzaN$v>Ij z`sl;TicUMwOEU%QPYGh(5@?p9w3Y|wr?X*|pw(c!$@38EXjq|{z2L!m42!acH0mNN zYt~VFPVJF|PG*wEE$?~1x=aJ7%rjbQSRBNURMI}*p%UY5otQX}Xc1hgObC*~@X(cP zYwyk%kGETXI8xkpV&=!`A+CPGJ{XAf^X=@fbaCLM-GBFOwp+6HR9>fqYaZT49$p;< zjJVTc#+U`-!31tp(#o=WD74wPtK>q5z7I zxr6DV4BoW>suV3!TBbJ_xqm>Pf@KE;%4PydgEg+oYOoI3^#IM2ut`p4>&D2!2O#Oc zX=Vi>K9ZN(y#WB${(Ri4+D$Hu!NqF)YhGk%CNjRpZrGZ8Y=vk&D_fJ|5h`UFVU-d6 z$IV5JWBkseaF0BbC&kNsylCa^zRRbh%~RV6FB%X-W31>SQZjH^A?p{CApy<-d*;|i zuCX1)vTKbZ`zba%`{tcsE$8Bb1Il*ur0t|Nf<*@8ovxREk=2PgZ2VP7GWFaK<)RnA zTZ}DD-0dx3?qb@rZnRt#o#DY?Y+HhwN5Zij|3lo{r&&mHr{dq@->{Yz%Wwk4s*(C*l zV;a`jX^%MMBbY_ve1{%V8km498Zq1`Hv-47W*d26ZR74=__V>)B$mmJ5lj5*)5`l5 zhiIIn6^Qm^n_eG5-6W!C4G%$OXYIKnThT?*{qnpTKJ;{8X#ByujVT)SA_@oVkgD3! zx6O_m*dzKvi}cdh_QoRo#WM?oUK5}##*3H8)VMW+wpP=lDQ?~F3vqW@L7_qFd)e-i zZ`qpfV!rx)p)jFc{)?euL?N^P*BT?j_Ol~Tntycl9a+)5Ud3lVF&AzRvqff76nw_$)!TQ zbPKZOei5JGC2F}|F>5N}eNzJAQPtLDkO0I=XTMxGvwp%CQ}C1SfgIN0z-W_HN9e^xkJ^X$no>;__kyu z27axES)r~rN)l67=0wThJkMqTskTu3-l$&Ue?Z-Brli?7M8sdRB z3GKzvADXNDFf!wA0C*HXYVv_;AUQ5Bw;7u~W`+2@B<00W1b#C+c#m7g)?sO+=c_u^c=M)|G^Jg~D}U&??!MI41WJY01w3MRdhaDLqw zTz6-i0D%iNj#*%Tm4Re}XjTv%^~Fe2&iz&cDfr7sJhKw%N}#71f>JCp@N6RkNraM+ z=m%FL3BuQqwUTf>X=%IqWE@oQ=Kh&OTk=rER7H-prW|QrsAzX5$+P`XWKbw-mMFNH zagg7^vOK>=)A-1<=<-@RlllqrV9Nvb9>BOY)p&$0(1M{`qg+9x}O& z^G>D_Q4@IuSWMGZ`*o{9LkiW?hXoQP)w$ym^qO9I!+pZAcgpIt zMG(muRjo1&68Km|o<1o|j>?#;{VJcUypgJPOZUcYwwX3s;{}Fl2iG|~+8Z4IF}n}J zEVZ&n86*<@3Xv`;Fa&w+k4___8u~`nxE&U_W<{NqVFGXyusm||yM)-}C=`95K5ayfqRQ=b z3$H7KW5{`-zT6j%I$pa&$56q;bzZ7%JT!-gAz=>qB-htin`t7+wd*Hyz;TZ338VXT zHFkgZvNea$Mr6(qkPp!I8fjERxn7O~z zmU7_ka9oX_@NPqy7K^tB?C*K4sVkPmo=s{s;*hTGiY8}BstP!;#n$7B9D%Z(A`oLv z7o^Sq(c=rj@0t4KN>-Jm0;1`xt0#grS;6CFoEdcuyHk){$3C+2M5zl_tgmUR;pZwi zrKI4nu|VyU+U3|D&y%Np9cA7CKE8`Ldr)XO((GHvx-hKemW&v7kz>ixiQ7&lBly#9 zNTS@a0J4f&FRJWCyB8(~YjSM)iVI&Et1^}w0`d7Hc=a$$$JvXMBY}-H8o$qO99NQ2 zFXEAGNqh=RYf^{rT+IThivXR{JkgXAO?o!kd-N*&nHkj5 zBC~Bs(`PAML|MU8-9I3(l*ZFNKy9NdwV7^ zF3uU^F{ARa3U5=uNdJlr!EuL6gdvy4&eV0(reEeF>E>Ps9AUo_xlcx5NS7LM8z0wX zU(iDRCOPKaL-cvnl-y(rX3gC5#YC2%GbIhsla#9#$v`phStu#{-Kh+z=-G%PM2V)n ziHEO;=IDeUb>*jOeAWz)q~}HWhb>w14m+-%S(LOG?lYC5i|FHJX!I5@r+jp#qGqEPNZQHhOPHaq^Ol;e>ZBA_4 zcE7pzem3r^=l$ya07H;#a>dfc25$SEM8kq^E39Kb9 zjcgbbOE`-XXGeBwlDz2v%ewO_YY;J3fL&4(1KQrg+6k$i(&wB`o>1E!&paJ!5hw6| zygs!0OV~4i{JVLA5hvfC&$?V(eMHR?>np?Q7G_X%gJowVHm!x-$A|jn@^>c8s}+ZF z8;AMLS`zw$r7?!!bUEF2)Ar4G=a@(j#2d2=qR!V68SO2L$5Ij^HXe`R~}+SK;~oq#SFQi7B|w{~_DR*Boi z7E6lrDi{w}%uYoU&}B}L_2G(;b88t=**YsL>_3VO9y{T|+@wkOs!O^wya?rg-)*J+ zxw$76U-QWk!nAbP3sisp*cX-SFGRw zdVGMV#9J)nxsS2{WhD~Hv!8}(|CGNEbOf5{^qQ!!NO7?eGR+q>&~TaR4T}86cr2e- zDUm3)TN23XBCr(siA+06C+yZH7U|W$HJ%keC-sApsHAPSWa-medqWnbG^Exf6p;HO-!3KUERWGruh}cj1`GA0HSnyy!N0=P( zjyHNVU89&`4v;x@V0sMw1Xk_6v>qpAxrCm{y#T^LTMyo6(T`a}uh)_2#d-llYFRVw zJ62JDpt?ISlviT6*KDQK24cTWI?i-{u4E@*3>|}z1L-02<2qa>1T>15M$?<+*ZG`D z0|n6I$VdN>OUka&&{;7)6m0{mmre6Odrp%&_=${qR&od#xj!OkUSQd-vaw@*JF(yK z{ZUlpvgYbA@ScsaVj#Z-g!JHaA^Fl0FUBxL8JZUc{um7fyu%z-PW6nt47aN%GNnN>td9KNNeB6IX3KAgeW27K5kjpR&V3A`=33zv%L7v z8Lq!!gFG#FsT}IU zY!{^OAp%0KXo`_l`xca@H(m;FAi_5u-J~{=l%|QFSoix3cM9*zFc+hp=hTA|sDeoDqjb zrzrn!&m+?$hh&M*;DH$+QNforBhSl{SY=#NiuXpf4Pq|yf%=ku3#(1 zh$1I9z1%|YS7=nOcIk*_eFpKQe7}zrAMpuhn*pv(h38hFP2AOG)Tnhmm)uSrmMVfr z8yxrsgWU*+Y7b?9qRk>DYbt6*1{7Qr;nsePv_sagzm{;H`N+&QeWWyn zwcsixqPZUkrh-&|PtAgXE9lg(U<3++pa+&>s2skFt|H&mbOBD)@(sq9FcUZ;D0nPC?@YbZ3S zX4NC|V=flXEi*IOXjg^DKI$1B%p{C$$srf$C|eNO=4(?Axu5oCm1-t_gx1_N2UA&A z)Ug`I#Un?aKzXd1#imE$@j_FW7<3)($GI+sGZ+S0#eW)?&hk(hUmL3X&!bYVn?B3l zuD6SU+Eqrls@cWwn`~zwNAW6mv*evK6vOXM6e+?WhupQ_KCj-Je7t*EY$i2-sjajB z*27Y<2r$cHsl*>{Z-xm6k(vPOIxkB zgQTF$B+I3zG_{Qw zzI30+Y8onp%HX_usXCXJvy zNIWd~&CYyQW@5|20IzTz3#W!bhc2tycw63IJXyrTP;3KXwW-wuNQkF)z0JqkX4YRm53Q2^NpgH@S5Bi9+bSmkVNo#b85Y=R>`^3`twNN1yDw*DISon4IFKM-|FU z_Svdo!v3Skt+}75P0EcTh#6dbaicY!lHD3*PNjl^rT>DTda=_q-+lyx_!b>fdeyRl$IXEXUxo zD@c_(Ll#WqH^|0^%R&@XMjOT?i14jpN8Dz{qDPkX?Nxa`6AnL-ZA{17BIt=#I=c5Xa`v1omOFuDDI{ermQH< zU5-$*ryM%VEGiSMiyrPL~n786m7=?Ejsbx>w<5-hRDte3Ry4%yQ5ZoQhPbSPP%F)lOgk7BLt zuw*6BF=eQFN)1u4?5-)t%{Kg$^NL}mnY;supu(l;O|h%II%w!#ivKlFjRoUSg5F5}>Z+!K8%#`2l*lfc)nl9d)-5`(ut@OPy-J=%Tz*(*2# zhMi0rIab8h+icWnt2|ZjgRsZNpZTpyv>`i;l+=0*gl!e)tA1AS``DsIY_EIxTey9Z zkCQi)5I9(Q;V$t8aJ%kA`1jkY=P8cyc}_>aJ^rJnZZ%nC+3%8N0b6wE5z%N7m;ugp zLTE+4rqNt)uv4lK;|%z7#i`dKXA01#`HQC& z_b)`x;UAFR-_bl5I`_YGd4ExOihudYn%EluwO{Nk%>T7>|FWxPWTI#I7l`*|S4+>% z&i*g?H!hEnftmgPmCI`eSDrsZyN(KSW%c)b0&&%hMJ?9 z6Nj1m*yT9d%zyG;dhKF~NPW55nliikmP_aiF5sSLcH zsp;wQ`(zIOb-aBLR!B~u1V2Qp-ycrGPC2;z{j)f*0d5~V0kR`lAP&g-CJ)!w`oOF0 zb?j~GVKYp?+&zd^ew-ty`@8UUK<|{8Ij{|oA4*u?kXiWuV4c6ReUW)VZa_NxerEo- z%Q*YnuhzSVU%sQj++vXCBUB*D8T|0RR8*gpJz&pA_CV*<=YXG2F%NWN`XSws{)dOr zkFxxbbTxsfJ;>IOASEN@b^P1}(m*+ZgLEP}ndN)+JTtgZO`vH!RPTwLh(Cy`Ab@z) zp5?r&4r%qtLa8FCmM_(!D!SLX@#`A`gA4LIc}9SD!|$p1C~CfqyuYk>ssk+k#pPvD z_rjwkb&u89I~guG0&%tb?-zc~x}y<%P}PG70IgfU<8*Ly1N~+K+PAQse5Lvamq$19 zDfO-$m>m8TtO*e}50g84~yht?duK?5*BxIq~yzpl>xCVEPbsAYWMC z*@p&f-TT{1D}YvC&JTF)?zt9p*{AdKZSvT?j~WN}yyH^^P(D}zgItF-<`D@-tqrq^}^783aZuDr4lPWd?60Zd@d z0Bb0oZ8^QM=;{1#ATu9aC%>%Mtq-T|&H>#=A9V46r4+#JEr8<$kRBVEp1GlyacLI} zhycClb?CN7Iz?ibo3nbIj8jO>=t0&^J#1g;M;er-@p~r@X^1`PJp zfQ?UIjwQSG$rInmR)C*xnq%z;sPBrnUuDIo)Uyw$>9+3y4!3WBFEsia-+ncsFZ&)K z^L;1k$#=x=*v{}ckRBnypzuW@8N(PsFGj^DO*xoA&z|Q$oMz-&ohK?Uvw{5`|ld0L!bM^aE z#dDUG>(BaT$WK14(MRm}{FwJ?lQxcbK53s|2j4}nO&7Imz2s54+u_ah_Ev5(_?I(V zAJw<%JH76vAHT^)a4a0AX0_>;i)dRu+C<+IA@3eru9+X2WU+Yar}Lyj)@ZQ27`=b0 z&afp*-R$q+MJCEvw0)~3se{Z8OoDi>Srl$;;@a|zcY7GUU@ZuS?(nA*f!uxgAPyav zNHgT>LYV4WwX-(R)ODtiKjLV=$t^|G*Yms|^;mpLrtyW(TvJ^uJ#>%q(qkRO$w#$$ zKKy|F*`@JF4Lm3X#RLrkx)?_GIx%>_ta_PD#u)4-O5EL#F=dGV!4kcku5ne3nub%g z5u_aS3PwziuAWV1;YHk4Oujw+mVj1`HuZa0lapsO9824>%YV7eWY%%7G^Ye)**6-q zMp*(@iWpy#y^bU**Jsg1m^~KNOX>L!(bM*VNN_>iSH>*E6nQKm9vOVeCm7{71O7KD z3)@Xq4S?MXd89xF#K#~3X2)#C$BG*Wv+dZ6D6&>4%n#}Pyc@Bnc0A6CD0_2VaB_EM zOjK2NEpHErW8^iqu+4)L*p9(A+eUobfM}>^TRyKhRYZSj6%wv0}*daU6b?i zc(K-SQ)Q-}FldU{t;R;-sFj_5zTuOD6Uo7HRhr+pS09@@RJLJwx3yYs9OU8@IO$s8 zTQ<#$M((SZgQb?AM(nGXF*2Y%2Tbg^-OjmwhXe@Ls?9W#2sQ*q4W@3K9hnX%j)g(% zkzmkcEI2sVtuYsIy%L0S9UwK(7To3JwFmgChaY_}Nd|`UX^lLJ)Q~n}j!}n2En(jqVIvc@vT#ZX-*FvddL;u7 z9jS=hkZNjMT@$wDvWzjYJ+?48ZxupLvYc{*8dC~J{VYU#PtwG6T-6=86hTv;vbM#H zRYEw1HtP%1f%c0<;1#LE-|(o1>sO_FwBC<2iTsi~qlr-#f#KGRr*yc?_VJ_U`ceSy2jmrrszKw57$5$*Y-wH9rSNBmr9Mdzx ztXL(JC%KPAs%RzFXWlt?%gi6ah7f`-B26U_{*d8dVCB!c&p*e{x-bd8o)HMf?gx!Iw zkag7?f&zxmTx7W`&dbJvQgnSrjCwDOzvkX1%itq_?by$Fl{Eg4acE-e28gy&#F*+V z-FLcb9U>F^4&ziQAV|g4hayWK)-=AYEEO+jP_NI8^ZbgaJgqwF8POq;zQ4Ch;9X1( zMKY0m*`r)V|MgCV*YDa%P^LmJdo_i(qbc*m)sq-fd8qq+48Rz-kPfs#K? z!0hPDYx#mL&+^6on;@b1{=z|&qm=l%*DZ^x2=q##6UAEq#Q3o`@Ls!1Q*J0w?nC*L zs7&^TQ`zD9&O>!{#N96i#`4k2ATH;I%7+vyOF@*?5*E=Q^)mwvsLTD^uVFy5y4bCEQm5qr)qPydRXSPcsnck zxEo5Jp?FtIR)4hi^63Ro#AnKEg$m!%nySWuLK2fxe>th0+G|Y)?n|Y3GDx-c5l6j{ zR^PCOIut~;y-tA1fc)%8OpeCmxThUJd18_CnCo3uZy-d##;&<>RnNwe)>IH_LK%&>rUb%tgw<8nmf8TeZ4FJRj%*2x}h&CH`^Ix-^Yg^ z;*F>^uQO(#&%5Lrsy!@>qC$=06l#968U_K_Y>GUHvI^=x9o2e{b9O7YXr`KqNG~%L zyG0Sz`#P?GoG|BljPfq&^Ce|n*^qg`#~i&kJ(8x#9?sr z3e`2UbKWVm{|Fs}mzU?)hvwDDR_$u1jAxZ525-vu&{|!-fKcVY|HKnm2DP}T?^u1P zak8b43AU>AVyn1E9WE_vgEMOdA?|WfG_kDseaI4O5yVeWS*DY(ip`rBol$<~pC?{wo5MU4z&=w0oelc?~n zvX0a=n^fA$T(tCM1&p9LDTeclxU9?63`Vb#h6vim=3&I*7<)T%3o#W8SQKBTYrbb% zHjc*o4Az4Kee?r@r~{m%e@3{Yhz@opVHe@w#iywCgp~a7@l&8W z82A(MGMbxSkDm3J%PY?}f+Y5>GbH#vmlnrJgi6` zFLLDVCD^ffvQJ22^8;Q|C1%qIjwD*a0WI1Y0p)7Hq*I5mK=0tvPel$46K>MI7a?L?^eglZ;75w9#6*)THk|%IJkI}Q@?XW`59@`-^g<-7_;T_*HK4r9=-_KpUJJf zqHl`HBk^*+%43~FXnD(owtX*5=}nU&YKdwFLDRvv8Wo_CY zO)fR3kR5khyjY}5FW$0K5O&AFc^NK3V*;AR7@Aa6{ze{Zhd?k3a#!io8wH=~uR!kA z!HxA_!d}d8g^_Mr+3>&Qs235uk?kmvilEqj{%GObqU10LIrLB7oH01kW58nE$>%)5 zzF~2FKxj^s z&>V!g4xx8#>zloY)lc36F* z#ubkI^ezWWF6?8~m*=guoXi-PG`FpW^R?12?0ygh^wfOQ1W9h-4qD?RUn`{eo+;l( zPlvJ8hta;3UqOcKfwaDCjX;hV)V6n zv^;LE_X|=yZ26!nmc%|RbTAHGta%KaWKxsfj0p_nTr_T+WMC#{W+dKL3iaVd^D0pl zR+5kMZwM?9}jrEJ%8uU>BJoyw)kN!KjCw^aa{IcrzuVXJDiEIrPWRLcQx%zIaJI;%JntW#Bt zg+|NWD1CBSyGydAE8O2=uYI$xeYa(iw7BAR4wH%yUa8k|mt;w~XLeIFcN$LQp0lewP&%JJ^hgtig8^uM6&MkW#bL??F!aKq(k64MhoknCR{jLj5^6hkPh?Zt1sjtC=;`!N>9#^^z{taS2hFk9){%b%cI7i085<(&9(imjUPq`CIsZ{{l{Ht)V9a&7tal{Xe3ep% zBQv7qBCE?XilF@5;E7F=>G;py>sf^On%{WXd*p|i5}KePgphRFs2_sBiIu~c3YE(R zb$(9{nHie_jI=!ujIhg3J`NS6C8-luD2lBO(LeVGD77pb6o?wb_mT}Q$nnwCM;f`w zd|vYd=WT)-gN7ptGh8k8lD(vIMjiIH+5>T&rf`yxk)I*VE28_f)tJxpcdYrmVW3#I zJc9CdZ<#5xV-SNX%iiZ9104glYT>voC6%6FCPj1>^^jAdP8uU(E;^Wfoc8FiqWnd9 z$4(uqQFTCgv>Ycyw(KhBGIGGGjc3_@&DO;uUbBZd_Dubp?J4s_pFM}EAkfce|Ak7& zS7MIS0n}Ph%|^03*e6b&FLv0ve`_M=Q#rf#;CizgQx|=TzQNY4J0U^P4M)l();Alt z5e2UhHgv4s#X{HDrheljdbR&+TtLHC}*z-x=u%p%uNT~R^3pzD3-D!4+ zXX0(0(=pu5CC0a!qm;d%(r|C1eVDn%ceU0J4pC(&{w=xl$K9-G)+k7WTT#A*zwEv-x?rge!xq{AJPS|P{yg#9!*k^Bzu~7Ej_E>zeiIcOoQW0(q5bjYmlWf$&idRdd7}h1tcy^<){*84RYcVOYU-x?T7Mp z=3NPf!}4a|KCv_usO-fa7GiEHzxC@D$|~~99+GHpTP7xHs3qmbI+wOnb=Xyx2&M~=1M$`4Bdw)PI?b=+?WJ7WjO0mv{Y5WjTg?q39Gop7Drvs2l zY*7&*2Y+Qv^Q!V93zhLTw(BrfT$NX!OD|z4=#tFC)L@)>3bj#%0irm^9?NDA-5MD2 zZ;>?4HRUU`T9KvVGZB>QwF*_^@2lG1LR*O`(5=yjOY=bfG}i8cm)y5s zME7f4si0X2JSInSp6{SV!PzdyBS)GRbl@p)=wfqrrnQM$X!2JAl@Baux7i}*SK!dj z&_SHpy@wH#QewO(JTbS*citbZE-kykMFjf-CVE0AD!}~|Ok1HQ&XGLnBhGtWf!8pJ zGUKVsihgoh8^t%^nB`h?IZ?^)UAp4AP>be}x8H~5_z}gWR}+8it9X=_Zl*eY&quH` z=~^j^DP)_BwqsH;OSPBT8caC~`{i@T0 zUVtEtp;9?K5yG#(EYG~B=~LW@GKZb|D!;{m*G`k%)jnL2ZxYf95_9@%QAMQh*lgzb zdnd8J6C{Jf8L2loFC&OkIq{SJd1XHi<(+7d|0L}1FUn#(&y>!?Jnl#$H+b@MILvPF zRAj_ZHSKc=5^|*+;0nbf+6=e~(#20a#v+n=&bOKA_!Hl5fJ;nDL*^Ulg<~K8;;7!V za<>cHN!#ORU6GBa!Fw1nz-4OgfK{)K54~iY#M6?fl3BBfhu?axLI>{~`M9$8l&HsB zSu?T0KKPTBr?cg~FKu}#en)xb2FJMrClnTiPafcKbflN|^)G=|sq5OZ+|YpYv$ z;BB+#tQeGH%f}19-^$mg^|+h_wKeUt$aoC@{7TcuXFUb87m|6E`N0mYrjT$pMol+I;K$ij@USxefWg_ znan&)`wtAcZH57RkIb~}8KyRpXG`Dl#45&LiYkV+DEb#AAi2@XZcB?1%Tn8{&_BbP z#t7|wJ+hFy-XCdBQQ*v-))MC%HQUVf(@~x|QVBj3e)9d{3Cmqxgz|qwmOPC%BNJ`t za|&^qG)rxB&(nOZXh5p?n9qDNW}?^8+_>eHXuPH=tt%E7BDswTLx4X5PAR*SIwwxx zyhgbkOx^V=*WrFa+YH06M~#sss2et2FMC?Slcrw5y&|t%)lCW!=93+PqISXW&#>o# zYB7*9*9!vFwAN`p0=`Fy2f+uv$^uaY~5-E(akJX5(4jTcc~-V{hHc zy)z9MGq}k4`5O-wnB>xI>5XP%?$>u!-Q$036YA0|GXg)+Sg$=B?v|FnI1OG=Cht4u1qkH|Fp|`Z{QXIqRRdfLO(u){}lm|LP*ajlP!S~Z7OPZJ~vx88JRtApV zKXoT-rXr#>zsT$am@Hkj6H4V}B}MYPhS@kOL`s}~VIwd%_A?&?vr5Tibipa#p-~+~ z+&sJGvMlrxE{v_dihm}U;!>t-A=9_Fc5l$3)qyBUHZb0}!9whf z%%k>AW!fWWVf#XuI)OI?ICjok;W)u^kJSNrj-IjpT9xA9l{kg;U`UX8N%NRkO%h}E z)Lg2XD*IM;3a7B)(1^{@6cUc0)K<%25w9-pdXtw7Wk??E7h=h_K-`K-*>G2Go3tO| zP$@{gBDbToAIBJqBoCFuC^s!+K4YOl?56eyWxxZ9Ly4>X@p4iEs)Owi@^xkyN_Pyg z-~|M!((=7RIl&``zbGG%bmtxJf>{detZmvxXN3lF-HeVS%tC=e_cPUNB+Nw)|B_53 z9X?(vBW=dWEiOn{RVQ3GLJ3 zSChXLi)qJtsfM>4>ov-2BYLRK|EL(G@2IZE$;Sq^+k9+M0;XMvc*>E(s1%pL+Lby< zQ#{J5B4z@KJdwo3WDg#X-xjez_Qwh~jP|8(X4=kBD{bTDXi!m&C!T?lVx)}e(kjaT ze12GfY~2_`{yoa8MroARXNUvgeirT8;~@}9>j)WpG^_UK;x*lUust0D6piyDxwx>! z;|>kZ0!$awLb%zDlzqwOS63z40voYyzS$6Z#N_IT`sDsdsUd8e!OQQ3oQ_o}|26#2 zQj&Rmz2^i2=c7f<;b%7(nIq+Hxe2ide5>>v>Ir_GnFk7fp&bE7gQ3K6Cdj+ffE_%H zbMGN}Ioo@*c;v}WX%c@g>O8M(6%f<=$tPF25CxwW)TecEn61w6n;Vw89C*VOmUn+7 zNL4|GvV@jaJk^;pK+;hg=2ASZ8N;QW<1!?VU!6syBEFMhbEyfFg>4g9roXzd0&xL) zt&zbtO}$bE%7#9j*&U0ZY;~F+aqv&{#*S#XaC!iH&gZ(i!q4^6ezfGpff*8h8wD}1 zJeYHOcEIl!8eOzZX_dph;4Y`49?Xt#Q!}Wtz%cke8Z4FN6D9IpdU>u10nN^5=T3i* zp7_dNo4bn`wxLLqwN*CeN*mRmU1WU<4DdFfZ=ULC2BU^3hb$mw&Jor20%lRJ3fAI` z;LJdSmEzMbZnfaq!o){R=qff!J`nLLQg$}|2WRa}G%BD-Jj0Cw5EY^@r9q_U^7P?nqhKYj z@kv8QvPWZaxEYx4cV|1r<1wbwOu(jnh`lj3X>IFcElU*dJSX?Ss_BE$?n{s@r)1z^|3%<#sEY-783`I!u1UX_qx$t9+$h}KACc-IZ zlv}VA4!ME247uVa5(`WPj@KPmP74;^A?&0z+z`p?jrv(>JE1-6t~E1rp>sbcv?i?s zd4oSHhF>#BL?uU~5T)f9+19}(j61@NTor1F9WKR4f@m-pCvW6~NPJ(D+57!D?@6>0 zv!9Prg%MKRQhJ%!W`T@z#?lN;P~#WE2#NxJSpqX3RLC3Yk&xPu{fff|hlNy9LP&f^ zgupBGyN95knM>n72)Wxvz#*xPo9hr*bxDxtcUB5!7CebV%8O}#c^^%QeLA1 z6_uDQ86C~|_xe9++zybbv%*!*6kX}*2+xETq#W!Q8WRvuc2&w7O6QW)dN=%;0TjK4$;@2O(#!70*N|p9Q z(bm$8a%X@I&S_6k*us+^=NL9<9<#fLLUc%rApfY=>PIyzbx2dBgqSY;>|PKptc;V8 zn-)e2idav(2MHk^5oeFZ$aM;Fut$iQ9pKFdH5U9XWno$huiQ z%%*9a2xuOw-Y@#fm)bBJ^D{kXb8u#?F8v=T4#dvqwWZc|q)OPkww`MzE4fXV$vyc5 zcn7)W2zU4Ib`Ya!+3Zb+Z5Jo0A$&@4eP>3!XWN`C{O{>-S(3t#z$QdxN`0{wz2&;owX{WP4OEWe1OzbZn z@N>qRhqnYNw!#bb0wHZDKx2Tbun^?H^WMAPT#JpOCB++3D~vyvC_l%!GK8|D6`8}I zxEwhGY!LHK(jNsXonAlO5(V@tB#U{aJ#8ndp4 z%Wuz9dwKw0=sZP?x~CuzZGB_o(g#E3d)W5Z6S{kU+cTLveciJJEev1TMhT%upOiVI z_CKig6cq0E7j4A(#=&J22kcdemyE87C0D=qYatO{kXxHT~ku{v9>@Gxf_i{*CL_QaU4*SZa$|U2}U0Sn^Z?k@f1}p-VUpdFH6hM=9?$?LipX`5+2(}<&p(COE* zDLL7TU)tuucXFq<@>R1w6B-3$R=+MgA!85StDCElY7)GW?}CeC5vQ8kc`6Kb-}qe! zhc~U5ADpCW+4#^ZAJ>agiMo!2HQC6WMf=cV`KY>ZYUFI9m$v3LQb9%M`?aFnGLC~e zEr)E*`@VTA<~^K3a(rc!u&&j_oxPO2)vu|q z!&GwjH@RU%fpOa+?5cs~3XSAm=_&JLKP~SJg6FuRHp&}1V?md!Lt6KytpiqQT&dje zUgrgFMrW-25TVsiRPiFptckqLvZJWlnWna{^#Y8smkW$Be?PWn?EsL{bHLF=`{RW{LvB89p&065% zVL{@4>6wFP$q0cXMU`n_$Pm-u(U+nZe4$Y2au>x9GTtmM%%;_1`A zcIIAf_AE(`{8pus$gS6`A+ggp${fakDr(t9z%41UdmJ|-sO22xM5a$8nHq+-SSo4A zVCJFFN!_I@?Wv?zm&1sZ*KaWh-EM`Rz!_=UhHM_mQM>;B{!~K-49UX~P+L@VQjG5S zJhk1>RcaLYXi%qRnXd1&BJ||#f!??ha*Mzis9rGD_(z)9HF!m z=v&xDA6oyzbjR9=SCW!J?v&@oa81}u-Q|trzU)JO43mZzbg)*LNeAVIhqbn=`envN zGioLuuX-lEILoP^YB2K+wRS*T{Z?KGPpqz(>12|Dl~+_Br!q%k^z?_ z?TZ6c`H#jGQa6>6ocO`;@iG3ndP>qiUJ|ji+*=iZYWF6&t0M0#f54QVr zaaQHQCPyVr@PqKsy72Ci+zli$uJ;)k*d5W&h`JG)+><@|!!XJd#eI$QDcW2qXARs~ zx=3zdtLLnE^m>0!$I~t~@*NP(^UOTh0g7FivkhoHwEo`5KYrt;CqaL%F+&Lbv8BIj zU`;laK%sB8{&Lmk3a>qnk@-_8^sB(Erx3HVrDuPL;I+%g*sV*_S`AFgk5Y~>Q%nGl zb2IPvAfCkbM++m*Xwq}f!8i}0$&E_GSd9K1*b4>gA~&Co=F1)=0K@yThbp+vTl!lX z_~K#b?>!8K%1xTatKK}PPdH;^jD4&1g9t8|GHhdpet+4_b!mrdt#KA4-n_;s`kdk}? z(au!R=I8;1vpF=ld6-Qh47iEJ81JwuND+lQ)W5lF;zhF_B|NPvCS^v>F+R%5>u9g} zsS>*$WEZLfVJ-C}m5>_pM8i-L45lQK_r-X3e?F8oaVdg;Lr%(g0)N6GNm^G(`Z+%2 z&5frqq8PtuK^IJ;L6Mm2J#(+3mlBJ?yJ#J}B_h+s)m>4E#wNffIid__p zZ>*pu%w1;C*-gIzM|}Kffv2#aNhX%dbR4{^GlB~@d!0cGNreiYqBw$wpeL2MsgC+u zgbQ3dQF@Hpgw6cSZu>LsLB2!5RE z4>fO6wJ^NaItf!6&;GY;MmH(~Jd5v(>U#1(wiV$LGoW@6GG#f@A3YEk`74c!Gr5Z2t?xF(o)RCB zF{c^AI3;}VY-F({n2x7EBAx2%_xSb8BC5h$irTl;pq_mEDs3x=xk{q_l6-VU;uDm@ z`JD~-Bm*U_YT(6X#1qUaqLu_PhRHk-9=cK(`dux0M_AST@E~poHI#%Jp3iDUsyN4z zqYK~G%wHiyE}y$zZa(Yr4LLI@cjUHB(#gW6NN#z~NSQA&MqZR7WO&I~o~mu&q#DzARG0HlK55 z#ulE2_QbP>W)=mJ?xxECl!xRJXb~iddC&|(cHE=F5aGJ%Q5Aq$`pS{#L>ahnPZWJG zMaKKC9+CZcj(9f$NJ z3l8XBUPx(rf|r|x>SLAQL;Z0cVM!MqiZyGx))9}h+kdVd=V8V0xZDZ*v1PSi6<_jW z*f>)YuSzCeHue(U<&JJDr8Cvx%dViIKB~ovpEjlfAWp``_xmR_9D- zZ{TS1k7a!g_c!rh>aU^y9rq>vTm4rLUz_#ssIN`@NBLhX`Mdg`4*osU|AhXh_kTA2 zPxt>2|LXrA;%fj$17iy#1M9yg{y)XPChGLl#>U{km;CRFf2{YX?SJit%hwKkAu3K5 zf4N@$9bx$kSou4`!unrV^}i98FLdW$%*q$S!otS!b=Cc|@oxwV8$BDt|0BW@`S_Q$ z)S_R+?j<7BW=s3miz~`=?-Cvw-X9F%@)D7`rCrP36-v7<=G^=9sqC_{DsPF+7(Ugg z;#YvMMwGz7`s{b|ljH5Np1zTZZ-`3rzYPo^=$Yyn7@6t`<>gDX+E;-AL}EEJU~PUC zxVUZr1A?z}`VQX7Vd*Vh*p%#?K*k&AK-AViXtKI!w7RCIKvYaj)4s5{I&Q$bq?e0_ zK;WW&75SiuLHq=V$NL9{HWml3ct?COK$c8cK;IA$&_DDpfsj0NA{tY}K>2$I7GTT) zc(W4&@HvO(rf|*=uh~Q;FO}LlnQo~m+}zw4GUo!3(X>ec%=bVDR%%p!l!#!?4v=Y} zp9!$?%(al8?aZQJFn(=`EXR5z2mFB$od90kYMBzV@z!x zZF8W~I1>Pjv}J#stq+-XnTiW(=`FZV$qld{6nP-@?$y^@5B?L{6`9%skw2{3`B)e~ zI1W1}k>L*wqaPpnA=ME3vfl?Pb^J`Pyq^qTpAJ?z**(~w-$SS?a3^R!6AUg72MTud zFU}znkO0k-?NB>*sU$O~J-ri?gF}WTAppsFXxZUB$i%E0TE`+L9IP;Vd7^-&GqOBdTeC>Bqs5nYJ}ce|(oo7-NP0(=`8tNssR_ZTEe)HZ0iZFAZ-s?BL@+IIJ} zZQHhO+qP}nwvE|-cVjp9i&*^3%82?=5gD0v@;TQ{ese*%ulvS34@Y|$IeGanUNeBS zipTGGe7V|KHy^+87z{gJ!U^W4se|?fG=s2YRjTtSRH1eW*EuU|{6pXz%U- z+O~KGRpV$U{A@FoK>$h^C7A08MeQYhXSV}R9sDM@21Ph>L1DsciLylHfGe=;PlwJ4fM>1 zc(Kog`VREzJK~eaz41S?W)~M`nu~u-BLr6;k|zYf+ko(~PlDHL;7^<#Nf55Co>p8u zwQr1Wlh>J8+Q}PnwNKC;55qV1Z=wXB;6qRLmd^*A2i|NS?yi>kbAng=)pvr|ZH5e= zT@Q%nf4wist6yH99sElrK7GUfGm)O$ z)Y961Ijwow_(1py`S(5q0>a~G3?=yxZS0xH)|7XJxJ3Ml59e|4IeT)3xLyf&03K{x z{e`k1su^ak(~x{5L6-8aMhb7$jwX^t&|L-4`nX(1Uh$~gVMLO|S3}A0&i3g5&5^!u zqae%@vx1mdl0YZhr?WqUR3wiSxCq8%YPnP`;D0JAztWbv&mE*rK8%OAP`$jYrk{=< zA>W<*y{6)1#fYb{bI|(sC#lQoAC)163Lmxf9c&q{&k2cOz8L!Y@$T&`wL5{HtW<2J z$L%(_TPsaF*bb5(2e)O?u{r*@q;uTI9VQ%sB9+vh!NYeweEMRD#t==#R)qm5%K4!+ zJ24f0^Dbb!D33*po@oW&Wz1^Px{b3L-2{ojd( zF2xLhwY?dWJ1S`2;v-BLNX=0Pg*QCfk4S>Chg7AsRCd~d;<&2LBIb=j_HbwHGu3f@iB_cLTpex~ zIuQD_U8(u>r4ak!INkr)uuWS)t}?kX;C(UOGVU)O+H(S%+v6X$`=m5;ayBvqf z|5^GX_OhS5T4HdsGlHZ8 z6b>cxv^`riPVmZ7(m~4!`S6ZR1eS8TLl3UGkO*S5b|sQ3=2KD6I^8m>5C7&kf27xP zt$&+q6Qtg8B~3|sLk(S^@y4iIEjK~}X;20igiG!nZiTtlX*L#}msZx7!y{r2z<}~M zIHY<@a`GH74vTTgBJ&ljTrm^=G=4ueecTgFv9*)Ylw}Y}~DC-MIqa9A63a&O%FkUUy9PNrQ`K-D>rsc0o$07}P4%!+kj=8-VYIE>J+VxX^qlmwe}q|s_BuKg`>3d9Fj zq8fZg65%G~JND3tEXdc5*U@sk_v9CF{$z}qCyy)FS{{wjzroH*Br=g+7iN-3?#)1= z$f8B(4LZnnca~s<(4|*twx0rf6NkZpIvB^`Od_9}MIvPyxpd-pN0IE%US{-&WxI%4 z6|AwWM=?TscT!nTIVvODrxyW!)=t5r59$=wfu8{=7n=K)a-0e6=vWo=1^f&!Id67s zuUCZ0G_kLx=@f~x+^7aj;)r8|zD=$@+%Lh(r*OEQxnytFjZPl&&Q(u8%(=;W`YuIR z_1}s%gYTl1PFlJ?!lrW|rrKZE4UYY8ik!%k4~7P&IJrgzBaWffze1eJBQUt3t4_M3JcONglv(SBq<(zkkv#PXCcw?h@Io z*&Aq+bFB0#JSIz^DC+D&0%zfKw1)NF{pRSiTuVfW7TDIQS(Dwsap+onerIGHfl1^~ ziMnbZ-RlTWu;kAFXZ8VkIE9T0? zk&t#0y0}#+yI`^4InyLvQ-rZpK^C#grB=U}upjtR&Q4L7%RYMSQP>@=%@%pb5&V6Gb z3+_HJ&+Sgpp&X)_1!b=7bt8lHN9|6`U^WQlQfh`WjMsbJ^&-% z0kr__u`jJXufOyDTo2?MtRZ1N8o0kTE~X05gdY>PI?U&PM>@hb#{c!JUZva>ciLRn z*s9)X#QTffR)*s^e(w0XNx{hI&jtxyi_$@bPeUo{k>8qciEZYLsO-ip=GFAxh?>Ue z16~PNM&d$Y7d{?%sl)5g4Kt|;bVZI9)I(aFG3&FdChg@or6RIP%fCNp4@p&~`iH$0 zTWPss`|Z!j|C$?Rw4Q(xOSnZLi*1A2*>lJ1srx% zH3zjtHo2d}v3@;|L}o;_FR|kwuS*$BoIxecr)#*L-}JnS`j;!mvW5x`WlA9q2fpFE z5B0kGh9t(jFET>80rX;W2zp?nd?FoyBY354Y*^dN-~vQ)n&tc#G;#u0six_jJq-VL z$c8o;NmLeA?zf7(b83ICGPFSb;O4bNH3emw=I;H~U(z;-YgUU8nsWNf&1|*F!W})D z-wq}RLf5+fq8d-y#|ZpH{nz5!>AItO?@Kfdh^34Sx6dFjsD2t#;m&XdB=|3^gb+$t zhL_g|9xY&1R4NL^yJV76X0=f4fy_*I{I~EjW4;8^f7~e&d~Vb`ucOM!i!w=gRKvA2Tf*%YI8fOx7r0{0UinG0(N@MK=E` zc0;1w2$g(<5)%6zXk&qrTo7{A#bqA%7d14lS(iwtqu9ic1}M+hZ;DMwXwF+*AuRb& zOJl867=Ej0CRY+ALh|uStr=4wJ-Aoo=-L4^4`xK$+xJ~e(T$J1&kjK|G9l&#gc{#X zqDE`=XUyC1wUY|=(G6R4^?qCs8a`lvBV0e}!yLxNVfn;ibi$vC@)Q*HCC=lIM~Y=5 zESsT5m(Ea3E292rjj?AjhA{?WOejZVSiL36VDLVX@8AZQ-;$f2NUk6RL;sBw4J5>s2f(z^ zvu7lR*GYo7&9t|kEClCPeTQ{$c?i^v(=z$jH67#Qt$_<;<^(+qBUF%%OfvXr@hw|z z(fmy4=h=mle4atL(Dr>ByvHY(QF;a`NMhAg@Waz6tlbz3UcN?rF7Y4F)Ls$U$ps#V zS671bUdQGsjHWJ$x%aPPD!H?+!RE~>Uckjpca7@C+AY_J@#hB5$p#M+XCQYPIs+JmuX~GF;J96 z$BDVxB+Azmh0?rwGzi-mm%>0_v!Agq`U}@IAp3sbK%4k%E(*Bk1HA`Tro12c&_Jev z7UK7d`cRo-fEb>=dCEzHN~P+71VyogzQAagj9Plk-O zJc3|&Kqt4t3vZi}U;)0BOaf+jGV!<&gNV=f&<1U|7i_AIPA*(x|35aK>HXm`OCTl$ z!9ShicVF}A!rB2-*V?KxZ_rx&Bq8_Z`hwLp~p)d1SHMEouG9tY5TX6qk z7!<>XvSe_sT+9g4?S=}w3&6;!WQPjp2HJ2YN00YT6UFE6({0690fHB`h1#N_J!zL2C_`>cQ&CTQJUGnPyO=oHVk)r1 z88q{EqyI1{5;5!$sX!ipMR~bTpIgvhptn`!%?4MVnyx5OR;QVf`iMfE0A&W`mU!Uz=X^8|fVh1!8n$ zvvQDK=B=G%5>+Vvx)ea0W0;?9oO>Sb>VLkaED|KP;ZW0uIZenI)Pk9OxLR!8-nBeb zr@6HFG~buLNu}mYd~!Cqtl9duFxnJaOZ;&AP}IMu>dbE<16c(x{6K|&nJEd7BSIYhWE6CmKpYqmUI8?8aqQT?vL zOdGkS%5c>GfrCP*^*xRpKqL7{jEcXY>rdt5Dlvav z@~A=N7?Nl$q&?7_C-B*S$mb1*xsBcF|BHa{LpoDvwJ+7`g%L3VSpCeOLB}@x~Lw3blCQ*|lNDbD=?O zSVB;jp^&nEmT;~YJU4swDrD209QD&PeXKoLQ#@Gf7jV*@`(h2GPF65Ois|w5MumtF z>!>s8{lkY3Dg1!^tC4|#_Fi81)%th?XFA^3V#xM|qS!Op*SCF%z(51QS3b%ELv4@Lv@^roU*;SrZJxDNOH9b({T{lw( zW+n?O3p%35UFIlEf+$urLyhh;UGy)&xVM+*M(JD-{H$|>7^dxj6E`CWRY=Wj5#gS> zy^Ebdh>(BwZJ=$htzo3WaF@<%$K02Z4{~`*M(RJML)G*nXq!Khm~+Q+Yb7oyArjFX z3~z*gCGV5=ZJaTFK5d{i|BS)wD>&P@)%Z?c=_$os=H3m>7+PT~&pbR04$Q=QW#8f| zMoy><8QNCu&$o)LNlpqO8N+|`(5==7{o&r5IuQu!oR(V!6;k_aRGeWs`emL+{%{fV0v}3ImL>TD*;upCvtm+=-)h`b zZftBZ?%}lt-<&a$!}!JVDcIGH23z=b&z!LrD{ly6h5o6&N8VIqoirPW>qcc3%aRag z!I@6*Fpa0GzAckjLwWiSQkJH@bD}!DBd(nZc zo^KX8rdeJC3Ev)hM{X`s(-am~GX_)|;3xlF(T+;B5gW>I)SY5GLiPMC#efPY^-I{L zoMd5(Vuk9ruHzo4DB^xQExJm(``HY24^&jgVn5Jxud6a zXj@e>>PmJ)$~ntF!ntIM{9bsWWDnBCh()kuohF%yv=;T@OX(#r&?wfyqORjl2&cBs zltnzciByzZ)f7A6V(dkF2@G*3KIni6=jP2QVpbRsi6G;eR!_V-e?!-Wk*wnzJI7mM ze1gM!u) z&GDe_NDE$A$5OL?;mGo4={vvWlC+qXwKxBYF#ur!6IjvZq4A_f+0`5n<< z>3gPBVgZY7wy#JmYbvNi~gYek>CT_T3w2+k$HMI;z$fj zZJR2mJ8@B@i3!i#QtL5kT#=1)OLvL*yMyFI+q|RntWDIX)Zn0LQzx)Wzl(r6LU$UG z=ElaFn$5i0*Oj#;$2c-|-~F@X#}YP~=N>TMjXndMnXP5sLdjY((URw|9Pq?vI}f5> zT&iLt=8!G61%6dIx6_oew6#B1r?@#$#^{g{o6KQ8`(Bs zlQ1pOhAJ|O=OJibsvf&=<(!NDL5&Bpw+llQLY262Dp!yvRozUHxYj(w)Z=e24}C1d zDP(5U)B#Z;i-6jfOL1HR#dEj_!DXRvO6q%#Xm;db zK0a|zQ`}fH&J)jEpJe$PqL@$*yq9sUa1Ke36d9*_>ouPRmWFrZ+qr0aBNEkmm#CH_ z$aIB1BF;5A7Thon8%8xaF126a@L;sbVHn}#fY{IXL%JXS$XIvl{}dDmzg33XVE_m*=eD`zhYa78gEXobUU^65Z!+Wu3qOzs(jL1v zm744e+{kFobOL!DSFeS!V8D?|JaV)WEh+|p-c}Xqq}pYF?-C*g;oc%CiW6m3Tu(*K z;B7sjFvb)dZ8E?~NRmtj=;EGn+WvmsWeE;=9heoE{5Yal;!^=8S9c{&jm}Apb6?WE zA0`3Y;(0u|H!;6wuRsILp?4L14(gXjo=oo~>hf8BDFbQIyaA&nl{flVyN@vcd40S3 zz#$iThq?ol^wgdlG3vK1Yh8)k92g^P6&NUR7|*;|D9{21vOo$6 ziwZUM6wB7W;+@|;GYknk@eilum=ZM|If3(5vGmeicFB~MyvEji@e@S7t}X{>`@oGS z7(}eaC|PPmF|Q)i0W@s*4`;jmayr(E1G`${hSpl^owsqLfb$!)PVus7k(`<;1Ix(Y{KV!T!6M4iiGwxQjXgB7I^&*g({Ir`;YudY?}TDu!* zezG!P9?04@8#OVV-n`36tWFXj7?EZ=k*vl^m}!ZRThZ{#fTE>^a=tpi+t(5?F;uJ{ zA0xhF`gxxJ_xoAlUWIUV0^OeD{K(ytq>Dyx$+_odwt$#+#$Z`DuNZ~0^rBGCYviU= zr`4QI80j)0Tx!DkuTvOxvqMK_?x?zn+D?9LTqV6~aQv+Y?Pe^}W*T8@fE_5Z~#?d*-?;SWj=GK;b%M-?d(c&(b>Q7Tfrp`4GV^;C# zhq|=s(m#z?WkdlVHJn`&YrggBzw6zN~DWa0J;2!64}-Kz1HM;=xVe-JS*0`F>3y!gTUf*%~^uC z6I)eyvGoOn|5o(-Z%L}mU132DcCe_2SFGA7@e&C|`l!tQL%+soyd>DxFK&>jw(&*Y zzcQR^=GqT^W5zSCVB_>KFIdfbu$vXj=#tK^c|>4-9Ob#g+qZl6l>gR4SKko9teh(U zT$vGFeAMY*FPZVQYJ|Fa#TD-n1 zPe=4$=7%e9Q0rqCqbS@dl?C&Z21}S*sN7>JWj*}GV?o1!-L{O44#96F4IIe9k^?yT z+LjX|?roUyJsIjs@_Z)N7HJLove+o&#$6VtiPk^G=AT@ozJrEFAH2inqCzswHGJ!f zq87T71FgPFg*hmk!s@farQHV3J2pt(GU8{KTOK%Xi~{6^Gwxy1Y7uF&<_zM)8=cwA z|9CF_K{I}M_|*Lv7oz&zq>RO$3lkmc1**o}x_DHG&w&Stg80gosXg&a;8lLYouZTi zm*qXw>~%F}zkyZIo(Yua6MY7Y#@`#zL|N-TW{k5vn<~YEdq+Kbt^W&%Z`g2hAP1O5 zg(}gz=H$Ik-wK40z}4P)$k~B^xvZSlabo$wdC@D0&nX|^$<#&Z5Pn;4m$S>OG4vF; z#wHYxpZei_^dz8X)R1pcLFAOZ;D+2#ave+~Een*01M7>??1n{@6vhh4N7nesu{Ft1 z!Zn43(MA&|U6uNDe1?}?Q4Ookm@9a9Xz|iP{oBiX*g>TKiIf@*0`a#2(8a65d}*Om z!(zXjo#z?C&8^x)E`JWSMR&Brd+CkRtNlFdAM)$fLpH4XMZth=VFFLyh#s13<;Tt<#-q4>55Sx@4NiKPRzs1Hi97(-VV10&bl^>u=m zG9wcDM<#qxVgKe&Z#6bK&*Obv?=t40Qmxkjs%fHX6U)DvV5(i3X$Hp{5*QqC(Btb0`&MHV#K8#_+m@&$&Zt}!rO!h~bF;V3lJNuYRF34|; zn)a;A$?3Iy_LSuYb{)eKh2fuPxJkP}q+M@xi#<(O*TDjc_Z>!gCh%Y_@EnV!dyl@S z#$zw=eu|~buNuLbIrS@l8Fo&A?imP`hu*lXwIC<$xxu5fS*{f;zy%2!Ra-0sOK05Jm$0v<2Mp`H zuegm&D?$(+OcA!wZz0|#`)+C!>Fxc6#ld z5-Csf&)03mPHfee6hqbXGCqDdhtZLq3SyG^Qp9S#d=em(>ywEPv`%4bi8Si_AB1S&P?Qz(6eYxF)}*nZa2vU0MG!9`cFRx0U^(R%+%mFD4W z1Z{)9&>gS|a47=DPlR3nxqFjrJ=BXRq?GG~cKvd2E=cQYZva~0>Bz2?zdbjWF*)o^ z7l8d%Onw=&eYO5xvphje=*$W%QF2CJpVBgy(Y9VKUlG zJ>25>XtF4&yEm_f_R+M}q;sCzss32m-CbYQW55ftmC(;OQ}6tD*EjiWcvfHQtMA}N zk;xN^H_1j(C7U4J_^LDJj)ntVWE5uz5zp%cb3q%k%q0G^Jex-6Om+k7JFeML7y%f@ zO3wu$dEDA_eAXt+Y3<<9PrW)4?e!P;n7YkKk)mww!ivSrCryGA(L9=tefEhg2W_xo z@y93{i4o%|>OlntR*7A_O8`dH4}+SQEgRSWL$gsyaS`Y{Q4M{d#cm;W!>{lu^*tTQcR5gq*O)5OwU{$Bw&5a{ItR%BKn;!<*9VcwE*^wv^J&V_cstdT1LsLcpz|f zt)Y%?S(;!Rub<7&0{|)Jf1+tnx@Kl)&afL-N7|F@0?iv}1$9&TR&;M9sKC(RsUyBl z0Z;j}N;wxZ#IT#?g?9GB6sumMwl7CK7nxnxAsBvZcyQ}Cb-nRIpExFilP~LN%+{ZD z<4amXMm?}Yp*Fc0ev=c(SGLi{Ldz?=tORdXWKP7o4;_(mBYV3kQxEm<^C(a#EMa#H^NOJNOO1 z7Wb7M`kO4))Git~w37TQD3dKFYhH6#p7R~3RvDWe$s$|+)@P6CvUJy{+5R-(Y1!EV zhhnZ8Zn8`ExfD@PPS(e6e1USD~bQjZz+7V&eJ{5AVQwS=gVSm|odw+927Gsv2 zDo$&hFbw5Ce9n!R9io9wV`XI~^sX=PNVDs8R|-f^Zb;g&C#L_t*6f^4jsJ37u4wj@ z`aQjXD6S9k$2ROn4S4^ZJDMZ=n93@1p_!|+#I`qiaZOLeZjK4kfS(Vig*hzuN_l+# zg7_ktlCEbRr2++Xn<_otsH-8O0NK&dwDY?pTh*=l3WKHovpqAIRoQ0)U$cLL&hV&0UWRb{L@yS9!#GdEY=G) zS&<(wg*Bl&^NPu`;}>v+`rVliZ$Y7nY9ZpyFVUWuD2w;~$3a(Wn^5e||rn@Mrf zH5$J`aUhfa6Gf-VY)cbV&bfAjJ*q(nkR(Xz87xm`7O^u*;KV+9fomtc7s8@XV<)}s z*}PHuju%m-3w!yCd+SWoz}%9BX%+Ef*_d!bn`Fr z_?hMjRS~GA?7^rNJ^~BZ|1*OTR?P3>}q=kCUU!EXhBB=NgdX?_aq3^2VcD zS%b~Dl?8>2GU?oFnYdw<*gCh2|9*)(bPshp*eK{04^JZ_QFbaSN_&2tCn0LJJ{m** z{AM&o7S)rjJbOApxNJk*QAl)8x*q%-`r#6xvc>2V8op3)JAw8E|C<;NoXFTr)?H|O zY?#er9NV4{Dx`;Fxs*Xc%we}M``rU{IYyFEH2~gms*0OskP&;% zk3ba4vA|CUt1h3U9^RCo#}lR@Nr^P}j0j2HQXXQwAVo#$`?1P~aLW9vEU->6(Qckm zX4hult1J@neg;tz1ck?I-OjoJP7S`*9b9q4P?YT|WQ6~FNqUR^;7kHZz}ilWIhXFBK9SUUI!#QjvuV#(XHlyIkw&|lCL+?|Y2Fwjm~EUjC)NYP3* zDWRu~SBO`hZbr6bTU*3|UdUZt$F>SM9JH>vOXn`Q?a&FDL*~E|$GI(OiGu0mu=ap= zk>N3`Y#JH%wvD`|d~+*z6z1)sOigmjJK+l~SFXj@A0l1!EOb|ceID8%kNHqb2Gr>y z$Pzl)a?W)(Ht^7t9e8^90^u;?AtyM(b=MB>_ofA9TNKUT5;epeF~KsjZ0Nf8xibpA z*f5GmW65_LS%(a*=up2~d+`?Y6JB!6G&^((soKv*8nJ!O?XwR}Uw4)&0AHn8Ayh=d z(yfvfO?2e-QF3>Q-th{tKrBMW2#co>Nw{ClgM0xj6^5Ye!-5_(IddqnFDH<_f$}?I z)gSs&exN;6?vE1H`#<#Vc23&7!#m3&PsYJYDi1bVkN$Y^y&sKago+#>4oWML*PF_y zSF>m;ohgknOKTD;B{LxYSNnS8Bo>|BvEdCq{j10w?NsRqq&O(SCklM4Zi&J8p{}P0 z$5`j?`c5WdonYqPhKJZ_KV@E=3tw(5nxv{HGv1MzbAmoiiF51o`&uU9;<$=F1v4A&{Pbm%DgH8nKOG^cUj4WJgX9 z4FF3W(H*PnrFL!9`LT@1bpk2$+DE1{BQe{?Em&Vu&t2DAfMiy=Sj`Zeswp^4(PZU|Q#`%RFXrp%Z^-As1 zsXn5-8`a4=YbXdKx5Q@h)|)GMN$>vBjpe|+iO9Z>hMaL=U43fPetjTqOc7lmlAy~O zV)Bbd;ZX$qO>PcD(3G7*r~=i99#b{en8x^MUY^;8{))@kBlD(}{d3JrbG;n4Q?^4C zV;{XjnlNz`6^h>#i{|+~VQkgR|In%v9V~Qq*FQk_U2VZBiK+azt=DcIY{pYI^)uN! zVDdI!D~sjQONZ^a5cPAqM6(?76)3#o^ro8ehj*`Lk%4$mObRJeW($`hp=nG@BO2-w z34;d{k`+=ybID{NjnO<3O7PoNj{B|=)wJ3bbM7Ghc(1Yn31dFrnT@wd ztA|jj37HPrqrvoYm}o3~To~InM9}?UxIVjh;Yp!4i;_BUNuA3}H+D9T7>k7E3iNZN^mDziR@5YG%IXa4i1)SXd zNj;hI>Nz^%oP%}C$c|#UJ0#PQZArtsaG`7n(n_` zA0hMZltU#LfX7(qHidGS@2-(! z6bOYB>DqHmRIeV(zN_Fg7tR1zP!TYz!dxT^N__p9+CQBV++#WqF461wv^VMB-L+&D zPT~Sk4vH;2Goqi{J`0gV{@XoUJ}&mi{&p74w}W|yU*$(t^7qd36p$iVcR18B;dvFE#P;H1R<)RaVcXtZ_WWFtPy>vfrmr)I@=kQWK~jIC@SRIt{S*b1+Dw3cL^vGb_*(G?)w5ahy70D=OhLuO zIV*9SZn0MREo?D1_s@nXOC&Yn+VhHAuMs-Ya$?_+bM5aNXbl$+Vg{P&!cSnB?Mz5) z1L0Ir3F1|RU^m2%p}gZ4`d4D+hrglKtJ>KMd3#X`NHX9E zQC&K7h2u*p+*_>aF}xw_;>kVo8(M!8kfT^5px~%cyV94Cd{nX(D%eIi%e~_&Q23OkuY|02-Ez~>a7+E?Y;h7ry`Fd9Yd~x z9j$2{Q4$Ij-|8VT&l38*-7s@+giZr%_4EHa-g#D6JC{c7U)H5Dl0f=}%LV@%;n5#4 zk&Je1sAQe8I7fq43;R!) zCvbDxJPKvavbF*^!`ws}8&SeWlXj4E-xN_d12M)Ar zvySXDGkR8_mwUkhm&bul#*}lDt8>x#4szBg}G$&(V zQ8XL>bDh7WQ0Wa(6XHWyb-bqvmj#!F;=raYc0h-~CcjdG{7%T=9LHzCs1-UWuc%x$ z!o^oedCDYlEjd_---E^bYIucoe(tUzt&p3W%3$B^g}Kek1Iu=p;zR}O;$-p=3hB>5 zuQr#fO8@l2_7azz->spc2^e68EZzb~PE{F7cFZwudP14dA3wM2-j zCFGR9CTFs?m3qR3LwYfJ!dj_JMta+%r9voNWa&EVSu%D^BIz09iB(cmtj;<^YF%Xx zR;%iDyBy_BT90vmA}oQAB9!sBN8t&dGPqeRW2ijIb7go(Y-Rvk|)(a0@Jpz2(#i&RSUlWW#P72(QdS2-c zM4>~&oVG%0O>V_Zdr~dhow?qJ5DUkAN0b9x6IolA=pU?2nIuAT#$q?;k?fvEOJ(DX zk8@jIOl_C-iG1js=3Qpf4f~iq_BHaIVfVRU5f+So&`dLe672nJ)YXMmk0v#9scxHY-rB_i*aRE)lf_! z!WepP{FudMN;H1D!}A?QNaC%TWB_K|Z_Wb)SDJ;)a|SONjaKS%*r)aHP=czazZ}p0 zy~h6M{66~Y1R5X3zapLniYo_6ZGzlYxI2CZ#GFnkIG7p~3eb)j`pV(*nBY_7>Q|QB z^I1hbQZmF^@by2BaT^E|1@Ba{r%KNAp#DX!s@e_m2vNRTBJ9L0^YA!ujqYV9hz=Pl}x(nECcECf8z=}nNP)5iL9w$af zNmJnam&ToS31Bx@N_G*Pp?9T;<=txEo~w`&?(c=Eg^?aDD)nua5 z=2J=mPgMoXn*f=9K{bUqUkJRq>%yRt5qV%dpwC+R4-?Hz9X=!MJE(g)iovn}ruz<* zzv{d_?dh`*Aq%2yJVvo_sS|xPW?7IDd2VZ{3Jg2g7O=gpaoisA%<>WHe zxyk$tf#MuezUY~b`DL|LjaVsmSya+c=56)2hTgHppP(|UGMNq2IIFd?XQ0+GQc9FH zq8E#MFLidWn`(=%tf{?ZK#DT}Ma)In?@Tp{R!2}7<%-@65AovZRPu3~rAOz2uN__b zvfg}IZHS`>b6fjbxpeaH2kTS}I|I&ewN^>yLyR$polz7SJB-wICIX;nwu?Au&yjog6r6G;6NtM&%6OFrRIb zyV-H_=O`*HVyG3gks!Pa{d6nh*5q))Gw9%rVap+;-OZ}@y!qHiex>IL5h zJEI58>v@;=!@8UF>yLOc@rPgycUhpcP|$;gi?M7ISf`U*DiT`eo4o+%iyxI)?7@g7`)*w<9clQf&xX`mQD)T1iLG1du!$Q&YjB-4e2#Mac9VtlXfX)hv|9C}QT`KId8fJm4uTb;y_$n753HHZXwReTFM zXD69Hb`^C9TgO`NKIzfZDW{QodJDWS{d%?$DiUg%0S=Vb)0ZUBHZ*OcLPC0bcyrJ1 zs}CxCX&J3Rf^{>BoOd8~Vy2Xu**nG#%*}C1X(=R-*Y8<~qdYc^ua9XRNB7n{Fkq%IQ*gUtY&=6@cii7_u`re>)%cI;LQUfX#d9k<_`fa| zaesj+k)1HI^8y!gc4D5pI)ePBf0D|R+4Rd;h=ne026Ne;o5e4_u{pk4EGsi`dSR4P zJ8o;J&3Y6B81*UQbz8b)8Wv{?D4*xJcVZS#gsC66mJ4vQf`BrAWi**{<4oBS0_cWJ z7KcsG*_wFDA++aBpN^Jg$4@?B0PyU0SJ;+I*)y~L5Ep7PT(toQ7u5@nA;V=P5p?R9 zgb8NCBC5oc)hJ=kq(&x6)>$@LhfmGiPRh!v&cjOvx3Ef4gd$rER?WrqDGgfLrChtm{kjHTLRa!z7-%_z9i#U8Kx#6OMyKlwaqnQ@9D?NXCTL~0O z(ljIW^LuJnwgs7GGjiz2dO03em6O9KEu9_^Ug>r7Nq=Gg-<*v9pZ=mCt|l(4{G-1}i!=Vn8ULq9E;G}A zBDp{K3&T$Z_WvEp{h>Jim;b`Z$?{+Q7dpnD4-_4ZtW*fue|o(C7Xd~9AP5iw2m}68 z$`uDl03-qbDdnmFRDUYDdX~1PdH{WZzLBFIzyM%iYW5S&{lP{6h5#dgk*$N7rHwTs z;6Eq-Q_wZh`_Cy8dn3Icg#};=FawwaEC7}OOCtvdfEB+XMiif4dDJ?HIo0>BmY$+;rQQv<^QRXFtRYR{!e~{iSWO%_D(UPMD3q$+qP}n zwr$()-fi2x+qP}nwz1o`jp^@y&LlILIXQDNmDIYZq$=yJ)J0`I>-{}!Y%ITZ{;y#q z>}(9I|CL2T@cY6oZGLC>o6lqOJ4+E$V|x?R|7d%iU4Ex+3+28M;{vL(X#c@ZNh`%( zm}KS>sYDD?Bq(5L11x64AQo1%KuSu>VFW=z8pE>i`%DQ5s6c}9A-|D_&+plXo|CSd zbiVlbK78!>sR8xjP$-t*z=Vhvh>nVRKmxMz^4eekAX1S)0Z515-ee9<(3iCt zS+g*q_x{9)P(PD`u%N(&j$D5juue+DL;zfPbOH7g030zv9W_A-5C{N4CVnOnBb0u3 zqj&Er_~%dvfJgXy{Cy}V{O7Ic04~l_Gu0al;2RDgprfa!_UgtVFpL@+DBK6(kB4yu z;XJGw?5_(jA_0LD`ur7#@+lQ-(UcjOme%^aZEVTZT+(2Ash$*z0p1oA_#e+W-Z|U%9Q1kRceHZU7lDBp;w{AHdjFw~v<{ zV?VC(8Xw%SZ>JM5JSy^s``^x~e#CD0PQL*J$k{oV*y{iy9Dr9FG>ij$5q0FVAT)3v z#3{XaT@*MHI{Y)xpl+WlN7znw5Fi1nFaQSo?#>+#0Yw}3hVT;b^}V%7y}qSGYgK@M z1);94Aw(1STkZGK9t8%7+f|Q|AKOK=fG6?i57e^*$kO*Jf`U9dqcX_WKjf0??^V!J zq95@S0Ab*w0H=lor+t7lZh&K8N0g7`?V(lJ=gn8`m`sAX9oRFlx=~m_=-|yk2fxE_ zJOg?RfSCJW(DxtvK|iU({e1umoItR(ew_NJ|0%9U&t!SzBiX~p2M0v z87Q_EpL(k|EEr-Ts35>`(nN=fMFN!k9v$Ejw!pzy{R;_W{Rke!?cbxU=o~<%0L}n^ zo?3Pb{QG_y_Fh39N4oLxICQ=l19%-wgn#r7=rKbJ7yX{|1N;f{d)>(iX@LO>6%6#9 zw$2?BSl}Qz0)-6udgEackVOgR+YkWkjs^UAkwm|(r}qUk{nH-k|LH5@5gfnAg$oB` z?68EbiF9Q;8W9pQ zeeM%dc4!-KnNhBDkb6DTp|LEI!g-!9mHc+UC48I>y8R?u&0y)56C=vag#wrA?k^o7 zeh(@C7_(hdo_ltk99vf4Kn<7K@c=)kS=*1>3FCIeyp;jlsr`}Tf9erb2TE9uuvoG8 z`KTb#P7RRVw((kr_-C+c-azHk=fZ5i&PsUcT=hq#!7uz`j(na>StOC2KM~qD#J-px7{V z{5?8sXn>M?;*RnS4f&6>;4#+-B4(B^73DufveX>*{;wgz4g3lgcqS-2+t=G7zpOj= zQ1^Pj;gJ0+3uHewdH;jSgfDSHV5$*DIZRXpX+*^b?=_UG2RbZ4dx*dLZGy@?y5r=n zAH%+4*1>`02eKEFJT&IO*@#)$K4_NW=^U2By|8O9oU%lggfJd#lN3C7_PHwHt=i0yIBP=6`wAcH+yk3F8~SIGK;ydE$oVlm%PkzR*u!6#;U7LowPTS2~?ky%xYE8PwM z_T0c%L373h;^4GWo#h__mA>#n!AqglVV0!WeS;{9k*-lB8)Kb7Q%+I>U}9OORu~jF zftGY2e}|U!Ys7(Pf7@8-26*&EbuYu8j34Aa+6if%wAiCk4Mlh=--_{|xKGMwU!zkB z&@ZJ4r3qB<>Ijb~O4``Di|^}FRg!(AQ|CM}hLnu0DVAj8TN+n7BN>4t;)ZK^+ zX!oAs%8o|cB~VHSz?Qh`SX|p`mCm1Hy*pC4;IU6krmkK^kQ&-5N*(3Nz%{8{);64r zVguoyLet$w+<2Glr%Omvu?J)AHnyY&S+(%(%Q5=vKIHt>gVl)U)D?5;tv9Qq(m3d( zSGbQoI{ooC%a&CM9W&tcF8f$NwXI|Y^KD&i+)!Z+&O!o~;1vnAa{Z&nOGP|{3z~^c zH$++nrB!{HNAZ~6DVweDwN4erY#8})eMZu~x6pspz%KzA%i-Fr;^AT9@4OQ5-8CT? z+wG8pNhE`wcAOyv8kxwoY#lPge+6q!Rw13|xs8!ZCTmZ3!pm(Exb?)|G2AcsUN*yh zwtVM@Ga0>aCfAYrv%~U<7MqecMXr&|RLQ{~3lYd~Zu7GP6}*9^qc#^h>qWNo3uZE7 zyoP2ry%Scu6+<<}MTYloMOU_^Kc{s7*HR0WlkycZqHuJNxweC-2rD)ntu^SQIR2U6s1h?u&7DJRKE^2S8#>WJL${o$k?}0AmQ6p=0QU-#9yxv=%nj8%AMb#= z>f|~k2U;c@C>*{v+cd}cu&ahmJ3C)}<*YLE!%89Nl&WDfq&rS~y00vgRGP1-3jmM5 zC4*jF#%myHNx410-v@d0?a>?YdXDsY>Fc~?qHUb9xS5!y-^KB$9GK6;F#Ss9Z%EW_ z34`PG)~!K^sjK`Td3xd+6ptVdtyPnmLo&*9s%CQ6CL>;gE*Nq43AJ5K|_vn z=39j2G=JOZJAW$!BdR}^WVZFJAO75WyZ$C|=;>G^XR`epS!lV3nZ3i1(f|PQ?2E%q zSsgS~D_x8|zTeEr`#KSr?rHYzsXxm!bVshAe4HJK@{fQ~Ho|Q^E-wadp`9k|JqKb{ z$AF#|ojLhR^F5{KwHhq5JIflrG57F^gMGrU@;%)JvcPILxoz>}$~yvG5G2MxZKrU2 zF-Y}Q$TxHbQ69iG@T4_rgxFr-VaNP(`&H07-bIkk>*=JH zY8;@Q&KZnkA}Q#Svswu9S){6@aRa8+xH}vD-vaO94o|MiA}A)lm|SgUb2UiS4!-co zYIf9MpH1bO+zOyV;7U46kT4>1#pf+(vD~7!4c_@mjL5N=l0Sn>vrs_z_!HW(IZLWA zV_ESGD`*SHwCuuGRq1?@E5(CL}xUK)ptoqAonIcpt&BCd}o{A8myWhZhPx+fMJO&K7QH zQ=lFA7dHu^#g@*CN@IM~O=$lnqPOTw6i51UZpz5Y7b_(pROGx8sp0x4b2m0CV;1|4`BD7q7Hi2<88CC6L2iC1y`ti&SaZaxDp&C7O{(~F z2Ks7cXhu6;`S2C002R)SaZJoPG=}d7=LN;4(8b8=A284`W(rg~Nxi_QcCs zav84hOK!Ci!(3BiTi$!PYYzskGaH&0g)^}t>gi#s`usq56?bV1l}t@)3pJ97meNC> zYdV$C_7baW6~AohF8CV{lUpX&!-U6kvo3FGq2z;}l1+7V^DJBZ=B1ZJ+Ht1y>hg;el@)byS(HigrLlIP zJX|}}@s5raLT=RU<7tcb@~)_^8tu(9VHWGs`VmcxVAiBfuT_W|y5u*lVMVEM0av}N zMV9dBkt88#C}}Bu13yvwg3Y-IuxCAQ4UWdNs*uYYi|zvNixrE_wcBn*Q+#$$oX}?@ zV9loV@--SO8d4~*IuxYkK1IZv4*ac1luXc;Dc)AvcoSuveQvVBmvI=XAC6#Xrm3fs6zRP#7UNPUg~ z+`~Ms3zPAyfJI$(GxZLLOdrS~?kLfm0AxI#{c>ZUk>(gQ{aX@4S*<6~Sh-c)y4XrH z$@L_|H($!ys0c`gpe$tWL#ToE-9$`#%{TCNL}5KqA(x94g_#`JC3|Xj5|{q03=x() z@>*FtAwzRk=#&U&uzuQkI^osldr!meaoU^<1g(@2s86v`NqbOUz0Lx-wdS<3J&Btx z_A6&G+h53=;ENb{AAlz|uDIQCZ{QCbX9pQV1ioe`{Owb~G**O(F1BrC*iD8*t@vOG zrCL9mWwm5}?Yxl~Ex^SwkOC~)KQmj6$KL3L@BGOePEDf5q#D@11aW0irmYhOog8ky z;kfFWJ(E_cu2$Gcd1Xbz6V#aHPnF!m&3@n{Yfi*2ZQuMgJxEcs<%DB5OjQ%WlqE4Z=^ z8#AP;T(sv_5A!d^66UO5=>y*8+2fTW?mZ+v7`9FoMS+${j$k)H$)~@+bDqri&7Eu= zJeMT#xkdD&m9~s>(DqhZpDMt(cp1`sMq5}bkHa{d6h`PD!MmhJldY0Bb3wl0FA(SX zVj#kxMS~LqWKDYWn2LRf+l1S!hP6-Ee_1)*?k1KT>8mK;sShonS2_qKa)0@txJcy8 z-HqDB7D;&oj-zdl_g*BY`-Z`o(OVsY2I8L1Mc*fFnFdn}5EemKbh{sp*!X?6Yc&t6 z^Q`M*m`G=+t=91gD39J}qS-^}A6~xI;6F-N+BV_ngZMr0qL|G4C)-}yGH+5vfdNy~ zAdiFHHbmbKO3q%5GPjuq*N2cxVz;{YdskJ?=PX`}G*+3m0* zZgSvpN>7@y_K3e)_lM(GoPPS-Q+!T2J4*)9RTrSO<2p-LlLi&ttiox`>h>NG$j7#E zH-^|wG~(>Etv{`55yn-h)`K5tCwb)M7qvIgp>XNh-tfSVK+IX)!=Y4 z>t(D2xHc=T&R281l|aM2eV?IDNAOF`l+ zz3pG^z1@v{b@?8+qi)pBC406T1$ju@3#IwS0B^)Aav9TRWl{>O&!9lSOaJ&5;>>VD zu&2W@qaBp4s&%4@6SxEFVH}A=K1y+xhw^xR6ah1~&z>+3r~fRrWI*}k2J}ufKC7{s{}Q^};uI}9<~=&1p~2^- zizb~C2j5nkdN>b|ocpUzyMUV=Q5WlJp^zf~Izc3keJXn;!AuV^nr;wu#RfwngG+CN z&lmB*dqC&WxprD+XR)5VWuEbiMP_$xnTME=Op`Jqz5MJr*`Ii)~ z-q{AXso=A32J9Tsild<2LucLlr+={s4Qo(%F}0gXF#^u{&lUI;`KzX-?vSfkuzilT z9!LrN07VtEYFhb_IQiAk!yd2-&SVg!9-*5m-F=k)8#?!zv%3=hvfFSrnr1Rl77$^z z@k8y5xM{Q8!Zx@C@*$K1E>7>L+eKFwV#I*278eCSC*-Qpyq7CmURy? z@t&yF^b|q>l!SA!hyQPPPMOp;6x?2CoSv8)`HUS}sr6y$cFRJ<-O3BC%cOp|7@yTK z83R>vi>|qAM;q(o*+`kD#DgI3^U(G~8C06W#w84KaMAXxDFv^`7TJ(iQZ2MImrXY9 zu>fq?xgEk3({ccd&9qf}aLyJoOZl(^(pn69nOK^o*`F6q?_4qXZTOqsGec~0A;k7_ zqw-3*t!IB%?Fp$8q=)6WB)Y~;i=TKwfyAsr|5DqPSt2Q-wy6rqtcsllt=N1_(-`x) zR^ZH5EptmfBV1OyQdQ|AZxI$Bl9)!@o10@<|6t;km#s*H_{^_pQ(6U+0{uC@CJ73(uM=QR!W&2eD!PG1l|?zxdv|~vhxl{ zG}?S4epCo;t;Nf{o)#1Q7NkB+kNUcrvZC@q%q~t{W0=EChta@VpZ$%7oep45oO|lK zJqv4tueLiWH{;i{&lMpH{;vFhB*kc>%p<_0;N!J03W->L0h03YxH=LayD{oGAPqsS zbUlU0Zmbhq>>Cv;KDcO4RkvmW#(fzQa+?Rj(r3wCrNF?U6D%22#4yMN@qMOlV z#!mH{Z4P~(D@-lc;i|BRXh>brnp7TQUpSBPzsfiB;93>)dL3e^2j~OfiWBVR=1&$j z8A`kq&HX0wyuel6D`!TLW=Jd*O%39*S(W_IZEp@_JdH=U-OrJy>{LpglW>j$Y}5wQ z*62=!=h07`Cx5wmuydJdKJRcpoCDZ{JWbB0yho7Hjh$)l3{rF`<(+Vuds7E*QH-@E zCM=%&eLRMis?EvcRu&RehOzD-WkDj_9~gw?BVjnFBv6k;sw%+#biR}pg??<`>Sm71 z{gLmh+~(NyP{VaC>qiFaTP*y?mgKch^erX)l_qaj*QF;aWgFb_*Ur?8FS|64?_}bo zFg#w%g71Dm6 zs-S!s$q+J8*N3K`kK=@@Hd1z%6G@%`ALviCcBwT@&cf9=NA~Hz=B<6Wz4px9+v}82 zs3*5&FG3B;rS2Ttz`zy3Uo)wC&(hYyt$(*$YJ#Xp6zCQ@={tz%BWf|%S_)=k2&6{W z^!v#2Qo#a9iW~7w9>xbH}Au~&g8Fuv5XEQbK9 zmZO*q%N5H&O0IGbwbUOXvyhuhG5s6W_+9zSEC@rXbK)Pj zcM(oL-;464ReGxLX~9i4V!HyDo#Ra$ffBfGc3?0ncDrq~!6WB3lKH3as}x03a+*Bz zt>m)BYOQE*Z}x`2A@AxJg29NP)$YRc?9enF8`c6{r&pA<>oM5OYrrmrUf}Y+N z)&O}^^Qx2fU+~(Lx*YYI2d|aGw97Uy*Br<5G(W~n^}L7IK4pbjpY;LrwuBhr59@Lf zC#sc)I~xaP!)GKPI_`!v=65{AKT}VgAU6Pk#eCDk&bNT!t?UK$R*50FX@gfybYl8k zr0k8Qf3vCZ6>C^mRbVfqOg;%RN@$bkPz1E6y{I)uh|TJh4XXgDSbQ~)a`l< zX7zMr{`nHGT}Txg<#5T*5e8mQM-j-?vc9O#6RFG6;yjN3vofk!+qDnjWP=CJuw|O> zSprFartm#C3kBI;4tvJKOOn z&g?&_@G5oO7pw8$rCbg+zeQvU@2{jyE>tB_^_8+ezp`C}svPt|yd_xX7M@s&!}m3Z z;BxjdqG_2Z^5YZjp04sun|P=zToOEVFV=23fEj�u|POa0DF&YICgWgv`tZGdbR? z3Un(X%sYU7W9rmAF9{lRFBTYpf4%Lm`Ia~Y#BatQNdAQ~&G^QXijop_FuvGMBmR7= z`~?woMlbWG8hl;}?{H#DV@bP3j++D}FE5^9`x_s9IVXbRi5d`-H>TYtY~s#;a5gO1 z@fN_aOu;sA7<2-4IdPiMsIX!*pE?%Ag!CemTl)q&8}U(Wv(N0YUuT~JKI_W21+iyi z+j+STEbq?U{pYu(&22_Yt)MEV&|Q zot5vn78x#tR`0og9Ch<1ByI4-y!_WI0L_VT*p-JzbS8&#Iu;wf#~ye~v_@M(fytrg zUllt-bv}NdoHsYg2aQB~)C}d`9@f(XW;s7Bk^&2XaY!*@rVU=m8-q}P_S2a(;Lh>$ zH@LfLtKI(&$#eb>u=xKE$qOlqN{Va!7m{cD-x7I7#{U<{GqEuKUjp(Rzu5Z!1ISzd zhn4@&F#JF0`+tJrziJo;0(&DXC?1~w4!ju&7&-pqcKLts_ph3RiG|^}od1=EGcvQX za{M2vIbxbY6>uh2Xk{GS0zoi;Re-pGos+v$yKw!4?ht4MZJnTy*S|+UE)Y+w_e<8t zm*27%t15GMOVxI#*A+8fYT_P1Lt`!d_e7wiT&~u= z^!Lj|q+|_{n^`eH*y#lt%JwItvuA@uPHp87Wq=?!u>v+uLD@q&~X1D zN4OjU|I6Um$OcZq1bEm-kjG3^%(2$LIKHtkab%nMqX}d&WdT^#)wKoVR{|_@6(F}_ zMn>RY5D|qs_iZcAjLhwiwKj!yy8ot+!UCj5M+fIUHT7GH4B7LHi~+ecp%$2bXLA&) z0O~1>ixcp#o5KR*c76!&Roz@BJPF_rwe?BwrIi6Rx*IY%!S3{b+#DdBy{2t}Qvq`R ztQ#rPy8-^=0Acau* z08&a&GIV%!Fn`Fg&o}{OZu491o`}qd=In?w?Y`XPOn@R0RRA)3*zbQijp>QaK~c-2T4o^bKH{*xiXE zAJ@Q5VG&r1tLIe>?GW0N4f)xm2%rOyL&LLk!*c_iLI8NCX)^u@)?S|hd@hc^hrLw; z>)V6Z0r%}!L*~^sgWg_&&u^{|!9qAVI)T1>{%qduK*T4b8raz$12KSVX$2wt82T{- z(|!-wr{0)c0nQnFEaFl7AH~i3se#$wGl2(P^87&lJou)glJG@Jl`s4(-}!kP85zL) zvlC;3`^U#5g7!^JOaSfrYQKK7$23Gd?U>emCQ?H;003|A|IoZ#Wqp^LwDzJ3JiNHf z0exp)62Ho}2mnm;Q>~isnJ{{N7=8JzyysH>_#yoS9sQKt|LFcrs?7eEYnQ?Q^@HCU z(cPSVvIA&e@#l|6CV=SeCXWBNTN&DIZMiB)#;+{q$G)~IYJ8IA@k*wobX6`-Rp^07W0 z@=2?u^V(#xML%5n(2=q4uDy^-yC+- zC;us}{2l(UrsMk+f9N5l^c&uDQ~m+}F{Shgf9NAr=3CI7rsPL3s|(<`m3{OZ{|DcE z+~%A9RW1IhcXv~a?I+NFtL1k%bp0JJpMUyV%MHN3pc??waKFnBX_xn8H+TJ>&HSR= z>fX(rTUwQHzEvkTe;^tUdUv&HYkqGEw)+uiVP}f-6I26eJo(R6J->k;q>%K=#Klaj z@2n&C;ZOMQ2TL#@UVpRjC}#uaZ-dN?-INcidHCz-PGcYjbIO+un`mQ?&|A9h1ZAIm{q$1s{{ropZ4eHBR+e%g!PYjY^q|A?kW=3;S`Mn#xq zx!U7YHRq4WdkqzvB{Gwsn03X-s%ds{)Lh}ovO6)M7jzR@tQ-8r#q76DrL-Y(Ls55Q z#TAYsqzT^^7Sqmb?P}}L#B{A`6w>dkx!Xbt1=_|4SQcg-bs(Twed#80B9KP`n*gr@&|H@5>LTPH* z0}ss=XM+a%^Jg&l(M z@B(rj>xn=Hq5$_O)%S#;Z(k>?HvMs`PJ#mgBBeFdj}x$U@X#;<@mMbsq*>alJ8@;2 z9kTi3rYtf{y)>u4VX`hqp3xWFT+&E6ZQY8xlG#f#sp_7vf&=`(E$zr`bEEquEe2rX zYYDk&Pg4iEay*QLmlMRf*Va`fYSdlFm=n|P3@kb2RWU1`8d3m`{yS$UH|RUoyfI&e zv&R1R_Bz@jKR*slk zVI|Q44ibDt`}=G2yHqA4Lh_6zDdTQTlY)E$HB$CRFEbCg+~$9VAJD)vy&W8V6#i9z zUC&pfpf85uOzJ9SS}0ls+T@-&wqk6X5P&ruT-{pbmL}yGuM%nLt1}g4%R=n$UD**1 ztv>P&XlP}Y+k?(12)Tx+;zuT|SxM2nkSiPDEWK=q?xLo5KV`_uA8GPinewzE`M9%W zx%J^ zp*ND5on?Wp0G83eT^+BDN8lXtBNqwEBBce@^Nj+ng?Di$e*~YX+2Duf6#C^&c0OAu z2+{4K_*fmIFk+!IOXhP2rQfZD+egSk513rq>x3lDK+>9Csl48%D;Ek!9^G0}X`D(Z zqN2b3CYku&dQLnd15o=N}{%ko-~x4bLBkZ2L0TZ4aJ}`G=6X z@d_7LILp(7@k-qshfpWYLzYRH-$?vdw|kb;of{9;SVoX=TTjiU6u#(jiqhELNaF`n zE=B#wTEhdsC0E-}&?oz^P$EV(^~`jr2<^0mC1K%tzj3D>yWPu*JZ||Tc6N0)jG|1R z#G})hS=VX<9y|!ltxKcfEVfq*{lFvnONR3ef zI4kjByP2v2=eEu$86%1$m>a|{JxnGV5s$RdVNl1d2$TFVZ?t%ec3+l-rNE*v8K1U4xq6LIr}eE+b6WXG3En|M|Cpopjt zu3NX_aTwyPiDq$g=S3KHt;%*gA)w%iS1}VVgPSw`ZC5gNu@nH|R0TT=gWxfr_4%eb zaeGP69b>D!y}N4COFn;}jFYu`U8-%qG?9|YdjYil zMp{CC{Da}^cTvSDVyCs|xxylJu6ubAXKTXhRVRWcj?q|8sx0V4829msuuNt5r5R4_ z*h|u-mlOwNV$>qQja)~I2BjyoW?!h5UGoz0qcp@h4k=3Yg#LNslN z$tNoBp|H&<5C~{J)M+^=Inq;~4`iQRClBLt*xL6J{a=1UHm0GnX}71AK%|})D&@I9 zHrnJ6dFBr(o;^xhtaW3gp|-bJV$5SmkjS_?v0R-%_8$*>;u+*fs39+`4r0_+QW1+0g23 zj%I!f{F7}ha|<4m^46tT{3vv;xgSP@$pzR*d5m%m8ErBY*=C=ogO&A}M9~ROUwr5e z3)CD455P%PM|%PP$#|d-lWFwT4YI1CfVB6hgnbR=RtP<*Q*H*#weyo-*d_Acl`ADEr z>PuIp^H;%hDmZ>OpjU-^=JS0l@xPfL&)ft6ga;>X)$59DnBcTU6GgTMuJcti+e+DV z;!7Li9+>(WFGqx4B&hkv9wlsUx^~B*gOnf5Dw9kV~hOWVy%U_@JjD<_Y^eAd5eIS1+1P_#`uq46rEx_ zbjEN2+GAB|*OEXK>GGFB26vrQ7uikNROl&uG7f7XR;6IGjGET7FOWuFE1AE0#As&K zCi^tz!JzK~G(E>28?!iOV)O^UvK%yb2e0F7C9l&8L*rY{XuUNq7AWL_tgH^1uGj5! zzQPB;99a1;0ICdc0VNd8Y3COt(EC*H=lhJo{Anap=f_f0F&Cw3kYe+Z?|8N?OQ||hHG$^~Fuq3@u#5SY6hUgs&Y0Ye9_{b}AQdDp+8E-@%7!wWB zL)+C%zX*^-*Dc$2)@*C!6$SS(B{==1Rzaf)u)?aN7KPS^T;nLwJ0E2K2^8$DQO8z# z)j=8>^#h&frm1>djByPF>?Xt~9LRHj}y?GcmqJ+@j$Jk@KkBIRKh^&sDlFnWoEzvS;^WE9&?k_x7 zdg9P)X&TUCRVJAY?!I1iE<9nF2h$g;O_oktBYj}@^^I$d|2h7<)5 z-h+C6*xxiaqAk!{fv51U^;l^zuH6J52>dfcox!$9Gf(oPTn5w^ns7soBAoUMRYB4m z`9Q_cSS0qxg-Z?~GKjrG^mE&K?OzEP8B^VNs>+zGgEo+U`;^QFQ4$~1e5n(1UWe6> zK8tg=`IIAr-PDZOyxLy7jKBd&H{i%hzj!V07HVR(uAC`OiB-Pk43@UlkT@&3L4OnK ztHiOumcl6`ejs-0hIR)`9O?}w5uYk2J`(lw&2F7t&c#}C*H(06D^mPbllXFNOadRq zczOZQH8FY|zk;7NSY5$&ZoZ=>R5BZjs!5*i+mRdi0neX+=%Mm;BpNe{%H+pcT?u8tDOB4yS!Tw%y1Msl+ z-3MhB8{hwpB8Yvc;wa#pf%RAn8g(J-&)6Sw-Bd3j_ztao^o3{{JIzVf>y+X(wlJQw zTc+8pLWA#Uj8;Mxo4~$*%LPY01SAST!P2c;kaa4m#EewHb({AZ^C$~x!wzAuS>hkP zl+M|{(h@pfLS(}2fIFr_YC}8|L;aj+#mIkuZDK;9(e=841f+CoBci!;$v;c|z|BR{ zIZJcP7z()HX?nKRB0Y0-6B??n=1&+1a4Er2r~M25$&oCfIZ9^JV8=Yo(F%DsYMy*c z`xNj8r7}R+mm^imXlL2aBh&(#4iQP8R>&OK2Y7nIi;vhOtKnCOTIDNM2}L zp@cok@?HzaA~LH4HGTN5lClK;OT=(6&b~01l)D$mcX@5V=#2ooY804Os?MX1c}RUw zSE;Jw$<4f&7E$h)7o4w&vo-PA9>+i`*m-O9H2=t5jJB>=6MKhMz$*LCj+kDuJX) zugGdlXmChhT(nC4`Oz!^Q6x|9(;Wy2!j4yGYoAFfji`=>#fnnlFAT3|*A+aWRgADP z5uW52JdjJO8>Se2j%tpcigm-pXzF?XhXUV6SfMIFk1`kncqMFFcAX8I^vU5RBdzSs z9X<4RHW`lU-4>S@UhAr|{ux$Yl;;v$`^60Iy7%Aj_2pWp*~SlGSveK0ZQSb@71xTcy{*xRv{j_VD3Ohr=QZGD z6o-8T^XaFSkoUO0{f;~tnNJYOB@3Z@66yIlRy25!@$TysQsIrET)2Qa<@!bSvlG!Kl(_NcZjrXI z4!d=wU;L?1oanK&Cbc;(%h8PZGWx-p63ATRaWl;i7g<+&_F&a+GE|~AQ%=2Q=*?An z$i42tpB&oymz%K=cGxSZ-vZ%6*7UJ%RLWrD>OvG%OKQf@K+vC8qEAxUlw2VihC6bN zP;l77U-gO3I-~bJO36NwYSnae_3q-3n9+g4&(0f)fPyjmV9X^i>63 zM5!u7&pM;^(Oc6b)Fu%_@MZu;}SqSnEf z@+(wh+MX~utcs0F0R&ZeAde9g?2Al^v+WZBeE_I$XU%$n^Gt-H-6&3=JM+7fNk|pf z>+4kgQx4zoTPp(+MJ+_*GQHKVAQ2w1C}G7tQa`nxH=;rg-dhtYKJt+!2_5IB6Jcvk zBg38|mufoIiFc})mb=Gordc3`Bblg$_4va2u3dE4SQOe-l$oh{d^j0B4I)kX+^}?RnfT4T=(@8`Z}RDItl)Q*;*ol zR(W~*SQhx^C45l0Nermw6a_6g4_*+>jAL)zyhcM#UT@!Jxx(K5U*oPKu3&1>WqrZ+ zvv8B~-QJlr-?v8=Y`SVUH!;TairPNTq{Lv}=e9={XvA2Hc=++Hkdcsl7q5%-Thn{z zzwgfw_L1_Bi2(~ZGQEz0vTu7vwA5Ta?iv+natO^H{i91)!*&^ELY+@~D+y5b{iKjQ z!a>tpX!Nhr?{c8AR4a#bI5NrhSZT50ibJIAYYXN2!?)qudWvd2R*_2PxfTCVzFo6M zBt%*qH@k0O3SvC;qsASz{seHva3QV-#(_MhlQv!3{ur2FMj{U3w5I|9+qt4LX_cvl z6|t%WrJInz0k(heF%yJb_}U~5r6c&c>3W0}1))?!0e|i-vpRdtY&+fP$RFpdp zc)w4fF;!3zM^A!`xk6Bmk=zvhgl~srezrlODD_PJ8PM)Yz|DIc;`T)d2&DjHOi?>h zf3zugRH1iWo^@xBo)$g1$hz3ubEVGK0zHvNtJM}a#XC3NT{MjJ@D4@E&3qNp;}JSw z7o}TUm1Ot^Jvz2_%Wd)9>&rR`ozUPt*{ek=GzX_rovE3%a&iv!U#ibe2P?f0xq9YZ z_4o|WN@GoWe7(BiY{E?QfvhrxF$&o#wOHt1mTE-$vPkg%$GF*2Z}_!=So}9&KpOXx zBHoKyL5c|fpXi>RZg6;{gO$-7ys0D)q+c`j*TmT9K5^f<(2AUyuc||_JMH#?>R56? za^%G76eaxd-Jv~_9W+>&;L=iMq1dB)-rweN}TbM}24y zDbjBGSX>2qGJ=lcRAQK5Fe_s}PBswGd%|qIOP-9u<;zzmDB-~fEnRcVnAf)PFkZ*w zx`M}g$e5i))NW@H=wl7L-4eMs5ky&m7Z0~>ND&&7>$%Yi8JU#mPrjrx&=Cw>08~8O zwbFDLMEj|KE~wJ#A6s6tBSw=V4yR#&x4+xY8@4>%GE})Ot}%H^q)vXm1|#JXqqUOV zUm+B4%RzGFu*lcfRpCa4t(9)gdB)71T%`mTBnRh@%95v;)<7p00D2ug2y*?8)vBm( zco#)W5>39L^%m{4I=vZnvV~J>3qbhYSPde;xq#g=J)ZRBbgt?}pfl(`(;9qVgp>E! zDFKa<`?Laqmntz)^hR#D8U>qZR|{{d;l5_KypC~01I)7%#3vp01^>*JB=fL>#x!I3 zluxQ%S2oW35O?-C_|4p{z9<$l=s5$`nR?sncKh=aTQIb=IVsgSg1!2;fhCG8zo zuGK{4?PA~IU+H|(WE&?kDhn7F2D(h3V92Y$Oh=&TH*|XI8Tx;FLBka!vH9gKWggQx z-AuM46xup z5r%v=qYx&XEmmETSwYX6-t;}aliBVjZ5B+!VoFl(cl3OM=wyW9f#ZGKh8V8~RH7om z3V9PVp?t}h$)_rk9fD&=979(T_q^eE<_51u%@5e=x7&~F*HQASU zule0X8%S)Yxwf1+lt1VW5Nov0>psj)pLg4y(V2fDCG`RFtb1qXrF>@T(}OQH{|X8V z48eg0d=I$d){fz`gNL-iIbDXr=Flzp#`VG5m%BET&-w6ci$J(-|3#2zIHSuD6MRX! z-+(z^oXZiXWYjU(ZjT=Jk=+AFV86#1Rlm~>16BkNrPg(SfHp7QFGEldzvu$kFhsLo zM@%ULX*x5GnitxvF;b&M8%qo9rdiAZ;az*a%b>D36l;x3r=oI<>x^V>DVLcLABn_r zwd5?fRdK|1w1z3ZqaNAt^cFSL;%1z~q0Ve&-RiG*KVZJuHT zLFqJ(3V!n;KGJ&(30{?u1z-cNfa%^>CWrMRE9LsKv!}W8EmXnjsO%$L?VFw@2kL*R z(Ol57e#P>8+lz}gf1V%#NPD!?aHc+Baw=_v!3BLctp}AK z1Al|MEA9H+hGN+HyhyCNMXtPaRtt&cvYz6XWdtc4Ab&reL+todlPVm8M1j6Wj71Jl zz*3KPVi;&`G6JKZad8hjP>dItur}~CF(o5_$YFFwyINVt({~Z_A$Psh!EG*vWrY+P zU9sIBgU+fz%z1!R7%*>!7O;JhO>1)xfGgj3a|z%yZCbG_lhv21r^MNIq6ss~oyT-z zaDnjT9#6gt>GN;21JqH19k-3_=%#=-rX+1z4YZR;;zWmFsN(GL-VKlkvRLH{iRL?4 zwV5KZyQ*raA@r&i%yq*OwWy(_QWvVbVDGB{(wTwJ1F!zr;joOB8wWg_Ck9dJy(<~< zuw0NSgGI3r+2&! z67ac>H(=)ugNe)$vYcY&Tn~{yRBs}7c?)&Tt4|^#0H{$Q8?};m>t;P()d5CFo0oOk znInsAcVk^7>v88K##Pa`h_+STTQHx5s02u;6_es1&6U4d>Y&-DJ0GYg9a4Nqjy~TX zya{8mJ!JG)X{JQd?|YF6a`-&Isby|7SEUEE()C>BgMd0TR!o`l z_=JR;K>^CoATnV)3C)L`UMg0e3Qg>?*mj7OUHdlP`!9UOG0n{vV~Xwsz~>$JaYw1v z8eE6(680PeYHhz}nfR9iS#=7^!~oN*n2Imp6Q zuC}JiV9583v*mjWO+<37i!8yz*avag=SdMpHeE{Xa`K5FI^W_>0qDU$x@?=K^Cst* zs2;4T)9++-P0v)Zd*q=gIU_qnW zT>Di8ttIkur1^?y`-MFkh#ht=XRn=qFMKnFZB()+WLZ*t?#)%B^trQYjNNaFN8q-3-8Nv}#F1KV@>rv{t9ES3(N7d}mLKl{X-jTaQmno_(Y4F=?S#2pGxm)=XNEEQHD88C zp}x60nB zN~KcSf35Wq4U@x~BLbsc6{6S`$Fn$sn^1@(=2(~@zT8JPE1KNSA*3*we7yuz$?62P zW6W5tnIO|ser!cR0$YAP4zri8;X-|)b#Y^txmrHgG?Lk&=^~`;e@WB7-s>@ps+Pj0 z*_8#5eWHo1^C7y?FS1`2FeW>H(6AQYk)mHBla87xcpx~tOZjC0RkHdb*-{=W$TG5% zn{kWWb1(Y0uBJ-S8>k$SYbw!7f8u%(cou^OCMJZB54@iapf@^qN zGoF&>*F>a(1F9XQ${PSeXZD#d=9*M3%Q661S_a?xaVrG5bP`sy?<*gNK+=KJ0jN|^ zE{iVHE)`&_&*crNodjRv5cw)X9{)W3Wf3?+k0mX&iCVNg$2ea!_GnsbrPGeZ3<0ZI zZDwK0l-Gi5RfX!>EW|JqFqNWFp^X@YjUejBkWhU{o*KD6t7<@_P}gU`61K9o<=ufO zU1zt4*#+L{URy*|;xPJ#W=?=aD-DBC2_uci>x+gue+kOAsa_2Ry|oJ{d9PPIP1JCV>etaW?Qjs*U$o!urX86%AIj4aL?5yqF^DT z%{vqAJ#8nDW%V~;`|{|7L>071Tq{Etb+8&^8s3d>ruvi&&x$jA8}n57cT;wiJ^8l( z%b#mX>20RxmptvDV=g(KCyhJF*NmxQby~LQ-b97mJMj09=t{6CJ><)ot2?=0Vvz%| zryXGcLPpMt+=+BQm*vn$*o?g->zT8V{OT{$M(hI6$aa?A|k(IDh@aotskasfy z*QT!g9HS1ny*O5+j>$*%Kg|E{P1f8!o3Q4z>HP}Y#k?TyRONC`8sw-mcB2PlvEc#( z(Ili^qMrXkkb|$&&H1jnJVDl5=&iLKY?%K>01-m38+AmGLCE3!X)54Miq(6pT+_Pt zm7pBOTV_eM4>pkF0m*(=8T1mQ^TQz>%-7lq>Y znmL_k&}8dxrTlzCo60;k5jk(*Ze^+79`C!57T8x5A!-vb!9oz}1s9U+HAS)P^ZA#$ z=!j4YERN-k3KP5AEy*7xG3{nnlIaoN&+1B%Suw;pPK8PN7W{`P2;oiMxbM7ECWS}p zPZyK{T=+>@=R)bVVQbpz5A*qJ{r?x5c7SsDu8Xk?#~QBJkBZkgoism1fae zw1zh$H`cS^J6@MWD*I&y&eqjeY9S_hl8+^x`%cja4S|~N#aFNfQ!&VX+h&C5hghxc zVoV-g9D#d{(ggtz636RFuviCRi5}c2Se2#q1Y4yp z0)l7i^Zvl}c|*dbZqAK(eO~owO7Lts!yS_>^A4ofy`{z-=R$_s+}&6GDLklQLP zj;HU~X>K9yHaMk33F_QGk!R#CKqE^sIK$QcIdqR@p+#dFP0lERqEV&bt|)4~3syM{ zf1Bjs*g29(gYK|P!S&~oc<8<&h#4%Fr9rv4pn2BTHy1fXG;&w}V(&*xXv_2rv~kq1 z%H~+H)1v#9 z4B|nks~+-HiVrnu%+sTxxm|=Ums*tPtFfU0K|C)!pviWK)2AHKHWTKy4W+0AO%2kwCe!CtxaijY;M*6EBdh4vh?h0^F#94Jf zB@2I@0+?f;p2=N-x^jD#?U63g!&S{q-Q;8Trq%*E5;e&Q49FYD!1R&OHt-n{h-G?c zG9JpziOm|kP@3zFVRon?Ro)P(nTp~GM12xGWzQDMy^9t#JP~*9Dlg`VZ3Sb{z1^DI ziW9@L@GPxn&>(p2QBYXPEb`VFl?^hTUBi(Ik=TkX-6!o){cxUE*hdsP2GP&(tA0hs z&Q$hqc%y-&xD+cJxOTUG(tH(StPYnWW7vt7F{9LztL??f% zD5t@p-hgZhSkFaE`s)IYs;MJ%H`4C1C$d>Xjc{`C>@M?tmL59_Pz3SAp!$K3hDXy` zD|2za*-j0@d-o?Ba;s1W5LyUd5>oH{BFiWFArZXtj~CxNR3}hlbQnDU)}?PFSut~Q zZbo99mxk)UJ_+c|>Pm05it-yMDhQtI)tOe2NC8`3aLC8rz05e)i)tG$)FX7@BV51~RQOq4sYW zdXa6>07uP;ozgdsAIUi@mV(lw<_A+}sd^g18~;S8>xzkK&i(`GsmTz>iz${2F@Qwm zIbw+-!Nv?F65Z#qR%VSfoyMlbRu}sKHG=>yyEkvti52fH1^B*muPLrCiI)+!)E5I; znEC|E!jK6&dyO00@6+si26E9Wl>f}kg#pi}m_nNGIm;v_+ai4!^{8WOIqahPV$;D; ziKUk#W~>eB!6x4#$kV5g56#J&n*Ti?d}%-pJ8jP>dqNE zaqD9o$h|e2H`VEV#MW-Cka6&g;-Q>NTt_YbvS8hk(O;YmC~V!5vVhkO$JY$?p7Xd2M}i8Pt5%vy&vwty1b zJnKMCqS5e1KHLcaANHo;#^?J;yO-b@S>!>& zM#Z{G2N9O~UclSx*F$wOrxDSewRsws>0HfZ9yxS~rs%U2O`lkIIF#JQ>ttJmUgo6iX18XA6am9ic5Y^~o8|97XLo45v(S_?6Mn;X zwf95(*;e8tm|tH;V&tMC7p*#d-Jp0q3QlGZWi1+Eq#j>SeKvR}M3rOqY89Y(UYrdJ z!gdkh<3ccMobx{J&6N~*9NK2Kxd3}%N!xi(@! zm|nvO1?BZM2`>yr#X5?0>0y~uV&39ABwPSW9PG_*YP1UBA@_8B)_F78znD>#^7As) zuFdvQB|?-Uk^Xm%0h#9>wK|d71-h0CC$q$pkoDjWrQKl80&&Ftu)nXGoF2{1!-uC2 zCv_%R`J1J;pH*!IRn7)HtXaBfgzBck&6kxmpg^YmbL-fYU892H zUXXjx*O_Qf*N8Dhp{)A>a`wBn?^;YfB_UYj3t!q{@iKT+_jG!^XpEO@7+224qeeqf zXC#dE$j?}kica^<2NRoqpeE2{;_Y*4;uV1Qz)lmYYv!I#UxWK~e2fe^G7kFr#hm&s0lE>8(oKFdsQf~#_!ttP$fsuZrQriQvXq6DD$~RAa+r- zmmA)iF&;0=;lsQad(ts!Jr)#iV6DUVMSsC(NSN|%vlNNSGQH2L+(l}U3s&B46hl%} zOohJ6F3*Vb9RRoQBkc*|igsP@Ku(T{9Wgt8+`Vf$np#VS3%J2>^k_M}azG?Vz zyp1vxbv4a0pr~ztRMVXWjH|>4PJ4t4LIrXk#TzKL3T*vcird}l!6(?Ma4*LoE=*Q! zP>O415|N%=GWpqQ#t1Ze8s7kiDT@S4zmR@NS6^$>CG3^$qRZ7xf6v7n0mi!1f+yACO5f-7>bJ&iiHWFPP&cfsY7@Fm7cGe zj`M8_zFqp{pt~0AZjh((JGqCawY^!PG#RXW3|gc zL*u2#d18Dc{@SY0JrREH3uA&MfIs9>ajJb6_tGm?fttIjU-pO@hN=g(v#dp`C0(|l z2*3z^f4cVGF`ES&Rz9YGmtL#cDOeTi!)qyu_uy;kT;{cyw|U{CCpg+yq8zJE;nzAB zuN0E)(u*mCRx-a^+MX$f zi^l2B03RgKn$=adty>PK3MlMC=~)n?0k7DAMF={%ih{41-kQQ7NW+XT?dxHXA%tt7g}U8py*JL^|MlA zT-$j_&ftf{u1RvV%hNjJ%jok7iV;D7(CI_6rPih5;!?=NQ`f8T^?}~~$-XcI#}9g% z&avDkBgZnox8h9!L`aIDeBe3hr^OdyMs9QxKGsTFqnUO#oB zsscM^o4Dy(=*G#vgzgV6C;x+U`D%yRPQ2jbMk}=l6}3dRn*^;}D7qYl8!VLGq=`5Q zgtascLTmkR_wt)`PF4bQL>7nxBDJ^YI-3-{E9LhJ}z&9g`Xk@a-;)_!T2q}LtkL!da>gUUFl z>K+8G?Yk;VM4vB+;76n#8O;7Iv1&+WK!#mWKDTE=IjTkGZMY!Alcra(fXW4mr9mt; zeVk>11>YNX{7~5`Cj%wmOEMy;RP3QL&E)SxEg?gFAol!D=vkSzeu<(M6Y~fzo5BGzmIw0Kv9!!)%$tI$uJEd+(vLd$2PUEEI!N~5=_&lh;^?%ZQfWAUOOumT`4 z3}!_pUWwtDPh$~H2E@j;PfUfqVbq@R`FsGaB_zZ$vZ;##0-Df9LDy@POZ?AgaytkZ zoDBR;Y0ZUy3#^b zIGMDttbpj>|Av#X|ED+^EhF=P@MH`OfBrx5WNiOF^?%{X{=4Ayf2m!S{zL9+@IPIy z|3lRJAC6XI2XkAa|D|gE&jqdjjX?W9nKZ`#ZIb>wcE&)!$jbOnLi<0MG)6{N=KqvQ z`v=xBGZFmP_Ww4tM!kY6CEdP&!7N5E;0lF0xw^Wt!H~kRI7x|@5-h+jY%kDiFTe&A zIYD$CzGpi=ef8Q_ziKz4J!*O0er|a40mBAokTtd?CxXh4K!TWJ?pp08zGZ0j{zDT<`#0 zbO2dd0l=}be|=%HwLk&>p5VEt02rhB1t3G5g$NR#A6;Erm>NQdw7t&~`|TtE_RY-B zPCnHh0@#b?Rc04+K;&7$wSaO8a%*I80WfFNT>I(W{^sYQH-H9agQ}_X@bIWl;clyC zX;}+nqygl(=xO?a&B2~s05$=A$ztRg+(3MhGohhi`K456Z}K_FkXzQ3wo@YjAhNHi z0}0r~A>R;C=TQS3;N(%(g2+3A1^h6me2n@*-ra5htf{a4O8t|S_J&{a|8iQ{n4ce= zS;0ND0Ivg7UE}xxC}WbM)uE?B>cKU9SexDKoq%xI-ssz$>e&D?yr~|Y0ASiX`*D!; z`<9-XoLij2xER_uI=*ESUD{%aCl?E-B*@0Z@FT3j9=m$|b*bT(5?}9D|2@Cbj7uaR z`^Thhz!@2Tb3szOnyOgGWk+(!>s;)TAs|lRr^6z^?3oxE9v+{90B8g7(@SZt>^^Di z%=GzEuKPw3V!nNHa&Z7x5lR4jUsw6Z(WB_HIl>bFTwTCDy?$%n_d*0`!5;wDNqz}*0jP}gg~9hxJ%ir^s}=u7y8T-xjJ^n5e#-yYG=RE^ zZ-FcTm3Kaf1G#hffH%dTK!P8oAA&Hx5P3;aMyx9|=+9zrKFKmF>rx1V^BT zus_77U$tMkr0=yr3I4~vh-^Vq3*&%{1i$fi_TMS&oImz&o(^i&KLH4-eS9!+eg40P z{->=w!?+FB|GEeU_(z2Ywjb)!#38Bu`o}S?_zKkQ-pQq}`(pq4Z)Nr7kLD7r`9lA^ z9sXF~9Nm1RvW59i>mm%;ev%uHrEPd{Z2}4Ss`DH9zMBRbng5~(IUQZ=BK#Ez?IkE0 z@?|{s135IaIsZ_NUMEzgxWpfW)dvQr@{}O{GbPVY-75HTW z(7O6f`LX?MCkSU3vJoxigFOyd8d>k(zNYsH8#0 z(}mCa`d#^|P5XA0`@MkRD(dsqa`+YHkL~5`gJp0H>?;1j@e}?Dg>zVM46xSr_f-x) zZ1v9$T-I%bEQeWJJg0{fFW&wQi0g6x0ws+1{22!4_)hhO3lqEjHw z!wcUVc_~*_apb;Vk4XW#wckD8ZxcYEZod=?DQMZ0fczKdd|X$SgQ1)$Pvn6{X3q|D zn5iDA8r>~?9m0}7N~S%VcHM|_nCHW4+wmp6Xqsfc4?Gsu{9d~$RXaatuanFQh90%J z#`aLQb`5vpT|Ry&=|SpJR=c<3!*b+rv{uwksX#I{kzBjf&0bervp(vzAN~!=^>@KM z&)*h!B1^i)OjGq645Iy{j?C_8>W?5v5PBwmNkpq0YgZjt*&5Y266uei!foZhVhuSW zylupAz>lJ^=s=#O3b}U;r^oD^}eT|Rm0JFG((}rpXM=nYZ;H| zaqNwiwJe5#vAiyOMA14o+@6#G2%d+5*SjWK^06JJb^NV3P-)E+H4L=m*aeb+=d31O z;k0q`sJiA$pn05K>IFENd$x`Z(D3lW$JSaA6$MYX9pr1-j%JR%d3w7{34;quSaWM& zlH9}+t*(JEit`Dg2aX+dx&%75|C5%&^Y_iCKQk2az2}qio`0xEdu+s{4}2G#N7P{= z`|_1(rnli2J<~(Pt>)DOdxt~+- zP)i*1^4)|KFLKG$)}gq_`ery+Xh}rtp~2g8w?ecaYR7$Z_Yu7=>q5z*mD~=!Oz{d& zj42kM84O-3DCqfdR}I%{Hz`#rZ4Zz0d@EPgLsUF!$lClqTJ!9${RgG$qo_Ly*FE^YdjHUVJq1=l#|D$I*>Q>$>d*|Q! zD`TeGzpw>_a2WLpa278rerrKa@@XfO#z%g(!d-5txu)Eylm45@zy`6!j)xbRm?!u( zFdjn8Xio!9@g<$wUZeB`c4|z>vFWo(E_LP4-6PUAFCY4h46Nprti6#Y93*K{GOs z@l21PPz%l!Xxp>}_wmzWvY}yKIS)#hoUX(`4WDSbvB&b};a%nV?C-co25n6ws2w`o zS^+pMbvB+$-$NPxmOC6h2~oqQeFrq7rInW1;)!Dc{WN_K>fIDwM-|;~Xji*k#*8rQ zz@{%j^?e-{#|MJ{eUUZti#4w<-DC0}6BdOt*Q?6>mN{@J60oMhu?( zb)Fv1(SK^f7hvaqfQI4SQeZ%I$!%MsW~?3hlA8*0T@T1UYw-jiG{kar6JEK>9IKV0 zNHiIt$WxSU(a44)oH)A1;NP?;lB!H9T*9(rfLzv{)eJ*OgN7|?@nk915F@-O}jHQ+=+=g?>`2CxiwA zZfmH}_LQ->suDtvyNKz!v<>aquKyH2+{2Ih)SGO--$@1xNRBE)W3?1ByN!T1J`oT7 zbR9(-sa#(6(1g-6TP)zX0~v81z+@mvR(%Q@yOnOO87HhCfMU0*!v!e!=yoccmv5jw z?+GwMNF<5R%bUyRd-Y&N%1Wg1d~3Wtb(VCT{y{sK^^fq8ohU0=gKorkW?;*aK`JEd&ml1t7AAM+Ucxa_u2MjD_5mFnC zNM+3($4KV~F`@}=_;i@i0gb03*eZw-?y3O^|8>O;0clg7-bdvUEa__8drn}2rRhTJ zDxkk+tQV>?)?I2)gX^K_mjQR*?ngyV!;(Ea7uGv~*VZXNRVlPA@7D4RI@&1&5KB+U z%1sRy)B?6n#MemJzV{&u8cFN6zatgw0Ik@iBT0);KYX-98n-S>_muubu!ud(SUHM1 zguzN`Ok_y8h8s3e9;NQZY_NlaLVwbx#ukFBQ92#snwv+|n!3b@P4f7o>+Y<$n7a4bzWy-!P7D@VpT<-gTaTu%Hauv5hB6rFdF zXU*mOT{gQs-^r57#_cts0g#{Ry)IB(`pc*SBJRNC?wN3Ff|?5Gah$jo7^J3t*DbH- zFHE@^I>!$8*foX9QbEy6GbAKZ!K9&{lA5cbGk%lKs_r!(;s$-xcL@8f1IVEx+I%l4 zj_7_XZrvr%BCD09w?xd%Vdp(UnET>+nEkWU3f55!NwIxg-i@$vOHSyr=lx2Ql-j&CL5LJ?1v%s z3W4U4Ki01UqtF3U8HTp4UD@baYyQ&>C|fD~-ZHSBSkkPHo!;0KfD5G)W~I6_O}9*e z6;J!`295OTpIw*7NpU{d8jpt{>G;Hr)SqkfsW|?Nh9LT+#jGscR*SFQw^&$%?YCW_ z#q?{Xgnax?y2~BtGA{~FJeSOFypK6)x)43wfE07VicU1q$^PT;=kHJGJE9gJQkdzs>C6o=#e=u?k?5ZqdzaQ=K%T-Dn&JM}hGklJxa3hU*pCXgjlO zz{se5(aGli4eH|hZDi3Z-IAF^wq7g?*wJ#(qaigSn7tv-wcvGfPuhMzxXqCyW+L;g zksr6qcs255MtRM}kFoT*hBKz9LLH~Nlf!e%ED`+JWsx#nDY_dVizrt;MJ6uTDU5e7 zi!MJC&Dj9P`O8Rn7mL%?X|Js2&)-Fhj<8vqZ$nUwpv8Su6vzAdMDwK)`Agoj-<-)Y zf7iMb*;LjR%gC@lDra@tE~IPwh(eS%y$;74Y=CL| zfsU}2zDBs&n-Jk+c9daUqJtFhh(lkx**c2nCBLzd$cnI#PT;h~be>Dvcb^(TF4~f% zD)w1lh>lkib)T8#d5Gtl?;m72awyz1evZ3YJMBvFJ9nMdLOp z-hVt`Xmr)q{c+g2XB&#-9u%z*gEVh4BJ@3+VKiWGLW=XliYfJW`M73FVsnEWvv7d-|hD1if^(oWR-I8 z*(c|4caofU)tvgVsKd%6#6wLMJZS5nLln!J(LenUm38omWM;{@sMzO2Ity-qkYC-; z1~q9rRvxWj`mORo&<*AeYCQj}2}mUHsMq56@yI?Q4wK$%_D)JG)ScNpCBb(Von+c1 z0I|IE05I-BM3IfMQ<=64Ry;hInMDA9&#sGFkTkIFg?->v7B)h)645u^Ape<&&9^nS z-{zL2Yj#-7b8g9)EJO9`p3WD!$Wn1e6Y&BOr6NS9w5l_sfas6CX8thot+ICAJryd{Gm^pjB`T+c z=DgmGoM3(ih+NS%xvr&$PXwtdk`ZBPrYbWC!=V=vd{Yz@pOf7}u#J34ZquA7hrqjmh5uf59$Y%VxGkvVR@A7Y2zdcP>y);XTJ$wV-^3<%B)Xr z+*KV62QYDl+ck3Runh&{6J;(ga=>&gQvD9I0F}ljtxVPch_Z)RW&v&tJCua0+f-v# zeru5n*Y44f3UWX-xlqndi&-6xu@;~E94IVDgWi0!<;|01b1W@~+b~Q8n0yd8y9ic zdMjPyerqwAHwCUAD;k$#51S@)x_Pp47vd3}7{wC~r$y*yva2%(GW~HAnr~}#S4e9wOhh|4!#{alJo= z?t4##3j)jAl_O?0V+1Pg!bA3L&{n#-d4@~d9^#Aiyfld3ioE2aWlDx`#|q1V3facV zeY5x6(3vWUA=1r2;>Vdvc|@@DT4r+0%=4TTx#ZDWF_QHWT<*D4CO+%oNvA#J4J>2( zVs6k!-7{X-s>TFWi5?yXmtKgqjZT~JGkcULa+~Dw!ssJYk9JY!lXN=;VD<&$Vv`&l z@SII#LPCj~NDL+zG(F$AKT?DKh9vc{J0-k#@c>JZ8b_bp1hA0mtIa>cHP-h1__-#b z3YynccF?9*nwO`iUx#WXk(W+l7{lbfUSytUS!}$lu3-GL!c#rB3M>2w;AhGQG&{+~ zMBYUuBFJ-6o^1#mmL~ED*chza<*eP21krmS1Hbnd%vnCS=4N zdPs71j6+@r1-af7VWF92Q~4$g!Tmjj?*XX}bc=gF{%_jr=h{li>xOTK@B)hkhOfM( zn%5h^a>gDcSvA3VU`8*27s|0!=)pA2vT%Wl%_DXCCV1hkuv{yd<9J<>a9vqIZd~WL zj~PHw)W>fAWc%!WR~bCFO!2&Nxg(q=goi@&P`sl~f@KV3(z>QzPSsqKA1V@}x`^nb zlCCV1gtqfapeJN^l%)nDr!Yp#tb+$ubRbT{jedJJCj(6HsmwTp!JqQElm-1w?-<4k zWrf@L-ndNc-VCB!v}GiAM9n0Q!QYyPfQYj4)y5GOYNh@;o6ho1KZLK~$qr@Figi|> zVB>ln=#YM4WS@+58knQ=-=QEZ{k#RDXf9GnZ)NYuidd{lKzOUC^XyKJ)2lQFL30g| zTyDNgTl>u6!%2`d6SwD~kUk63Pm#rQQWm&w_+(Vi>TbV&;#dpeAIhiCi|8?We?;6x zu{6Z^cLN_$cUIr7bx~r;T@kG!CfRG_-2PnRn@+~`l{!PIVEt7K?BYV01xQ4%+THI3 zx(Tm4qcYCc{+N%5OGffKb7MK>C5`R~Z2ibH#vqNP_5G8enJuc6paKZ$N$g%B_488R zXFQYMD}8u9yZyrx^p~05JYDl10c5TUae}c9tDXA7BGs%%8lQbFWQw zmek}&_&CghmNZ{mfnW5kWm?8u;6`ICfuKXmQbN6|BeHo)g(UK?@UDE~xCrk%$zm-( z1H5`Z9?h_Hp(@jFvi3m5SStEtDJ7WYL{@PcbXo}ztvoR+=JRl6C#feEfVnqq?9ImC(M-SuRTgui~g7r#W z0Ke~-_#&8MHu32y(4Vs|co;17TEd}4N?fV=dlb)kU2jvCq`@DUTue+9Yd@z0|8tZa z=k4xnjr!p2YX2)X@w!H$a#*nJmkLG-%gtv@U0_LB53xANX}*PoGgC{GxjnQv5-tI_XV4J}b{j7ga_t7)xe*8O+(NzV^;A8pgvUByDH3>VCFM;dk zwCRu7c!cK-58BAm^&&lJcu$)pr_;G~bUy_cl(1R(@UByK!3((joI$vC%eoS;>-;1` za5?3u44cPAl-CK_C>N-a1g>IQot1z6C|aY=ull)#AY8Jz8w(P%HTA_ zw^C2Hsv(b~ZrX2Z?^;ILYA!42K1^4Ij+~qIHB+~Jz=mTU$kvD#uzek%shW|fJNEI= zU6wM%1yFe5wu>H-b33`8D5fwlFngsrY93`FmHy2;J6N7i)I4OCEE#F6*#!bA$+=DI?gbwaeI)xNlFL|E5 z2tj8XQ_3_^j%^faCj_c#4Ug&_vi01V5qikcB(#%67^3+{%Le6Ww{Ys0v7G#&?RlUy z5go1WQm*=6G_Zo{h5hiQ0BJLKMct1DG4o^pa9W|Oc8;t%%h%Vv^%!SPQC{=FlA-r3 zq|Lqi@3tew1dWkUVRf;9b<0!{M_bImUGC9~VTgMOXS2^j$e5Wj5Z>ZbaNGhS3;y+C zhH~%@k?>KkNQ9LJ^X8qdGm<{mj(mofD}{m=C1OzU*|=Gaape7ryx@zVH&)@v3gw(N zAV%&HV_AD@^e>atB3j=4yxp`JV7cQliT8pbuqY4T)v{*K`lBB=3wb~#8=f7}*i@P! z4=&#MqzL@Y?jKx~9b`JDcJw9r18B}am$98`7e*>h94sjy5W1UXe7UUN0no^)D)PB% z)S?YwYoJ>#%Vrwg3+g1!?IcUcBBq`A>cwcDP@Ayh)7MHVXsvXHT#8J^E(K*r8Vc1M z#MqSI<)Duw{N}!qGdAl?^=GW>@m7yNvi>AGpcBDnTQZuu3}G;)X${$iv<42Au}?6> zlyLRaEt2CP&1UZs?n^4s!)v?UDlTfY1L|WfnFOG*-v?rIV3i;IF*;D8?*V>pKLa4x zk}PM{=?GLJa}zrUvS(#+6;QI@V{r^onOZg7n#t^-k`nnz!dFQzSg%Nk=Qwfj`T8^) z0T?_h1U0WT;T-d}pvJJ1N^P7|o{!1*hH^Plklr}UHGk-cB6#KD?C+WEM8{@9czlpX zU8tvkwvoT|>~337R;It4bqC|Vx~~gmzk|K5U*Nw`o47s&$m`7Vx${v`N=`cG>(JmaV{B`9PhjyOUP!x@5@+BXd28eyQ z_9n#oj+KhMC&Zz{%1?q{+VWDcjHqm1%W#T0f>V7K7mjFHNd~Rvtj_K@aPBgJQ*2*M zwl%!3TxA^yp;X;zQ&mBZNHeN?x6GE2@q}^^8uYFyJeOPFO`<47gBWFwCqq>qJiC_Z zI-${sQ7Kw!HhsnNOjcccXZ_$=Zf)NaBcU`p@-wWDY$K{`Fp4T=tmSF)D1yUxajd)U zf^QUJz8YilDnP3lVvv>TJYg%kw}xuShkvCPnq)!p0NI;B8^X z?nav%R26C8^(-yU=+kd)>U!*57FQz65|2>Job+->}wR%s7{32>6 zU}9R9Oc$7pz9M5FD9}2zcS2Gj7{4`pskl3K7BG8$7U|LRUOR{K1bS@_b)bFfSvnnr zLehPUy9*oT%?y!He2t7yf^vjp_@r?iyX|B&Y{XCS==+B8fR2vQ&iK>O z_>NX-2ZwXggp5TmVH7NX#Gt%=II3{K4w-kO6yFK|@%>)W6P}eg`8oU4WRTd>k#%7e zZn903u2A?uQSMyQMQwbqbuyIC%1Q0tU(sw)eSG(sy_u_#A#tQ$8cuQ^NmZPKnV-8* z7V-M=`Le5*i_O0>jt=sm=UG(|?FN28OGeF$Dx+IuhC)q7v{Yjst;g9rnXZ~67cjW4 zF`>E9>E*Pk55DF~tcF3Bvh92}Ep8-o>|J-kD@D@Y6Pg@kakFw3wa=#)vS(FBMM_A5 zec&Q!bMhl9_DmD-tLKj1F?6k$&OPSUhyI@lgW6{~yJX+Y8ZzsNNG8WR^F}?d@Np`zSwJP{oF98D94ovjzV%V=}XUDKvrRxri$B6Q0Og~CaVTn zu5;Ahq!fBJm{kh1Hzi-!l?oxg;FURlm2OKEj>P0-_kwO>;l=w>ccsUa~-V?zKochag3Ry&CTz`><>NqBvM0m;mLDQy?)#?a|a*&QGk^AQZ@H&d$% za#0E@2~^qnP$JwAtoV5ECN+szrM8*Ubg8CII&pTPH-)=wltxn7;Q9nmAh6X|D;AFh z#TM$5G;oQ?wXo|+)w(%CQ5dH;#^LX?Gu&gs6JDR|Zx}6Q4vDP!P~t9CwDNk;R|l)z ztwcLvo*WsJe1a;#F~nE4LPrM=TuiyP;`i7Syj^$v)i!QMhRYm@M`T{ z^jyr1(__{)O=;Utd9#e;n$&L|a3km|Vnp2qvh(LX{-r-4;NSCrqsi&_lkr)|E*B$K z+Lc>=XE|U8_0f>=O%o)ov_edzeWP`z0Z$mIH8SctVd2EChPMb5xE`$&h80UxU7)R1 z5-Lt*OdpjSU$Mx@>5Rdt2ix}ymFYeOkN)?v{4>gJr^e1+1fw%+GRf6XYutDw!DTFm z9FM#qkYscpR9*N`N>n=jCf8y6kBHWrlTqKJSY-NZDovVzmE355X`SN&4?AJFHx6Nm z4WPr7?5cYQ&Ehn2$F8yui#TC-lQkI?koTPE_r)p#*#l7rsIU3vEEz`K?FgYa9+XWs zYYdyZwzzxP=@Gcnjp}!TcLA@g7w6Y$e&!Drk9MCc|@n!T}*j_S}_-GH^;OiA(r?|sy zOV*@3KnsJKh4eFTRAu#jTM;KSVbp$$UdtG<9Qs?CQ`a1|yNPM%B0IMkMPU&Bu8~8r zr6X3&=5}s8W?`k$M#$Fjkx2`Y@pFC`UxFTds|K~XWbR)JfF z4990W3tVQ6deXrs1$b48mI%E#ofqCk?355rUP`V?(v42CQ=GFdt|y3nH@rY;-Qn#> zIR~{os^UeWj&yAWva%Tn0hZ@^=(MNawO}Owepxe7gbjDDW6)LiDq_a8D`eDEWTo9y zxAql%OUU~$(V-{#2u)lz*Eep>?8Wcf%8XYX;y>IB&M#Jak60(1-8-J-F}n`ef$u8V zY%TEa&)0?R{nWYRx4AsrkIMx@B^K$MeTD3xJ5RGYy)#O&Lo`$zFC|$F zV%oSppN3_QXGuNET`Xkaw5ZK*!LeOV{z;ccQA13?ei)1xy8HVrVb(o;^4j2p-SAUC zJ@eKS9&+Ud8h?)(c5CLED8zfZerb%X zcN{mc^3XmcH<+0^G2_q6NM1x*rcYN_PRVBp|R^05gr$UI;f;PuMYPhr+7lu z<};xg7TOHZD5Y?%B`?xqh^zTG>PRWDL48sDwpj3_} zBX5BWED_IW13r&pmcDMdKw6ez-+{hgGzx0iv$IRtbmRK04@Fn)L3I|@3hk@THC{FL zaUz$8*x+p~f`wbNB-64M0d5zPSv}^nDl2pzd4oxVJ;EI^Ez(@YSkYt@{8OY<=hTzrDan39 zZCHJp{hGqtWqmP0!(COdG+SVQ`9obAWdl<*eHewUZ^r|c=vf3pSffoD}B|y{IX`xR!MDu|#6(4;tT;g*&6I+hBX^Z2(koFF+ zy##^3Z;eyiHh;D4p4zr;Tc_@+ZJye;ZQHip-u`j#yDz!PeaXvCCbOH}nPhj8-OPUT z`KSzE7Vv688@QUDFQe@|qPG(;<)_csJ;hd^Sdp?@V>lV=opgFIBxOObeiUB7upOH< zkn*h7X5nx<2*brO<*b)%r^PBcD&1(eS7%1^JU=4m#Je1|JN6=P7&txii$c_JVV9L% z?8dYHEBfe=enc43`7JE&y~9*=Bw9{0vzsS--aBsv0+e0GOKYJPTGz`EBZ&}$7dq{N z;R#0vJxADpLcAdjJp%s2CEy4pxk4oU_yzjfOWuWD1yT z3+B2)lVVsu3;mm1hSA~mFureo?MaiOB%dbfR-S_R(!~%hg~86Lr3Xc~it9oCMuMfH z&Yt3>sVY<2o|f#Cu7Z67Go}V$5^yvc%KVBo8wG|Ft^wOT4YOr`>xZw95FPy!j%L}K z;n4cM$AwR;X;p;#t;oeMgoIgPeMvjSPkNz1jM3BiKt5MlWIDtBIba)JVERkz5^!V-Bx*6YBJBQFZ&CWMNS3QO81B@l;KF5fH?? z%T@&v?`c4huS~ahC%CNouU}+5M9D4`dXev8QhyCv8=Zizg6oZ<4BN)VgW>Ai9PYQ+ zu4hspPDJ>ZDSd7w!`(&T)HajvK3?b!m@0Aufntx>-}N~g;b^z7ttW?t=~rpI$6-<6 zG^FfNIXj9CC!sPEOdZ3;+RA+W>Go<8Wlqjn2vcpN`Ng@W9Gpl#u0O-4DmqIfVsIk` z3as{V#i?9HGwA3gW2oY(7`Ei){=)eQIFiX*B-OJGoE6GQ_Cs3#f|RmX{4?1IFz%pg zhG15#9Xy9DlLs9TaMRkqs8T%-kiAwh}0sfd?mVU5i;iz@gEeOuyK-&0U`iAcHb($>lF zI2(<~9*zj`oS6je`n3SYhjem#ZTmOe%eUV5G?eu$wZK557zlv$rzVQwaD6evM9geM=R(72T}nOZf%K;{Q+rr=*Tg`eKHE_yh5E@45ozrvR84wnQ`PSBeMl)e(6{0)IM5zpniO378E z^3u3r!ZHa93XasAn)Y?HmPCYXy%<344p|I_AI5x2gZ{rgUL&xA#wyw-$lnf8tm zY-inGqBmqIgH`;c^o$RUj)|$}sc0y`#FRb#-CK9mV2FfE1j9pW#jaT&0z!lz+VPD<7CU#M>dzfr(tWsE(`F++5Ab^olKYPUg6t`_T9A8?X8O}|Gd zv?ax5{&H*h-wsc-yHAnl=gRa=V30Y@I!=BCT&QFn8bl=r$wbgFskTZ6hM-lrDPrZZ zjQ(EQpj#HvTV|otZFvs2NTr=HNY+q}vP&d*bfhKAfvSrXvkMG_);TEJ?6|WmT=TF5 z4b!^Ch(Fb?Jntoml2uG0E|V&Ba7ndMT)38y-6j{mmxdt?qaG_}kXBh-GN=eCv#>o% z0qWCodm9{KA=OVK{wWEMbR7;@$T<{3OXI#vZJp9796Bf9(Y3oB^3O~@>XI+kJAis! zrl#Xrie$q@S+*Fm??Wx`c=TfD!C2F9a!pK7?xV3{T|HWZ6A~vTY;v}aq~mwBMO-*l zsd!RaCKhi|FeXqLZqwh4CBYGOcLay&C6&6}eb-;eaYuj5!L04C>PryBEm8$f9``nJ zmN+9!TZ!JJ(TCtfN-jsWm1J<=CGKssXb;R{jlZE#y1;Go?gf7o+q1%e?ET@|Q zv)A?`15`D9S-0#XyOKvsg-6Q1Y3s9##@(dFT<=dKV&4R=>g41mWBX=&mVrlR2xZ6Kg90?6@u*B z`AmQ5In_euO$b>LuVXgtWKv1!P02|xfX&(70{W5&q|4H8X8j%?GJ2-B)_Qv`W99kF za1%!|g!u7akcH(?@UX*)_j=4SbT7-Ndx0(ix|VJXpN9FQmb_a~j!3y>bM;Qi9TK>S%PM$> zhdV{SmyB-O%c~KL2B_2!B$jOL)eIa`hixb2XMAK%sSl6Ots_ktSxtjyJ~b_)a-6+q zcd%pIJ$S6MezUbCtz|M*zmCNUy}BCLp9MbZ--$FI*jilOqZg08cg1i^0a&BkXc<>s zrbF(PuSp?O|8!H2wT;@RG?P^;fARVBhs1qm;+}in9m~*LC}}@ZE>_aeFEd|C)!w!1 zS+l;xowEY-d1CT9^-hLVGUpEE3^V8K9ZvTYgOk$?F8&jCAV%l~FTb1|XCF-DhA?xZ z&Ys5<45My4`CBt-NLeDw`cf-lDz)3l(*>cv-i*#*=G{Ve zNp^mQ^r23Ti~jE5B)1b`;muk(<@6 zybC&{7~Ii44#Uf=@4t-svC4I~4(S2eko30b&m_4%mL)x|2G9&YvX%z4>zUQFhU7sbSm zM(CWx)Kx*PRu52o<#%d+4l2Hr=j`5guA*5;K>1baP%mF`m`LNQZ)k}! z?t_u+uK5$B`LT&KuCypo84D8M#@p-NuX* z?cM|^HsDshx!cAZEK=uhLfmpk33goas5m5U83<}4+sIb)|D*`dnfk%R7PW`r&t5tC zrf+@f;52iHAv%|0_n+0?Pvkz4W|h?K$pRNU0pvt^j?CXz*4 zVB!w7)AS8Ekt;qc<|o-9I<>#wwJqOJdAqOA)Cc4SY|2-!ehVG0w7UI?o^=AVoIN+v zkyiY;Gaq0w4Us4ymMdx_$;H0GCO0y}5d6yQvEi=0Rs%+bN1lZnRv)YI^3?Bz2>e`9 z0Uvv?=J|-isjRSLabxX|^TO1WjbeLcaa4QMWr=FGIC3SP3zc&Hl3Hs%GMIUlDv@fE z-(^$DAzQa9IFF0}$@rKtt@YlkpNmJnuz zOSx3dF?NQgZRp-RxJB@={AIArbp>o<-4AEALa=+9J8m9 z>JilNNBS8!Z+!Wlw@HDswsYVRnVM@0_GQ4Q5NVksj`9uQ8u4qb@GKhi&3KnqDn32rPyUF!B zG;Kt|YZn_vxm4UzOPjThjw^q%WpMnKDH4+8$#Ip7JQRV{53>a_b%!W3*fW9H$_liE z2*dbURUPI(E=5d}yCV50kbB4)0V1qcSCnT=BA&#Hfm&YmgtUcAO6xtv#b#wBq&d+$_!lkaURHz-=x zDr)(MA60pp@yJ@sK6&;)Ui#j5mfK;oYy zg2)9KReR*&5l#wYjax3YHMNRNnWqg%QUrx0>iWII$_c)zQfieZ6xOt`hDZBMV<1{3SsIo5%uN}$u#T2e%fA!x{ z)?-anD5}v<#v!GVRrGaY>Nsi(e$zO2j~U3k_&|8C6Cxyiq% zh^qwIN>rU@R%7Ues-=P#`0ZToVk35B11Q+7ia%;H)@UFba=$LbPZcc9u>FJhmjpG@ zC#x&~LPqP>)OG1_(K#wN>+8#mjRg_+rCnn~2c+ z-yF6&D;xX_cJ006;4VTrTy$D=J2e%X2<-+=yx2OfRr{pL@OyV>_wzc?B@~1U=d=xT zu6DHqpjXmfsOMQJpXnAVmr;NWNdgO7eO>nv2!jln7}{%hpN8mAh50@_I~$L z1h(R8EG4}L?`g~luwppB*njI4+8+(8B0_g}L zeT^=zlRBG2*A-U+#;ew-YHil*YV$K}(&ABHJqbUS6R;02-a_^F{QyGoMgR3EwXJ#M znv@C`uKK`g&vDh(Jnk>2sDae}lzbfyE7fT-|B@0z7*BM8kySEtPwH`?m@iuP$I9DO zmk5MNPPhk-MY6;TPSU4QFdEeLz*8ct>sEb7!db)lWC|B4K)Mcz1r~i$y9VZa8m|>^$N^zQ@6>Ml` z%j`sA&7x)wxp_0*?;Vuuw^Cfjr4Cm2ML8A;PA((~``1(Yy2=EIfyjAPP12!F`agHJj^027_pZ@~Z#q!w zZrYl-PDDEE?+?X;_O46S)593_?Nda-tBt;siJCnC9)vkwg0rE;uAb^nukqs?JbPw7 zH!baPB(7s_o`d>;zBKHM8q>sGS>U*AX{gEmVprb+sWYm(Z&yom^zB}}0EY^eqBk|G zar|;FtcU}*06t1|V$WRb3)6S&aV7F6Fx^fjJ=@NmFQ={MZ_l!?g{)CE&>aD-nA#CS zo*d3-eY?HG@VUUbF_psKemHYdcqTmZ=1w(hPc6SmbT80&$acjxF*Jdq!!Yq5ioqH4 zV-47IdyQQ9l{uBE%D3%sn&xI;FpmWP+?3-c@s4t`<>>qCtchax;fXmyIiuJ38ZnG_ z{mY?{2a==WS)dUU&1S8x*WRVe58=jS)6f@)wb~ri$Hi?Ck0BvtKtOTwn~VXXBD%JG zGl$Q1+Jo>q>W<@ih7m(xEyf1Vw<-Oo-UmUQ@OEQ0C(@{p<)SQOb+rl{>Yq`wgYv#m z9C&i0+5CrU0NOm0sP!VJuVF|My%CZ&J!{ilg^VT`?0F&YLj9*Ui|a_AAkRd26*Ct& znVsT75;tshP1)!sJ$<37zMdLPVQT|*T9+qQUyqsw2?R*2G$Qx{l7{4Wrh78gx9M8L zu$6S7)@hm~^=Ov7*4m8l-a!X9d`|5ZTvbBFDdFA~@sz}Qe9|ANCo;%qITTRuncQs< zSpFqnr69ad$y7FA|bkpH=1KyOy+rb*ABYAp61Jv5M4U(U-@*%uV~$S z_d_`R?-L?aSn4>wq5|y&ly9f^nF8!<-X_ z>6Et^%!(u+J26Rsu3qInsQT66L)tj#LCf8)YYxSHqM+-n7lQu~!%z87(@EtWJ{WIu z61MG|M{Kpf35u;aRB{VQ)lbsA+9O40m~j5+Om+LUg2VPLUhcce3&v&_D~usL3kdzO z^z2_EH&=p`L`vcw$rKksJnBhp^mNGf#>bg+rHJ!}J>{=y3~uW*i>;QL{#vz9E_M^p z<^+Ns*APjI$R+xOfq#m>30SzaakP}BoWseW%x_mOcQsXBNgn%u)4wN&Z;!7vq}teb^LVw+sX?-z!!S|>t z97!D{g;8g4a5JJ43KLhQ-$3u?xQUbDuCdG15tWFBA@I&&?ervnWRWrz&+>P8vE44z zhjX2c>697JhMJkyjyog7Jn5%>wqJW%{rpGnQl5_(dgK~1W|H)F?Rdf!1sw|T32(#&q(*T^6qg(s~}*= zsZuWwhk#y+=$Z~W-$dXfuGH6ZVBL22gOR0(j%80Z>f-VN!YKvi^!i^ zM7>&ox93)+jKQ+Z(yLSS83=YxhXY{dtG1zi z;+$VmUe~uBJmgPEmsbjejLMQU(7X9y+BhAlsrtU2<<2A)Uf{i7s_JaEk4@U~?M2P7 zqd83X_6qz`Fwgk`c_#e?GZvNHP@s>=)B^)T{};iQ8cD2%awXYU;4S4-zrpV0QA?oz zoO&u>GYb^K#kr0}>x```+IQ1zG>K=_JG;U;szbZ=jLA+ts_ewYttE`6D(gE9Zi|n8 zrw;t6g)5Nj#WjJ401;6Ofej7rFXlU1H%=ol(#-F^3=rXn`9@XiHh-winc)zb+}j~x z%s>58vt^fTxQ#=zy(ePuwv3(W$gNaWiSuiwU*>2+0%j2JOVyD*u#C7_Ik>>M?rpOz zUZ%YH9XO*5v0CoxY*Xid7Iurr^jKt%-$8I~>D39(mM0l^&ln5@Uu<{sQJohOi+>FsA-OsNK-;3HQ_9uv~ZVVQl zy3=RBsr3-mls^D zaUk><1hv){WT~Nu3I1J6bYa;rGf_Fh;!cWCI3HnvW3DZ{y&ttWDDZVVwIL=kejptP zYs4{fsPm&>ofbsFjTItxk`(hXdD8FYB0IQi~!@!H%2a5A{i?&j z^8M}~V+OLj@v-Zeem4PV?8^0xU{_uycqF7_H60Q_$szF@1jIz`(>e?^_l>kTpdL+)jMaCajRit-Bu=5)^g<& zfg)vNC~+ul2VR-3dG3?_Y{NP3VCv2V{$$S?-qzYj5tqL|pkXHjs3moIcNV~BFaSTgG?*VZ*BTp9; zhOp&p!DT!5OF&D+g_k?7djRpjUB?zHyZtwaE=)8C{m3`!nLS_MmJ}M^>PlS(h`t2r zB*h6xI)Yvb%Enmhgj=%f_zR+%mEBJ8{YU<(UNlQ0AtA#+yp)kdnM1(u*yf!&ODD%a z#K?j;Ca!#VJmb|oQ;qF?4w3qnE*u_(J&x>u#i&7Q)ygC?Vvg`>c>-~vBaq%0G#}m= zv#g~p+qu#9vKVKvL8*n?P*TP75GzSvITjcm-rPDXi!wkx$!NDdrd-PaExi1|AH5zT znO_g`yVp*zP;g&dvnkKqkg9P>3=NC~LXBezH(-v$xVNRAq7nqaqvoW;-pH~3(p>_BW3i#QMK!bW)coJyIY5#= zeDm=QEmCizf9{UFLdUjwhwOCXgbMB6qr&S`nLc84jIbTF69ZH=EisLl)78-~HBu)A zw#16l`??kT!^DagMhK*5cBrS5r<(dA!D2k`m9_IFF9E9`CmYjeja*H+&AAW@F+)Ya zi9E98*R$N{WB|&fctukIcUK|nv@qgBs_I%$>nY0W>@39|!GMM^>nk^bwfW>89sf{_ zjQrVfD-?6B4Bf5wvBCzIAIClFTtHP7+R_@`mh1b}g*=-S2Jeu)zWwm)XKr(8C5OB4-mAdW=@D2?qdR4Kj=3~oB^%2gaDlu-wJwAyE-vst9Q9dyEe{tjM!4{SZD*4NoW|5`{6>rlj%Y(<0Zjzt zx)pLfYHUUf&9}=xN11C3Y3Td)b4-qiVGgDMsePfJQZFgoe`B`ND1Q6Ue`b}EKm@Fmz1Xck(;YT9*S2#xotR-9hinQ0TMN! zW-1e_cz0yL8VN=mELQ7n;m3Shj2SiY1ZH-nfLy{;p zK;o3p4lQP`sbvkYZRC-R zUZyhm)!!G5tedl-QdeJeOb&U?&buKKL&L44fZL#r-;H&(2ib#-@@h9ti^#5+=ILq) zd|+YNt-nApl_gF(&ahi3PjFO6b)n)({~%;41iRG#iog%rC6i5O#Wbb+A-|kZI??t; zUD}?ydrj_G4NsfsgYGU2yNjAnQ&gjN$>#p8G{temG%>CvdOKVF)zs1nF3r$(P`tJB^Zjx;&>7TI42MO>n z?K%ld6}VdV58~@?(^a5|I)(-;#1a@+e9ipHpMSEWkBOt&y;FiX91|~m+F7Mc_E&S0 z(>`R=A^oy1>Ki77j@nj+RZYMC&HO~eR06*Si4=&XG6Mz{h?@#a4W5#aHJc3E0g#E<~u*kbRUNY=GC^0PNUXd9Jk>n^!yTM^B#yA?7S|)rc2r^Gt zQYc^Kv&YCitP}g(1*LdTh`X>jRvEC!jLL_RK71{fu6kk>jJGnd8xw9WE{r#w2gdfvx574M9-EH{g!{Ua|zV9 z)pxJ?QNa}|J>Eve-eBVt^-VIq3eoDFm}w zqIg$5gy`A*?8H|(2ORSwacca8Cy9^gq*|`Y2^O+gbxs!~A4m-$7nskvv8|-7usUna zC88Du7dDj&C$T#gwYd0FwKWyXHb~^QAtmI9y_k->_08trlj>M~ZMTLnb#BpD;j2Ay zKIiNYl}OyFw7jFNlGFV}%maEbFCOeXs5j+E81G@Rr?M*_5vp*an$nU}4N5Ke_-VSqyhY9XzJUA^qif>T1Ra}rqheeXyl{ z9LzkCZI%u+G%p&#ZUC@%BPPCfDs=De_Bgv%&f_?rGpOlG9cP z^DMEnk7`^DE|Tc)vyQxI0}{+qaANO+LZDD=Q=-a)ebmbD^j|l3@dW zll^aYmU5x+4Tv5#UvII)TPh<6Bafhln@PFi%yj+f>m<~W?BHy3rdpI^(-eiLCk6SM zh?XaN6PQ|J@ksl9n8uQxtH7#BWO?)!Pc05hy~NzLC#r?gS``f+}0buJgPJo=%9X}W}3^X%zUcSiN{E#aDH_TLE2=&%GDm4N6GVxr7q`q*0j zF^uHs>U6V8n*JodvuI~6SV-9hO7@w>DxKa&87&aaX{i;ljGbEIjjl1kW0~}NTbK;z zReb3GFuV<4R#V+ld$RvfkOwAkfDA1?=C)OQ6%i~$%-Y`Mj!`Td$m{)PTh0+=TdKzn zCqESw2A6SBJAkP7Q5xHzvsvFb`k-}sp~Fp2#fVE@7nX6R*Qt&<2;Tw{sJtvTq_HID zzD+c78{2|`NV4b^BEZ?`#XFR1tBmusHf^YmgqpQb3IY!c9;dow6>i+I6rPF8ficyn z4C}vMB9)*%{Gjq8FDhR(QzAK^S_W=U$PS=_aIB${Ke#SlSh4G$7Z0})a~9ajG4(yh z%y&)Ti%0r^|LOM^k)?Af0xHP0X1aG4$9!u9^c>> zNk<0ae0zjm(n5M4a#5qOC5560Qwp2g$)grGQUooT9u4{5RHFYu3c6<}IBNYJAFW%_ zNJ?vtax?yQN##M2lJu8Zvdnp291n+^qwK8Qw2etlwX5OYAfqamp{g|Dk@jeXGdYbP zBOawc3ssy--(VC|trpdDmYz??3H^S5QehL!T3^7*9>eFc5UI2tw)m}J#_8dxL$E!3 zBLlO9@Q(`+=&^+)^v;6G6=(BG8X{#hN*}Ypme{`a23U}qLc{v?f+;ISd*ncs5Q`Z{ zP7JG}YiUQ8b!8jJVO)9MRX9A~huY!8WifrxK~G*D&UBSYkEw2@qQ<91Y1Fmz76#Qu&}^6!xyD zSHLvt=Tf>g_gO+Ru_eeC?oL=(OyvOD#hGu-+BdL(pVhhY*7BZ|GH!8%q%<8Q*a(M| zeXh#J!~kx5`{E>_kp0B5vDrRLcd}QNrpr*?Bsq*gYbABFptIp;u{A3n8JWe-5>W#v zAFiEx5sQ`tpD8i<{Fef%bMxN4kaV z5WTW^gemJ0x~4NUd-{;brU9|O;1bmapp?So2MkK0p|Vgmj4ZB_Om-0vxtFN`@iLE5 zDPGZFMFceiK0Zsa(dOC&W&Fa>8-cHk$9z)nGV=c0vw9cHQYp>4-}QY3wFWu*o~tNS zINeWfocu6(e+S@1yX>;5@cwD`=vBpw3kW#68+ImS0$T^RWQbj?vuCjONzjTI zM}US838s9rO=3h3CXxBB6>V+(>L1(W%9l(D*O?mCe#R$bb$SuY`zF z#Ej?;L(KU8o8DRX27&_jp_3gWk5c|xct**g|13mVmo8AH{P{AY*&Ag2mSiZU8LV}n z1As4Yua1**1br%g45Ckb=NEX1G*=_8=JacJ7dDWnzb0KbY?)Lh88W@&w-I5i9=XDE zsK}5;>YHZqlH!o(cL~a`4K7Jda)l`_^1lY)#0fAt(QNbebjXGkss3gxsp9&`K_n>+ zWXQdq7^s1L7>$!d^8Fb7X-k%Qh2V?*KqGFdII*ya5XUJk*IUjpyIjVZDmdR4j*y1d zRpe-o0&#tYSuoQ(_)CLhwKG9WRI5Z{@+e@hBE*zfTymn1=67RG&`#9jHL}Omk{GSf z2bO!Tf8UCO-HpH~Jp%=P*Fltwa;o7ykVDTL?K|M#t)g z&I1P2tw8NR4_6Kn?P}nQtA&gb@fbH6N^m|>#cLj9i0?IjdUuRxG{i2(sg+nlqBb{D zyGE9&r#dQuU%!7F)m@7M%btdAZE90bT1BcT0TaFBla`!+32ugB+LnOu=Fkh{j)Nz( z>k8~@fUk(Y4kHXK8=raK%F0s*hHw2@CSf+gri1D1T)hlBlA>5A0u&k>URg`)6VJZ`eNr1LyxA*#A%WO3o%Ws)THu{}^)OtW2D(O-!8u z|J`=9Ff(@s82wlRtnF<7mn*;oVDg{GO&nYdtN|wOM%D&408@bJe-sPAe->90fT=aW z)Xv2bUF;j{QqqI*XZ{D z?IN&taRN9199&GCoGpGXb#SqBHZeA|{;!k%bML>JjsPcslZorka84HP0B3-+xub~* zz}dpu_@{QW1N?`}zzyII@BnxMJWU+!sD7TAovpK&g|!JG2it!L4F2Cr1D5}7D*R8S z0V6xxk8I(8Dh(JJm>K?$N(06pqXEbg3%bqEa($@bAYO!5fRx+w#TDl_ztgob`RIKc&$YNzW$`Gr!RZUc!y3}w z*jO(FDwqV7mAyTPzW_ZOVJu2gvMS7lCBmCj)bDc8z&3w8qQGya*ucOEog9<7qpE4w zu^2@EzzkmhAef$Bnvq@#C@>I?0D*vSOfDgC;JKqKeJOt?9D!aW5J$nHBuD4Fz`#ly z?VS0KV}O5eAW{zzVbAbgD7Qc#Fc`R2sxZ*lQ573u=y4SK(G!r2I1Izc;(50a1Jrs; z8y9q4y_dUtO&WJg4X040D3%5gzP=icKg0+)mQ4 z-4`Ad>}&t(Mql4-?Gz|1&ExHZ?glbbro)yXL&s&dB}x?$&nBm93A- z`d)&h3{YLEf1ndNI3MM_7%-G8ql+Pv;MU*mqEFif*(J1~wTX_-_CSK#I`V$Y6mWk6 zX|so~2EUF?F9~Dt5p%lz(J&1y9^0X%*eP6XpjKAlNCBTIqxDda1Zk`zXg#1{Ag^F8 zz=UQ%BlCTKKHc2u02DI>zhk!dj^RJNGjX$kRHtS9KYCPij|r3sFr3^Fd(h4x?(Sck z_qvg&At8H^t#^O9gVsR^%YTP|(L!i^hUcUpfO~(d(xI{4uP8 zZ+HlW_)@=eO!Zl!|J?mFeY0%C0P@A19I?-AAqe!xkHZ%109cd9&*6ig`4b`Kn?LY7 z=FV^b!ilBNx4hvFQacFVE#5`iDRu-{Q~S z8tAUmfY5Pfl5hEdY=q-(r7;0oTsl8JObP@*5AHA4XCZJtl<$<(~}-Sxqj*2%XM@cxiiPd zSAU(nP5byUi1-kI z|Kco9erdW6s;`!f#q)--4h6BPs>k6k*5uoY7O$=_^U+(~lX$sEesg85CSI$qlU!22 z#4N~-w^-|7*I*t1#A$0#=`!qQyBo^r>B{ULMe!<7kuns#;SD*Wy<%244sA}k1JukN z+MMG%h#3is{ksS7(sJ+PHe?hC)9ZCvcd+kTbNwevOZuZ|SL*Oz(4-#v&3gYln&17boaL~`>WzZGgkYLlR6pO38;c4jDYvMGCnMD$lHV8?$+ zK6N^A^4uor)Scc^=+RYI=1v9kkq8?Y*O$1QYs4}jA&8NGD1Ca5 zpNA(Ck1dvktJrP_?%kUrFgZF-7RcD*%<%^@fGot4{aX;1nb>Y0$Y7Q2>-Vyg*lUEj zu#V`+1iY%B(S!M2TX1h7W}Im;lDM8m@nup;(Qs>&S1cw-le2*0b90EBOIDYF znW9_+r-Cy7yjE{zq*gx|@?7cH;T>ZE8`?pH(}dEPCSz9AoFwt|s5I}491IhM{cR1g zryAFiF7>uzbE+pco&h<#cD3L&i_w`85wk^NkSBmQ8|Zq?&4aJd+v$tW^Ay1z1yK6n z4_?wgiPb#uZj?Me6z@g#l7MLl8ooq!q?;2%7I984&6Y7X5xb@H3(@qZ<}x55P1vxD zlF(DN0LB%~8W4?l{%&y*rGa1#{i62wy7g++Y8%O2DFtg@Tww5OFty^Js;&3FSrs|v zoe8~h`y2NF()x@8p=;XLR(ozi$VnH-BF$_z0nV>g#z$n%sMYPcF%noWh1fOf8)nLe z0#6Zq#LgI_a1VOu%&i<2s{?aA_MF{WIG}YcsoTAvQzdmZX8xtyeKNV0F@8yRrfAd- z%>v!J;yHhcWSE6uA^^tR$y@;EoGu&>YC#hqMkTvCb*EuSX;a6zA7TFNP>Q(g{eUqU zwTE&EM33~*kc?gQ7>+Mzv`xqKX;=z8?-vZLa?;eZ^fBgrZQViEU`Y9WS6cWyZ(`h9 zh#Y!>3e9VKs&LWMJg}8yM*t_^^9lYdbpOR{KliORrz7 z5342Pg2ISFAm=%hBni$YZwq{rX7c%q!tWgl!ufj zq-`0z$lL#(y@o7@cjEQNWgYg#6(dT+vAsT2G1^g6WQSLUyf2(`J8v>SEn_19XT6jbpGs_?Cna`t0pBi#qs`1Cpx&-E4I3V8kZ+qK9GaWQgLm~r zU<3D?Hr3$y;W#$RJ7R77<9aCyqPUd}1>!p3Os9;M3KXu=U5W*ACNCd!6-Y}FG3MR4 zqs<;EYso644iHhNpX~oxa83$yzdg|MsRr>jtHLwi6=~%AySiA>xf0YCvUn0nBb=YH z(RG?W8xdz%datDIKH{jM1jhHPu|NZzh!wDkz?~lz-(=61OJPx+rPtmGITbIU0_@_(;kL;UW9c|O>+;p2~i09Jo@47VH%DHBkq-XhM#prRU*)LEIpaw~6q zg2pKB06Tu5B8A-7mNIpf);!66xA;9yaYO3A9LrQ3?g7k3ty&GJE1xem*Ga;@#bV z1+d|RO;K@Pi|r0&F%n_}m$78Zggs#bc1y3rDGTXLsWv9?ho<+y%Mlp1wvMiBE0^-%%_S7;_0rJ0I@$OPaq_O0 z!%?d>VkyO9N=*N=!(gTAMYEqyi+DC97A{V4v$x4ELvB#c7-+0Nw=up z#a@z?o6Na{6w_?hzFBf3b;zA4fPU$*i5~fVhe~LD$ zDAF+Y?FzojTFaP8wO5re5E{^Jq!G$zlrd6J?(SsWoI(A^(ui!uehBxMYzr)*4EC2C zk62|>@+979U8h&508Sbe$;Bnh=m-r(=|t2Q=r8Ldq(7#I9EoX9;Ei5c&EaLT9{r$I z=!&M5%&q4=6D?b9J=DJ0zkHzo@V#{oNWh1{vWPj)S#~@t5%(i9VwJSCusWG#ewY`W zt^0TmRTppEqw0O2KHit5;n10h%Fz0rbR1p|gO6c8wAaD%?d-=fsQOp$2m%ACl)a6W z;^ITeGGe9b#UIC6wDYqpI-&g!*6t}tl%UZTblbLV+qP}n_HNs@ZQHhO?6z%p-~FG7 zx#v#AnV6S(sh5hVh{}hm$Xs9MdeF?Sls>_e)4G;yW<`I3(*JR~pD)H_+O>==)hCm3 zNJ_I8Z_+v@Ts>ZHTD@b*Tz;%S*-RIeXjqrDodmSVyJ!hseMk9j6p`OHkjzBkXEyu! zq1<(cP!UkDe%A&o)uz8Zmt&>Q#BUZ)W_^==FFWdAkkFj3zaUa z*9714Sp4&|?z}0pFCqd$f&scW&Fe3Kln_dYGnlRZis%X2{=S#-y~B1^C1D~g;F={cmg*k& zg>Dsm@FTB)6JISAmK&KQq5{R9*cx?@O?U~SF{z;`Fe}m=!zSFGNAN;;J{W zTfX5xYe{0Ki`b8_J(22hookt3Mx1Dd=|=%gm{=f&5G~np(yrNV#hrAFu-x9a;}IQ% z-P>xRKuEt?f=!9?crL;seA*kk}qX8t1s zzCinzy^qAIw{g7?G14*Uqf`dFU>zMe6=3u_q+^hF_KoM-uf zXkwH%p-vgdK;Up6<&-t6$lz{>TZOFr^XEu!XYn(GDulF|e1^$}wJ)hGjb){mTKQmx zHjX4drxW*5dv)Z-;`TYBi0knjobQY%3yI8q+8ja8;`zOA zhQ16zkB78AQOf_`z*`!DQrwGF9NOVFV2cg;kdd>=K*6c3H~^<0d?W27UgHW=KZJHv zwW@w<%@|d6AwT6R7#B>&)D2)B)?bgV4&br!a0O9^d7cN00Ayl#3SdEtZ49wFUmlm$ z9{v&4vJX)3tg6ZRk#^M>-?eW*slq%RRbpZBjDH$oIFXp71xs|kNAeRYV46L+774{Id{sZ2S}k`|#!l<$amhf!&}FtV3z7mDaDBhuuYod#31 zuKjcxCGEjOkIab)LjZAt)SKKK71v?@*djHLo~B-s?xxjTMo1yD*HvV@?_!2)Q%Q8O zHoKF+zA6Hq9;ae3#Fh73hz9*QxRv_z!tI6)_j(4l22L9YGeJGdwBJh4v2O{bq0Q(rIbCl7XcDDF`GjeOeVK3(PH+ zgzO6HKuv+Fa3sC8?n0B&If`wh3hXR++*?G&8x@n}r@%05%!Z`H-_$k6=VKUzYM5Az zis9=UL|WxLXfnGR5QDSW==ei8(ABCvDO~<7nR3;D%R$RdC3)XEDC_35g2;YXrY0d2 z7WdC_j1_fhN}$4DJD?-PsGLermLt3E&1sRZRTugJ*+@q%ne2>D#7wSa&d4sk8x<#lk zA9abTUml!LI;Q9}d5Om82&yv^o)JL`tNexFLhMcPGmK8HxcI0rOWB`CI~g=J^dtRV z-Rqm2=u-~#@$mYgVaNIr=AD=j{LBN9nHJ&okusrAoUN!%zmjpPYgP2-)YZ?HBNjv~ zD0_#>4Y!|7h+7TL5Kc(MoX<4lp-cqt*3q1wYWb&Zv^)v>Zc2$L!$kccwEd98m&=N@ z#SnyR#<*c8=dHQT;qRO~?y+VjIgB)(koUs5K47l4T{7gOu0%WCgrhfm2{tPnF)89l z?jl*JND{e}{U=Oe3boH&6k-cWh1bV%&jn@~gyPT6u<$t#of9j^X%(mjXqDn^0QL0t zb~5nBHwt2ct-wDGzllTEI19vscRijgimF3m(Zqts!w z-E}DYkmx2+F3_WE*hEx($3Eqwho)Ag%A(E|-WKaiGO zNcr!jsQZDH&QrP?J}o^0#n=O}L*Wr2T^4)u}2#H9stV zhSkSg-1}fMuX-!0v8&sN6%q1*{9*9}bV;Eyo2Gxw_+CbP0c6J-uSQ>Hw-qE&rh8{U z?AH2!M$ep#+h%or-#xt`Y9V3yvl*cr7zD!67A{#lJYa;%u)oUA3hnRxIKkqEG-KH}<<5QOE5A7R_ zg^bN9?TJFJXHXLMqnx^X0QcPW+_)YxHGbP9JWw!4_kAE?i+0BV`XeJp^*B{LBhYB} z6><{Kl;hfQ_B1>NnmDQfw-J(U%{h1G>Qnu~ThqBP@j$4N=CO)LK7&#GKv(h6sbem< zY~TS1C?5}+*f5$L*QP@2EmD=9W>s}Uv&HsUi59a#-;}lsC`j?`28n;gLCPfBb~Y|7 zbCK#U$=r*K|BgWafu` zuE^Zl)h|?0sL%W!jF61=%yZz%6wp-}y!gCV5*Ejtj52zM8e@Cu+%AF=$z0OH^cohJ zG8=Vs4c*_&2(}XQ=E6Y8=poS?e9J%XIQwbxZ05KA>wZ61)qq>Hun z6AP;2>*iu#*=tQ^2mrLW`jjUco2lVGXIL|cf&chY2Dc`af5yUQ+0AVHXp!f*Uz>-fRtLohlXz3A|rC5Ui0*LhS}CkQxr(glY}l?Hmdj*SA!&!>uB|# z)yk+#dw7;0_z}wD6@p-Oo=?V5!R`p3LaLUKrH1wm2qnwbcJ_f_eYeI)+&5T8>T`V({n zUFjet(OX_|rGkarL8X-l29lv%d*$iWkYP=yOwn4fO>%z@Eo0QvT$T@8?S)=W4LMRo zw`atI?24cy=Sb@*5n*MI)ZVwwZC8|f=Jxw>G}`^>vsM)&XE*aIWXl@P`buhjx2D9d zT{r6vXn)px054OydwM!uks_+JOQ2x1gLkMxm?h%X)U73kF6Bc2M*@57;W|Ir9rN-< zG#9N|;S*DqfK9D<3Xfg4qeg0!{`Ui>24HFU>^@B~wkrW%6?vFdDY59GZXSI#6l=*> z*eeXq{sMV(UR)gruF3M8myOWdpP^?nDYz8p2Vw*!EHiMoNe4 z=d`D)GGVe(a`ZXPle@G6MhA(esXXnihEwn&!0aY%LNTVRNplBpjOK#l?pVYj6OmJ{ z0h%BmTWJ0paN~~3n_xtP(`W2yYkWB$`ruMq(5R4xz2T0GVrsJ^rlH_t3yAfq0iLC14O-z@=8-w1PJ&^<{vw7-b+^f6PP*U{9$O|%4(0HXMp6}x>A#03WjA2iqzkGuxvaMA1bWDtOU zWpG%Lzne6$Aq~*gDn;+}#LRo-MZKsvIJK6lh^&D8nYidXz6zXxfEnAp!?6F#cKGF* z#Fq*`KXU8x0SVIEo#(~2-~#)Wp6XS7htrm=P9qVYDRlIu=bpzOt;~&0JgWl|T}eO* zZOEawS9*pA<(+A*;Cs#NlogWfW{#$SZMY23nZj4z^@^>I)2$?~ZUU;`#dwgMGI=Zx!ED!zTmU+QYu*ip+ zAx11@F<=W@*is!dulpkuM0W)OdNJZnyG3nSQdk; zK>qBVHYwbwci79*AtnTIkoAwEA>HV}6YEvapBs#|O55_RIruaQO^wlPgQd&YDlyYd zlwFV0c~+|n_yz9>EOr{yu+?Vq;-{soH6{vd3%~vlr7&*Po7ktEa3&LAdTZjZh6Uwt zc2BOt1liPi^v|FfMBefZw;kw}e!UcYv^B>leuTEKNH1B*_e8BUoR%`R9w+1-*-aIF zZX)vW?gO7_`^^DL?BgA)qiIC3q3p-&6IKXn+BP(Ii;A?*BxPmY$uVj|Ce?wf7O63Z z<5mmfzXS5v1l0CEY{PY77z;G#T0SgTjt|$PuJmxElwBX_yVv#l*!sIwzX(iV-=azAh^5kOV@+s?KatBUw2pS|EeM}waaB<(|zt{&LA zdQA7EAVT?j;CV=_JcQAUr%eu^YE!8g@~|b2mgcqlcOBt=%4aE%Ic?o3OZyGNtNSLCN zUDxgv=!ZRx0(~KL(kdtj(}YpNrYpHp%^P3~%`X~DC>8`EE?1kQw|b>DhO zk#Vj!sh1*yqxPUJE7O%g@xoq7wDo;4oV{3isZ!gY#z2pL=*;+k+F`kx7)3)U;nW?}!K}p;Bi~BOL9J&7p4bG(&p`LG&cft+vaB0$}%SPTAV{hOTOMt$W@}C7i2=sgZQ(qzK`*) z+#$Vo0BR>QYx8k0n6v;fc91=MAH# z0?o+sv2)Obe^yMYjq5UeploPWbL6`&bbcxbJp!}Pj52-zJ$?PFXf|tKC2a-+E>zi- zjq&7jt_B)#b0*veXkD{OCAZ6!Ff~afQQGeC{w` zgKpCj>#+KAI9wXRsS=tyu>Zbhr}`H#Nrj28MZjTeJC$^@wj6 z+)I0SrD|?KHaqCP?5q6TkH0zUf+!^zIj#gIErprZV}%ToNma#Oy7FR9;*37$U#J^t zNmVhwneCRXl9#|q2<=HvnyNUoD_T`xUsg(rJ(azT*X6~qgxrEnlDqaqB{bl?c3oHA zqf9t;IuXAVS1pm7C)ND?A{OQFHnyf zbn0TH*r$_?6q$ZR(?J5M;yo!k7jfq_OLi3F{hM|7mIzk$%YS760UzhA4X%Y!AK`MV zd1jApqzM(R8RnhWmD$WaFZPCvtNrL(`}B*HQ4EzGJbovGgLy|g$ZdKlrv!a2RTL-<}hQ5I{ndBjNZ`In9_=;c1C zDp+WIVw?#{6lziFAqsC+(b4OB4SqS^iaiu(WJsPMbIls9jj0zhT&;XfWDR9v*z$2} zg0&PhUAkIu@2LJXDM3|{tHmL}pUbj@;PRA@{K^5=QDbws*~EqC|y$*e^mQB^<-jW@>B##m03R>*PvCsA@c1HcR*&nxst>_6#p{n_EB#&QN>& zk<~<_qdsEX)dCe3b@G)#Ow?{!-^Ep|^+>ovaJvp!GN;1iz1+hTcJ&Ln(!R`lR6Po| zZ!+b_+c;u*$y(mQ%1EFx$?b07ZQ4t@@Vu^5GPI-aqVzyKy@cAvl^4 z7cHzyJt)X~Mbe^k@05?*$07*cg*d6?$RA6&ch2z23Ul%t_l*0-W9fX}3#xS^f zwl+>u7^k)gQ7U0Ox)+!GtO zQO}9&k=akA0al(9>2rKGt@*Fn!eUfqWTg$v+~OgMt#3lqcmZvnrsjEqH*1~H zI?31X$&gRAHV2@nQeOsAGEldQ@MY{(hnt7ounaX^zndxcj4(&E02Gt~+?sD3>?$MZ z%e#)B$urGaMaHh1!Ir6!f|JTNmn0__ZDO11ZK6|J88f+YmZnug)XoMfw%n7(<#Wm8boTM!n-_-fELEcxG|tdDncZ( zH2h^sS`6PzHogYjg;%a-dMU{~;yDro-ky|G%}3_BvsshQ#(0|!^Mce7IO-}CWN~qq zxg$)$+D4)H-A-j10WyosGW|VCWV?=5mcA%kao?=u9v1k^^7`o4FqQno^^JRyaGB|~ulQe+ zFhL3n2fqjc0&LXRDPya~Q3ity*{$d04ToiI?@0xS7ohgwxPcu`4|+G|`_ktBzBxMK z2G+~F6vi7IO~yqn^|ui2pTK#WSjIDJocEOr)y@N4t*R={5!S!Ro1~@ST5YsVph6?? z_sYne9zZeZIhw)qZDBPRfa<1zo6-NOT8grV9pN-R?7#GAvb`@iAw`&AU?MeTpCT8v zr!TalbEWKNg0Hbxj3re6CQ%$ox1Br_GyYPR@@evO#b>Tz(B~(wN+0F=?p+f?Bri37 z5s}QJD-bcBau@`0p6FfYqDSttI-XD}&NQggTLoTou%8r0mU1MjOCSdPP&Yh_<_Ndd zvBek`kvw&-ZDR^RbggxU8Zt4osus#KTmsmIf8&W9`6Sf&le?a^Yqe-C43WIef-{*N zncIxOV2lx>Ri`Z@8nPzE!N&E3ady&A*AOnWmF7Hc@H~VrpZQEr>^MBqt4G{im&``WU~e@pUuYqBpPJIYj2hAtge4T&RD5*ihMvQPTr^X{s}hFlp8@xc(>qvW79 zv?ZZqkF-A@`ndMtHl}N`WWAjqlY;sy|8^_gnmY;$;8>s-vVj^qvYD$WyK-IKL}@{( zXH|*NPX&nr{g&GPLh{P`ACcSe>G^_yqQZo_XF$Tiirmhczv@$7 z@eu*4;w3haoehppuqokggG|}gk1M(?qQt%trw#eh$E;=Kn(t(^STf!WBbnza)4wl|UuX`W+0_e^LD?Phte2rKm=3z;EDN9CDmKf@+64Nxsy7B9XzGA|Buhz}z z=U`SA5BTP}l==Wp0M~M8{b|8}XjWNY#GtVepbFy({nQtVz>(tcZUW^pr=zbP%9iO5 z2ejeb4z(Cle=gH~i0INg&|Jy4o6^SZegg}G`zDbUoq&%1zHumF3_pIDFNa-bAug}% zL+}-J&K2EoUUu70>qz$XBFrVjQUBVqQDS0|ofAvuZYTFj91%Fu{P|9Dbyv?*A+1|> zW~xdyYGj7$_ooCXh}%^mz8JwpRGJI z%YUpqBLOD|$NxW6p7sBg%Krz(8`2y755E0BX5EtBhTitSY5M=A(EkgU+ZZ}q{5LHB zFH-LQKTz`j!14blC1?9TM(Tf4a#mKB|EA;|ER6pfmjBy>@PFSR;ACOu{4YpO@Nd*C zZCp&92`O|O;{(=LuXHSU? z;PT|*DJ@fnjKA+741wtY*+4+v)qOjF2QLQX5aa(I#pc`qw#A|OGN^qF`J>*M+XG}@ zW&4GEE`6#KKs>cIVM2g3xibWL3gxQ-NQdKMQXHkrAn?oKTOerrp7OnYkp(zgds2kw7pfT*V*M*4aadUa!S1_sv2)*0yi z`>XPWUEu5lL_Px4!lodB0V@Xc@wyrygF_IYU+Gs4 zO@ghlnfFn%jo`rxok%NO{P!DIm*h0|tL-sI0 zoGXR&sUqmT1|EHX(rL)=wU~!{K#pX;2w!4f0)OFadXl?x=1*)$01g2^!dY=TC;wl- z4gj3gUw<9|xJy3)Jpk|{{5!_v@7+5`91eqD|F~Yc|6FE&{pkU4==_9h#r5ZQ@APc} zJGeM`=|XpheXchA?rv#8z`Xng&!U_e=BE&{GUHpbs2rKxTX!7yEkAU3RLIzFMa$gQ z@Yg9OWbm1SRHllWiuYHg&M^&)8%cf9af)(V2#NGjX@er#t9Tg%+E7SekYVWm^> zAk-m2u!xw;&WsZEi$JKiQemtWKC;=yKZsqTK>2_YWV zxVgr`n=de9(TzQS zY0F&uZ#SH)M+@TfHZaaAU!yzjUR1Q_1?du*W*Ama8FnT84bTKRUXlCT&a|usLgy7rp2(%O=QkbxjHi{|jlWPyD>>bar&= z!|HXgoMJ@dc9QI7&by>M@Wue*U4OP!fvb8?7ws-&yr}u#{P2rpLZKM~R<83&0 zLKZ{Je9>*Ny;rXNj(aU;cu9fyFWL;UjyWgchYc@eL?Fhent5Dadgl1`5z_Xo?U%hA>G1(h-mD)8;$~!^jIo4-=Dk;-O6uw6^ z8vpn)E6Cn(aJtm#4U}(VXuP}SD2X2Ua>J2EMhv|r&Jqb!&gK-D3FCW`y#49{5A`i0 zVwf=D+3OntY=OrJovo_}o2vU4r!j}p%=@D>h*#AGyln>Xm^9vErlX}Kx^C~gi<JAQ@pGOM9JPB>F7yN`_x6pF=8$7a4;PhQX35p+ zWh^Sd8<4EFGRH4R z@SPi5kT>=11?ZCDbKiJNcBrJf%=R<#&mSOrCeQ7S98V(2SP=abO@TiiktdR_xmh5B z)261sr4UJ`_uAzNbt5J^#luS1%;R%z7I5y1I04x+Q^gqQ>Q0U+2(r6n+yy_kkCM^Q z``Y(C@5<9>FQN!h>nDAywaBNFtcQ%bSHoQ}} z;p&o0Vig<6iz{I8ZGs%6sy1Loui;6KIY!1!R74pVW?L|#E3xCs{O!e4Q!hYSP9PZC zWKOz@4$VzRw(4RV9RID^@U@bqwWD8NSU*?8g4l!ObSdP$Pe*IRH{>%k$^E5=*gMno zdPsc_YCn&Q-tD=47`ZVKz%-$%2J6>*iYVP-s*9@gfl%_R)NJpLh$ z7y_(LE?^{mP(>NT_cXE5H`23KxSOS&Nb&n~{CENp`i6V#nOEx0V35Y?N1(xuT+Ts+ zTAHF3s@R1>^l5qIEo#m7Mq)bl0+wOl>mEvbyE8`@ocCOriisq%0_K2{*9KYsy9Qdw6tDntswB7tjBqphBBU;oP8h9bK;HEHZ7d7QhfreP_>|50-ssqhrztSOskr7~F zle-N6^+b(8*2=?K0IRgjsFW@7qedChA`1K%qUE=N32(G=S~CVASb+ce4Bi^Teg}4Q zGV^g^952s%cn62R}fO)!R1wiVl`pR;`<)ng2j8ejboehvvP;}kTj zg|GH*Eq39iXlva-(-`BMU!Khk*c(7m7f(?+TsqaGQ{3NCdOrbzNYxKe!G-Lip$z)Z6 zYn<*1dhYtjO&cnUXn4YqHQVAf;Xx z_c8l~YWw|F@U>Ou8>A3~+jR$1{=|y`nE*Hz+G#4IAb8LGLsoMCMU{J6eo<`U!(xTL zhSd3DCX}~fsD8S7Go)g&KWl`_ari-iCslYB;2!A8ONRd*u+4xY_6PDfnM?pHB7qSc zBta~#a&P&h8v{4BxTl#wgcW*|lcxH&R(xT0g3x8@W}!Z+=#?NNcd6JLr?#wFc8TYSy}tAM;2feOc}q7lc^v5~hXGej(i^hhavRvIz5)mFSOfNE!mt zvEq8kME&@2hO>|d*Dp^eeCKe><)T>-ibJVhHK)6a%4>}8mq>w@Q>pv2%wP2iYC5H* z`l5rd7Nd`kv|%JXu@b(>!{YDAGn7D_mjfp(BR+#z-N=|(5s@hsSdE|572|g8khwm0 zP4bmP>RBu0#jN>`e!?5n*W`tQ8c2r^DcRci8;8eJcG?7rc(&uo?9k z*PFeA-XmxC8_Ak&*=t!kO`u`R-vq+iSEM**V^%PSLc8^p@l8;??7|6YKr zj_`Seo0Q*SZL9TaTfgxZWv6Sjp?luH3iPB@SJs)`S)N8%eA>N^-{voLrL7|S>S|UQ z|Nbg5yF3|imyQt&Sm}(!BCy=mT<83xbmB`Qxqzu(3`JL?Y1G}x5K3d9_Bm04*W`=i zU6h00xo3P1VDOd2G}tLc+|!ABUoOa-Hi+uGDk1@>fR{6`Ko=En8*$uU)Ko?-_srjr zd}QD#HMy=!U$4e|+a8;C?n4}~^usKy8HbggB>f9+mU)3+aTIJh@7GuWUHiR|u}mms z+MEsmCJmX=Upe3b4d<`LBz9Aq`&RV#L9uG#%DunCcP6{nzJc7v?=ocuFPKhCVCIZm zLIw&yMBiklv3A|UAieDKfICL1ax^(7Edwq6r&K|Jjikufl!g!PP~D$R1>%&WCBtMO#kG7qG> zX?}W;P8HCLgvLD|Du{fZgDCdG>zQgBf6|VJUrVE0=F3&u{k^FRK`vZ=S_s2TzFJ^= zD=BbY!J_kjgwYF&*e~Z+Y`TD8=B$V+(_p4~^_774d5*zd z)g4$ejU2(uJRFPaf@EvWPPtm!6Gg>tgXGih^q0*{uXIv*1|IQXfkO3K%`kcENPV)3 zkq^}Q_*P2n8-yx}(v~s&PeM~J$ObtS3uGno!sdi>mwUF1*LOJw@oAq!ZP6=dD7WH^ zg70aqjLv$dCwn5#e)hz{;weHPg@X30u~*&WyH=+d>9ZJn!ok8(n`jVM9PgG!>F3YT zjvyqYw=64dL)>!G1&s+%4+!{3AlpK!NcYd4!NXQZ#lk*P9-1+iqCF-@B7qHuB}cAj z$RNKSgP|xI{hfB7^gbLDKsR-Ep$~PQCrvD8)$+x*y~!JzGdI)pm;%RAcQLQ!ZS?ZFhUY3{_UMX(~cf| zE{BpVmH%G9wc{4M?*KbJ|8)H-KDZ-6FftVdegFlk^vIFewSnp!UHaN{=_3qyX=jj} zQ9G`^NS&GkB9va&kB>(=f>4GCBMZr$sI+=q*HCF*(Yo_XCffBWX@xwuqdEMGB%^38 zfvGfcDBa;ZXsW8Vsb8Qtq-}fp_M!=`x@$Tu8Gd#({WX1pY`?xtcDyRDGH`V5)Fo)=30Q4m?8}xA-=b4lC|KZ*=nPUlj6y87+w8MQCqhCM=orUR z611}x6r7fDW`nod9Ea(j%Ma{U9PjyfWt3nm^B7GLUjNL~j5RN=U3Y!ciMWpsBSN4q zG89cU7;SualkwMqF?$K!?DlCFw5w8Z^4sGzDdq3{yNlmx?~dmsWw$TmGF}?H*Qr@N zMNOptHq!fo6|!FL5p}HT^qO;zWNnQUoOl4(R%cA6Fau^$h!<;9ITuB>OeJN1^uBi$ zwlXqxAcjXlq9#)W4W-s@cfmmz<~W5cqOLt5F$qgPPT%|SVi|0Z{FLkZqD~vhBv7;N z*E~Lks&_MvYk0}(a4rjv^S7a@8dF=`cr8JMd{4#-TzNIJZx~($n~-F5*c6ApU*1R1 z{Cm1*3NW5?6}5)$xi`v$kzOTcJgwG`6s#rbfblzI0h<+r5-)r8O$!r_8I;Z{An{&S zTr7tyFVSWI&le~4^@vS!;wacy*MWmemdDG=M^Ze#GX`7_rX${^HlAr_!^;iFA)7eq z*4($Ixns@crJ~`pDI)`!Vz`-Q1#R_!5cewjSt4Bfl50Dfk z{_V@K{wYgjj1FbHZX?i5ai>+;nT#24roOeOBh1x&$7`9ySgIJ}g}u?%#2_rr_EA~M zo2};9qKKbd`T25%3JhEJ%Bt@l&B~WRWZSL|g2?6T$597jc_b*+FyNRfB4Vh2)p7{Y zUKw%*bb0okiR6;ZBuMdnK1sxh&uDozUNVmt-N|VM!4_XExbw>5DJiu{vpqnvIjuEV zpP^Q!o`#1yZaj89!eVvBl{XJyDJsJFhg7bZTKZuUxvK5^Qg$KLqmNR=k{PZ3f9<1Q zto>Lnl7Ls1it>RXUVFgiwDiib;q_cFjnZp{DM(Wf>I}%YycGwMwUSAJAuk)O(C9IejVWj?QXqyGyAdQDy*A-9Ro0PGi;Yk z&vz^k5n#g!zM9u**st))WU}+Vb5KS=HzM^%Ptv@&;W~W;Gt#eKo%e*-G870*FOF-% zlg+b=J3EcT`?g&&=T1wnN?Kwe8jN5dyYjq)V@S!%rS7}wu~1wz_&}2a`{xvLa%KF%{ot5m^iw z8N!>hD+UcLVzk8{B~Wi0S*bdZTs=i+?7p88&1aJ*Aen>*V`~dcBwttTRg80-f`x|7 zn8VA8)JTKlE9m^-t!Odfx2Hp(VF@Ph1^gGqI7zK=@wds)5K`vL@Tk*{V@uRAElj2V zPWQK^nd1vsdpf6!+QQ_BOR)eHb9j%zbdx+NVYN|TN-*BgR36Hs4CHyRi#X=WZ6H#8 ziWgx-Wn;KG#i+aln@n?w+*)&7&fIaDks#$r=kpiMknh}fO3RR0(doT^u+FQM%tj7T zy>y0pIyjpCad;fNzi*(|u6qA59^5<-vZ;BJ+WVLUKwt?fAdPtCA!0x7F_6({5Rmv1 z407LeYxclyEbXzo)|2u_q?di_Now9Yumib<7kePRwEvUgqowPn)eiNqc^Am?8U-rB zmy+Lugs7JjuE$*RxtX?}1Xs%lj_YCSXHTN$=V^E(fnTDgW$GDwv}CaIbp0nRm=M5v zb6*AF^Yf59T+{x%*+ZrHZU6>NT5aA2FIgYAH*r@Pw!-Ubj2(w743`AvG8J$wP-N41 zJmm#O-&4qeuQumlTC07ba2vbRtP4=QqVk#~I>1H}MaW^)Yzz7j-59h%iDb8=919l( zIzpK$V<5qGla}GRlAMW@qNtKWoIDTaJ@>1=HE>s|hr4EB_yLZ^N_G=xh#eKf3ZXAw z35l4x$P^!*Q-pQPeqs(p5q-#==p+Y7`t)3x=j||}QHc_F_7*AGGWG_M1r-8Ea`r08 zrAmo;#DX0Czz-|fvjQy8@Q0X6}Ik>4!>L9Q23d z$4fi-MC~#;wK|xg1<}N4qy;**Pv%CX<(m+NLGnY%<=*RUtI7$bXY!|rOVP^pj>A@D znXBJC82Is&&=}L5xDCsdyxDk7p5L}|>K{<{%xb=&^}2{8MXx{s`as7`*0r+aX+uxIZ&DuEZ7767@tZ%4y}L>CX$EuM`O z8{HfDiPLXsl_f#9~*N7k@j%=qiWq{#z?(&{bs+B^P0zL47;kIj#~ZJ1o%IYpYB zceJzO2;8BiS1n}M!gD7J)%A9*7_aGj;e42laV4DI$h#SLZK%8#^>3Bbz%ZOkSLg~c znzZ92=f4p}2iz8u6CBmV!^NGFOS&x04wb~^>d_{en{V}HyaSDjNn}iF-rTLvF^I8+ zvJS;!$LI#zNa@DkTFjPfVu?&_Ne{Sdy*lsde}#k>(HY}51~n9VdJbr&IN)E7>wkgSfM*`>y2M8H?_M))Io@#wU=_{5^p)f5&~)2%4; zJ*`U7E6)OZu))pa$t{ep`IL-zvz>CM{|U5J%X_P~*1$U~sWl;;lcS{EWD2)xQtn)N z8lgskhQ1S(mXzC1)IZi)0h!|H9%&ehcKeaUw8I>vpa^8pC8)?)%-DLs5_g11UtYcw z(q#fjTX;(B*W=*wX?Cw@HYT>nHGoQmz?h#yIGlfI_AgClj0>P#_0M@(v^Guc4LvS zQ06uhz0wkrG!~sz%Fp)5@UuMn$ZU6?e+Rb2%~0;u?s2Mi^>N@NWwl?at_V$d;gOE7 z;*oB6HG@^lMQ5Yfhb?*kG?TQAoC(o7%~hLOTRJ3NzX zhozTy!;({ESRdpF-_Flq{wJY%qV0sd4rq3*zM?5nX!drBlEyte0^ygRpqC(bx5q`V znhMsASML_arg`f7RYpJ;N>z2jCv^`1KiQp1RuAjX*fAOyqIuH7 z4pXXvVv|5%E=wWc>hyxR#Els-hvl52Ug7LnX=5O39x=b7*4#MNdy6SXn0E59Rkjr> z@HY5Vhu6g4zd?LG3^emj&+pw+Xw3_2CbP@$%?e|vgyvQWiaf;45qlzu<5r(%Or^XYPJ5GKMDOFZ&V6LXL@x;;q8* z@nG>hI(X+3RVxuS8bMn@wrzp6amqcYaIoQLNW)6L&o>T2zrbIksn!4&1KHIp1PJU= zL@;J0vOFKuiX-}?8{bgwabE$1ha)DzpEy4T_h35o^qG=(Z0(t-iDCd!89N9W>{NbF z_Q7xAr?GRHz}qHKMZHK;Z>!KX#1>CDQ7fakZm{_Y#xuYa+vy0<8u=V{g}K&cOR+wE zx*QHO?c>l6A>poH6KIb|yX*(9ZHDVqL&y8e^DcJ65*^z8Pje1_L|!vyZa2DFAHW-x zl75u%?0qBPofnEic}}m6%$mxPNc+GG!{q#wTFTl`yAu979ZPr(I6PWJ+zlaV{VA=( z=jt2TR(k1p%|v*EJNE8EKrZJqWHC?fCY!G?A@|hJ`>G(3y}-1x`E0VqeT%B>7aLq1 z+`i>~U+or^I=thrT@x=6skqI%aF=r^yxe7gqrk}@wC?*G3wbjm8I9(4jn%swa=OM3 z;dFN&-1FYL=%CmKW!(CUH6wM_7t5xq6}z`DED%ze=(WmNX@H732chS)ZlsC+w$~*> zU|H5}GL+y8Rs(J+*GkeR+D7i%34vAa;9Y_-vi|T;c>59N2{^7z622sW0UIue)RfV#nAA$pi22UpYiGyP3%u zDl;a_hxn7?;&uvWa6$&o*#cRxTxrx-l@Fp_e5g)bLsmo&)wX!BoVrvl6G+=H0&E_A z9eha^($y*6mmwqjTMDBgZ3iViIB$0}ecd&T1w@q%JM*b8w;PrkLYOt~{gnv5yQ`*2 z8@~*iNGLy;p{oJDIF~a&1?s_$Ab@ffx`>f|J8*p?qzBk*3rsdYs2*y7yQCB(^$#@t&bF6oZf?Zr6%Tjoi zHNuF zpuHHuu(pOisE=)v=zimIk?`cQBdHXVded%;PDv3J4PJk2lP$J` z^mGYAXf|9{7h3-T(cF-J8INr$(S3Qf4Vy^@9g`_k?w7__KZ=*3XxPPR^JH74A}$Uhi5dj|eCd(s|$Kd#%9cyU!MqVBGnIYPIhwYM$P68n>cH-?Ic zex^u7fVMPaOo0KUma(S?b(9*h;3zqfUSNpkH9@bhRhQ7(m3WG;uu8v0RwH<8;-Ev$ zE<~>X3d|#FB9_Q&pzahEPtm`EmXlcTJVvjI>^lW%)34#EVpG!HvqGZeNKQsFA$~Ya z8Yp^*CRApLznq!4lfIR?A-|33uS)d4T&*m>r>Xt# z*Dy2v?iMuDcThBTBB1!i&*XjqG();yS?d1)&i;d&{f97fqI3UWt)%|}$NpE8jQzjO z`M*#yX8Qkv#~2A%nHc|T^xsi3HbxG%|Ia9yE4Uo8#tKarlo+ZULE^0BDQ@A*b|O&_ z0s##2MbD}OuWso!Bbb_N;j~>sTk1n={Z6h)c)2gnQHP4); z87aTY5HcVMI0(;DPM{bh1T>H_0Hwz$QUHQ~r34Tp0ze??{c_c_ycCeLI1!IQgu9GC zk*fRxeH1XoP$K%1j|g^t%_&rTYA6KMgv8W;fPnyo_z2E^Fo^y!0w~wAO#{D5|bPr91ugeJfH{>WTCjd0`kx&GWBAdLkfEc;sW%HgPsO%<@P`$ zlK=uqW$9=8>LCXakAp`A0nz(W!2kt&8sK#9!pV^UII{K%NuulR!Ug{@EPomH!oOCq z0O<4Y^$dI+eNiF6d~aaF_!Dey_SxxTY(nlrI0gg3EINbAo1yRmz_`8|L%2K%>3#NX z>!nhy;u+p@+0*lBk3j$oFTSWcXCshI;vW4ug>?K<&YP{FPbI79!&O4Cv5{jRPdHTd z`L$o51e~?k%-&c!`xATZe)}%R(6ZU#^8(! z`62u6B1S|5WA7!P@Z(;D1S5YV=L8Gk{9ZG(!Gjb8uH?hmg9PU5;qk4pqF;C5>(%!D zVfgWG6F5%Scu7)v^+Eq+E2@m*1O5aR;sXFgv`64mQ`0~p2v-OB=87Q1cveNr_4R7n zje+oc%rRonewXdv_TA!n(GBbaes!hx1`(-~19;&DY5@xmBuJ&(`>{>?ae3=0`%q2% z3GMyi!gr=qUD=_2p?m+)>$9O(-RW_Q(&>`JxVj*uM+W$@RfImxv0n=0?CsqA&R7!g zXJE<&adr6W2&b2I#=tt)gAnA;{1H2Xw|Tbg)zY^sCG1CjzTgLhfC%LK8PYF?+7EDN z{>$L;Db3Fy_;5qKw2KflP;-Wam;&GzCss=bc^tvOW$)KRZvumxd%6P!1_9ZRND&1M zpr}L8i|9}C=A47n4?tKNie7wy@ybR-28+=DSIPH=fgC!|3*qNh0f3N~;vW9CMvFj4 zjKl=V*Ag`0)c3h(1P@ABkdUN75hBcLaNs?x8NW%Q#T!H=^l-$#0!`K(31_ejxcDxrF(bt?hJ8sXhMA*Pz2$&(b{KYbndn>C=oK^ajbn+|mjO6R{KbfUu?n zT}N8j4Mgg;HgxMF1U^aCT%21rt~|F zQhJ1&3!@#q+C0-9o}xF-(W9!4>`FJw)la?~=Cd{KiE3-zOy<}DTm`zdT7>EJK$HTg$S=CKE&2#oA*jTM4uyh^1#Y`VQK_P&GU`%J`;tTQ_4Q4{VPQgeF2} z2Zre-OLryg>Jf-33sjSoFY`Tf zOYet&vWu zs79k4LZ2Wl70Vvz{>B%N%%?Y}GGUqMAw8g6JRa)%Q_{2;PsHNehX))RO`F(3VXdzEyex;5%9Elcm*NNB@Lgb zlpAaC5k_&xT^9|Xl5D5jCVOE9asu09#qpClQ)6$ru!7<_NI)MP;2jhn!>)7e zCBtV=gFf6TyyB7{hBEnmMTDEi^h>3Yr!Wb4L4DX)|J$+}w=)6o6vxOKV(~2Uqbb<{ zg}i~L{iQ4fj3ThmS3hJk*^$L3sFg2+_v^|4*ny^l6m^`)I$K1?coA9V$rgnasy$)0 zK(PBm>svNz*2EtT{?I

KgQ1yUBz%HQ?@bD{{ySas7*0Yd#w_$!XTIp^~l#AMbs_2d2mc3W^rR3 zw98#Ao#;tFXMsRlQ5~$QG;35D|0aE+1u$~=s=sk(Gu*j@uy;`$Fo$^T&iB0h9Q+`W zNxs8q3l*5g=K?!{6#VoddCjGLU#vlDffL>{dczolM+2tBz3Kit4&7;R zG^18IMJCnqwj$_e8KlpE;Trf_MoE@UWD>lT6n65dm*2x&Nf`7w%U)QGy5RA21lr$o z5~Bwr?hHovJs!oIs#xL0ls&2>G$)|Rac>k30a3$_1J*psr45|u&C)C1Gn@;!ig z#y@w<5!DRp-Eky+oh!%FUlAsV!g|=^%9bx=Glqn?2aCzO0HvSTn*=@_HvCcC&DMj? z#G^*s`-1Im7YAbUduebjK9A`F@6lr=uwWb~iH%KJlP_vjD*Yy=_jgE_)9+n(I6dGX zKCC>lBxr__MZ^&Mc_g>_TX)@cg~R$PacefXAL9ZpRJ1AfQs7F?g8M8ZO7>?ORt8CV zkp?fhHzH>p4MKCwzH#^u^nEu)vU!F=}zKn z^y-w8b=k?|91S~K&lm2^qLZ=9Ec$KI@1IH48@NRgmct^oF$ zZfC4zG%Cp+g*K7ULGgr48XF{Dz}@Q7!iGH z!h4EqxE>)vN;vEs3)u(4d3Dw45V>$!1L=>dXR0&X3P;@Vj>bNs68IyvU@c+FY}3xK z_BF!k)dZE5GbihqtW8NT%cPW469!EQDpgYq1MkEx>t2UAMJ$$V3=FgMZg+`}+XM~H zlbCaimtg=9Q!S60-7<2gbV9}v(~;M>#6uvy@VRaBxMby`OK>+or}qfR|U`|`y7nXi@$lV(pW`CKc>U5mExUN%q=Bg zoRuPltm4hOBWYx|pPYQ#!pCQud9-Qya|+KAL*D=)QCzO&!`7R*UY4;lTG?M@!=oe> zT_aoniMH{f>1-wIRc+7$K9dizCm^a$>GJ``9zog{FPQ{3wN4XQoJl&<`LrBE(jfn< zDAA@vaz|X3PDN{VlghLcYKL)|q!i8A3#+o7Ft%iufhtD$WcHp6YaQ0@K;0tD%9(i{ zncTrZQaa3eeW6iI)k?+jwyEsp?u(NR-CDJ_@Kj>y^!!sgh#Q3Z=wvIrd>ih^t8%^G z&R7#+|HKg0Us<_%lmw@N6N5?=%cctVDlTU z-)0%t00OB*tzpGTl^G(gZn}VWnt}^ZS!+Cf^L!Z8mVoIs=d9cuyi}GwBy0M81M$8> zOn)(>?_5_y_CeMD%Xm&nn5&C|%oe#H-_k~kcEH|&NqUq;Bs#C=|s z|LZCx?%d!8Bt@c01Ej7<3-^{~&Ym?hW?t)Zb-HVXh3ky87;ZV7+>`L2`biRNWH;!? zldV`hi&3v;muF`#EU!7KmpYS%eO~$Gqx_DXzxlg!YNQ7v#Qo3PR1$L~COW;Y7Te)m zJs#Ojz)K;N1$P-#Q~Nl8t|5n@Qu`VeQJ`+)enPM-S)(U4GWG0}6~Lt($bwf|v(Vn8S_ov>+QM$+nXW4*W+zJHjfv$iil$i@uNlcW z!|km~v^M_`nzyz;7`y53%BDPzxmzgLNS*WQjL6_)Gh`U`1TC)XU?~=-k1j|WO`V0m zji&a!2Q&}Mu^PI4-@)?vyA}k3VTq)9xBW6@23pncQNgF@`8lx>5^wy~t$4+7y*)`= zRGh;jlY#XB*g;z7LKmiXexh!8&NIjLZ6;R&z-~@WYj}j=G8{pX4p0V+b>-hgrJ8~n zyz!n{iiZj6!4e4n($w_Qcvlk{PlK#5&Q_ho0;*OQ;I%P~u}RL$gI6)AGZq`BlU;7V zN?7oSyiU!ji$tU0BbK2wxG^?W7;XJpnGsk~Tq$2l3_=psZ{<@Avu^MBV1Ku>cQ$$UN;-8+|qFgsnn3|)yDPm<>?fabL zxz#q;n2jqYG`k0U(n7yEQ&RTq8IpjPLc=v=iW42djNj>6OT;T?!F{YeU!Ezl+U00A zT(!Rycu`QwA^nNqj2l#xt|}BOa+Mhy+LFzy!X(vvE~u!d90fhJB8n2m9DJt~dr!m0 zY^-n?7wc1cAu8&FB5B1*LoAy(JMUC3TqCFYf#i8x`c~rWNk>?AltGAA zfKlH{CO1tLYWSiCO%Avv^s)c69O1`X%TAxQMbCKk0KG;r{&mqgZUy*I?{DhdvbAgwB=B}X5wKOT+zi~+2 zCD}~~x`QB$-ie}%LMj9^@4aB=QW~{OV<^p|fldJJ@r*LaT-V;-#%g-XPRKvb+OLbP z>ZCI{imXpbDWUYw3q#0B~V&>jkaPQ=%D2E0wt0*d*ZOKAt zF^yJ6=20{i92rkOE>p$m@>X4MDNT(5%c?zmo(!{{W6~kV0^*St zD5~g*Q$XdbTm@cG#a-wRQiIFWx(q}lON9gET+5D5h9e>wI@O(|F=1*4vkn4PN}jgB4H{lx%XhKKD# zTQF<+_mUDrx9$mXmJ-k3MzpFn=x})btjW1J9V-3qjnl@}Ug0C>ULIGdbqyE19PF+?0e_243NXhSa_1v^4_;n#t=l*hJ$ zP35448}Qb*vw8^_0b#G-;$RY}#l2tA^0IOfTF=HY@o>wG`HrP=_jYF436t}g&}MwK z4=1@`-J-3&H`-Meg&Xn+n~-=Wt8>*!)q*RvDE3e&(%%*CQ`4hv$I5rvL1@FQ*AZhO z2ZM%u*QJ9E3jdu>vZYIx3fJ1hE_=1(XEmF)nfqP0=93-UA@tzR%l75_m@_>T;U&wA)Ql}qOx|1 z|01&#g7~m}gD^;x-Kv&)5Bb{SmiWW}i5XOk4+EVpLaMV&{bYBguBaXRxmM+()66g3 z^Zn@G(z>T4eIIT$dg)B4l1o|EUrtXyaK`Vf3L9A}pOUV5XPQzs1(-tvgRaM-ONsw<07_Z<1Ku9{=!Q0F1WTu6_| zeIz)cmEOL{A8qVy)D;>nRHxk!@Rg>n{Om`>* zFh1_gOP>C$N_rq8>qNwrP`W)loYCMx*!o;JxyIIMmx-@d16>Wk2v&nF%s=n%_UJ-DSAz1s~^V49i?eBA{wrp?8LVo z1&4SoWGR;ehtBZm(QwU^j+DoWn@qgqPZ+yD2N&{kiFLcF84EG@m*WypP&*>xh?1_%7ZlmunK7D}*6%_*{EGtR`hGIBEiC<` z7;x75GyjAwuMzm%HqnK%G5iYBR+SfKzhup`KW}*{Y`QKyoa!NOat^P*=#ZnTACU3E zlODy`bRdXhEksnlnJ1k>dXK8yfqF2>88(iC9+SyaJ`bm}hVd2GhXT+M%=w2L5Y}+* z&&TRa%0=R1tHIr&f3T03YZqot9(NiG7x4sP;C5zI$tIub;h zmE_tC!3^gT$v<1u>bwtChpEz@xle$8VX}9{e+8}bUL`VYO?aR+Z!M_7bH%1yE7Pp+ zvrCTjTF|Mwr{_8vU}C!6rFuUHET0PeRgIdQU#^@OAu|Qg@wLR&;&y z`S~k!%hf0IV|%G}G(y+)NU?$}b&=fDBY8300OiQJc<+0XTTz&^i7bU<7V8P#j!Rlt zEmpi}Wq6asbhNdDsv&<^_b=Xzl#-3QxWr0B=mO40L*%@tt{h01RvRNoE>e94b+2+o z=nt_+I&Za6nQAUYI(Xr(?7m z&toMwM)Z)_nuTs2b&fIzUw>3}i`|=3C+-ViDQEh}s)NZ265Ea`B@*vprsr2#H^x0G z9OPvarkVz|dTg+y?{JV`mbWjKO~@WFc1&Aw#lsMX0uv7*Y`B`^Q>x}0%MNSDdR@0- zW$)!v$S@zPaRE7g`J9Lg#jF`JZkPFyXBUD`SKcyJbv+im5DXePr4A^&dBB{5s_{kC zwC;KW`*R5r4M^4U*kjU56~7!W2Mth(l;BccJ@JJu!_G%J%zbEKTXUgwSB zwomajFt2f|R866-6L=eJ_NG5Wi_whod!|zMI$mf+s_qfv`d6%;W(uLWw=;6>>3;%ID$tzL86l1K%S|2d~k(dGveEYg0ziJs2$FEE(v0|ch#BXz;<2V z0dYK6VjPT*;n`pm@EvL%pM<1pMfW-&=f3%Mpf$fETp&NG$DAzGw6)T@tg2hk^h5kE zD&c5zYBXg z{#)?*{}%SDh>5H73;rkU{jF#G)n%AE68uKE|7m*^5U_P4(4=AfKZ-dSIGFx_v5ovE z6aGKLUWWf3_WsYd%>NW!{-=fV|JpqHpG5b6$#~i5|JzjmkBpa*p6R#y^S_!WnHboA zW9dud4}LS=O1aulu$FJ1p&_ z?O^dXS!-&su<+v(Jlvj`$s3C5ftT) z!04G87#Nuvh!o^XH97tLd?gY8F#E&BBsc4A`<@Nq_=(8WFxnHBs4{_S((^52g6Qc3 z*V^6J+uboT0js5@xqpw$F8iYs*c=*|L&@oZjIIax$AqC6G`n2GB_E^7)Tn=-Ao5uY z0PF4T?dAVW;1U=BJJm8X00E;!Wm5b7DyXHS_yAZmktK5zK7507k6Y{<>JN+!9Gsnv znd|M18lCCU3-iERH8|A)l>B4(z|nL6?6PV5<;TI^(iudBp#V5TOOEsmSu~r-RExmz z^;Q5FnFE1vb#t-@O8dk4t!x6YV7mLo<05>v)P3%NJ^KALg8k0^Ubgke?FY^X@_S-! zbZ~HacpBo;29gy#RXxBDfK=RFgq)4s!w+%wu_X_2bnba+XLM*3$;jx_;#PG}1V9`S z)o+ff=cm?@*}k^X(ZR^65#-Bc^pR`QGJ&+W*r1t}m9I8|c>m^okOtR}tVY|_^!-Au zs;{|PZ>A?_in_1Zq~}j6=LUoMuU|gPpK<@E&JC6DJ1z}43jk+wa#HIrH9#&mz^REr z-y>IRdk5|<-I4D8%6k|0mDLr1NeznMcCtzD3cir6C^0%g?^qw^>D8O>zmppS z-Hu0I(2mcO$FiRW3}(MyV~E)YXB{8FQx4#Y@v$DO`mRnX|ln_3&Q*hs+b?_44Pu<67tSLINgAV2AADs5)d#2MeKKTAL zZ|C)^El}!RDSEp}MAAdnT-ezd8t;Rocd(;(5cT5TR~-brHFDP$RLtGbMTXHc0NLQ| zY6s9ca|fQZ!bR}SAtwj-6F+P@r5hZA)QkTKYz2^l@jPWuAp(4m>6*8T?Bd#!4Ac6m)1u&hJ-;d@?jQES~$@6>VirPeV{{t2k@s{8@f zh4lXh)y4d(z)4mW`GIj(uNRxqi|C3-mLQ@hznOiTmzS z`3cjNoxXNXv-)|A{YvV@9bLQAz0)Oq{=Mho&k|&^YPN3_hfY#V&C3k_lVu3+o6bw> z*jPW{>u>RfFSc5M)X&nDDws@l^H0RxI@gJB-^zB|CsnVd)XVRtjoYXGgT)1)(<|4i zZ#6JVNyt+ zV_)9D8y+Zac=5YqZ~8!!*!-;O;t>tx`ESs+Pd<}F18bL81xaZQuM-PqU!K5a9md;j z_#%t)iBfh$EJUCuhra#fQU5ak*b-vne;HpiTIYH!B0oLQ>U@>tP;o=0i3OXsA-`62 zoG9o)ona6*AGY{Jmz_7tGMza@80>675L6<}>*&em=*%6R&3z|8jV&5_>Wwm_a$43k zjpfaDQKyhMeZCqk8B-B02;m*f!zq6Dr#*-I!)Lpp&~8ef*%+{%D`@u@xWlH)OT{W_fxJ#k)C=w~G0&Xbx zrQfTbr)eNA!Itf;!XZM}L_*N9s0F!Q6WF^YD$ zT+K6WJ_C+`#~fr^-lB!wnCvL;w`b>#`BN9z@OKBJQp|A0tM%IhPxqhKTAgw2Sr_ru z2r>z^Ddi+0!y#4GrhJz4FU=h>^F^Bd2(rha+3hxd(gV2)n>O+}SFZV4@fzV<>oq>F zB5%4za*D6EKxU^z0fzGE*o^U414JDtG-8PlO$FD0JHIo|`tBn{cjE{33*$=CY(&ai z&N+sXGFN9}xp=U_3+YFNsphI+4Ddjy(p?8=Z2`g}w`GoYJfRZ+OVDP^5&Yj*$s-zigz@lVHcO2vg&7-Mx!4&pvjj=eGSWjxG zMZbE@MuOax1@a=4V)KK9UW?7yX?*z5&~%8SZ->#0yLXzYF2YTwJnK(psHCmFI6}?O zTRB!s+kA;vk(c-bi2WU95302KQ}c>w!)wGf3h?ykx|PYsd4ysQsvu(ubl9tm2A>+> zx>V6<8ws6g{KA6F>f<%S5;Fm2_n(MIE9&DF{sE%h+C=4dH8OVA3Bc%T)R^im@m*0L zr>^mSMBj1Hw(Ere;Fg*!P(We1_Ectjt;cFVeqyyw(|Hky2(f9^}Kn$jj;w#HKPyLXf)Vir2p} z0idI<#5?Pp2O6#j6>U|V+;+yrDR6@d6jmF>_!9*SNxhq|JxWt!@o$4038J?R-39f- z@)Pr*F?pEz6vIAe@Ti4wi=HGc7oR^!s4B<&#Ml)fK<8>rF zPVgBZE+T(``B*JD@Ws0|YC32g^iTNkF2>{3@;___;U52-EQr!aI{IgoO^=N-jJAV^ zfE0Q(Ufoa71#r*z(qMFX@A!q`z^f>pJOZ-vYkd5<5UGCe<6n8AY~kKsN!uUHrPW4K z$1g+GAn?T|vcYFECv&71q8_XyP72WXDJ!ecQLgo7(gMY@_{>VUJsRbs^OY=36&xU* zeh(M@zIF+CHL{~*8D^R7c>jkEu44csAl6UU`Y?|3Q3bFrJhRV}cgMnHe*1#u=}aod z?XITXBO@dgHy5=r2DMtI6I>TW6?|H#x8bmF#rC#59aj4X|AdgJtCux!Y;1_zNK7jG zCQ8t_e?eO4>=hAMs=4LgmpbF&E2sMe{#lV={~R>ehY=d6`U3j){O6>*6-|}Lj`Hg4 z$pPXX+Sr=%p=AO>6l{qzO&Mmk8x2|BAsMzqtQo1fB8m}zV8!qHyDUli4{qjw4hB0v zdV@QHHOC3eYitLhT5+B$INdP_IkP!8Q)>XALiM{#XQmi3ty!)yzhqIpC&fXlgcHe< zT5;!5k&P z%dCkBq*B0vlifn!J;i9a&_J)!7VggXw8-eB)lHeUIsrP)8u#U4``dG*C&M4)0dc@NnIp6t9bJnMkQ5rtu8ByCaEvM;ph3_LOT3l8+q#@eO`U~@=JBMW# zIiuQ4hw9M6+3;D#vLj43w`m^plQye;ks6($C5APtvG&V+eEC&WJE7~lT`l4ihX>?^ zb}*%+`h3)zIQz@v7zGUlMm^0E1M9=qohtLTre!orEso(x@XNB{Lzh><#4%F30^Lr; zvR@8TreN)xE|IYVQ(H&pWoWB|#_|U!gS?Kt?W(=-PXM(wH4GPB1SN;D=0%{9s8uo4 z$c8x21hxC`{f{kJ?A>{tuzKH6oi1)<;}|3nB`U+VqL;jLgQ*mi2A&wA*I*0&v!4-Tc8`7jYbUI0s~Sa_%<4p586KktZ|gTtGrgfz~Z7Z_4c@a6R^ zPNE<)DEz%@fTQ$Aqk}U?p00Un4e?7MT_5i zA}uDlT{oumsAxsj78+{fdIE9`r7<>SCx2pCHhKvBA@W4>is`_ieHM?^0UG&8;t*DOU1Kzx+Pk9BhTR^fmIpS#fL!LzE zl4579Wn1*Wk`t^PiDg@si{p=JV9bdlkVs{y8nY& zfl4c^aWW)dt6fu*oEf2F4J14;ZMp88H`@;L54EFoPM z^Wv}eJ+mC#wkx*>>oCuH8?~boAv>V#Ju5y1`CP>k7LSd7mI2-U#c&pq`LDHU38M7o z?{z_voFK9!#%LwL?C$DkZBJd4=@dba8Aj4Q7yL?h+%z8=r zw#%a9OyYov0CpQ%Nt@V4rPs6^o6@$wf+v1J`=&s;U0=Cnhr*S^() zGP>Wb{^R2e-i-6GP}*Y|iUD!#)>4_zYPpy#TrWCA9eOn7p{pr`6l*homUp}I9K~%= zI)r=PEejI;9(M+U6lB}I!Yj|bqR_*V@C1RqHBT-uZk8)iUK1F~X(^xr%3K>W6odiV zWC#y(oaH4Xng%^*Gu`DiPX>{h%?!`_6_VS>G}U;N%WO6g$jmN>kslIV8?*s?}JSNP^&V zaFB+2+9IELc#^H)N-oSG5RwbGcxh|Q>>uZqs6$H#MZsQW*Rr)!?^M$ux45`VdM|%y zJyZFDnZxrWLus-nDi4J%kS|kKBzms}_#j%16+dGs07gzuRI7-UAjM<)TCL_{L}lOj-t>92T+NT4-UM!f_Y3bd?#9xAp3oq7WQ zOjPg)vx|ovL{k8x_?zC2`@tc3A+e$Oq^)f`L)OpS(;*g1SDrp*WD)N_nN};V+1U;= zC@IsejQ~4lniT)ftn0bDrMQ@PK!top^MAp#LWFy(B_Rf(&lu|w zl^C*Nh;lg{pt}{Z>m`y*h~Nwq6;1w{vbHnsb1)$P)KguVCys?-(k0W*>2P;%xkh7i zjGpI&S!j@VaS^M0Zot$1HK#Ldz!u+4d<n&av`t>R~LhPqbi#@xB#Ams^|? zVu(}X)UHOjK7c@k3TZHi7L}lQc2DE#y}@{Y8bV|{f!=2}y?v3k7N=|)N3N3VGC3%8 zM+YPbHmiQStq)Bz(MY{#C6MvANDvN3(R2y&)8bm!DVin3DL0lniR+`OBZ-4MKV#9M zxbWrkg@$;U6DpN%tGv@-sm9a3WNa8bg$P|K1hPCB24K2gSks^dzXW2A5-VxS0tqplEK|M-_E0=_UkbXv6+zteioSVL4aplY6F3ECMb6<@Ga`wq^Clm zq`Tfw*H6$+)3vph)d)d>`6igaDmuwK>`^JcQcwBXvFI}rr0UdP`cGdymBMxe*Ik>!ScURW*cAP_#m@NZ(x_UoR;TKd#y?*e!rF&! zKx^FI!{ucpNIQYeHId6I*Fx^w4(YzI;1yj3k34uui8H%)dUwm~Ggip^8UOG~b%>Qz z@{{yR=u`1L4{G-DLi!+XOAOEaVE$r1>pb=BV`Hx&cY@9g5X!w#v+jxf$f-wX(NJ1d4pe^Oh|v7vk!ZX3#xC5gA~_PlCWFTJTSarJ`5& zS@^c+?J0f6Bt`-Dok#XpbeV zuO2wz`Pfx}ie;hTyaN?E{<{Ok7rR1`HAJnm_I-KwE~ZMh(v!G{k4*bkHS=e+Af;?f zaA|$!MP??D2l_Gk_stjs$NM~PI82tJzl7?HA46#mZq99y@tfjae`P9 zMvD$+SblNCgR}iA#?W3WMc;-@$!@IQe5_f+Y?<~=ihPdTgN$cuzvs0@*t!3v4_;P^ z^BmTz1u*&IMf2Ka+89qfIm&P*`1=xOCGQJ|9k+h+x3ovij`VHKv`#N)4t~L19Ftaw zgy%u5$~*(PmU=<~EzJnLOnYAPplOMyD9{yE|8pE81SNiJFlUh+-sJ6Uh3kI1#>dhl z$$Jrq_{4hcKc}GZy1X6WOpnLuWMaaLfUnj%W%TNeN;P9kLRMvlo+hl`em*j~elaAs zEI5>EEjK+;ufWRk>BiC&-I5B<3w_ubcGibRp7vyAG4C=;^9|4SO@ipH+3Au6xb z{i(G0oC_F}*SGR|ju;rnRafy0O+pLf23+(;LpA7(h)QC{b6GCg z?QCl@#HQW5(JPHE>0eMJk6eKP}p?q`xJ|m@gmy9Vgf5?6_4~}t>$%1~F zN{N=it@Ttv5Z8*w+AvmmsQT&B{i*c3pVx|KF+XDLOMbJIzz+!S zU18?KYzCh0VCa(ET7nX9F1D!8q;-H4U|K|;l;Z0mo6rHpcWDLvbVK9NrJfX%$7t$$Bgxu$lzKc5+4%TDwLfTvE&yezQ zU4Qsf#iX84N6j6o>wC0{EL| z6Ew%dty>moU~jByLfoSp9kSJarqD>yHl%iEhX@mTC1*I57Q7XdHm6ZPr-S zSE4e|7`9MuTt|b1v9AsFcMeN&RU7QA-gJcE`)=#i@mpFhrXTywlBgrAH|N ztt(;86%Lh#S_Pa+ITCAd8C3)3$uJM)LV@8{KlVD?=b2Ba6kj^tmC#g>ka+}h@NVRy=Hpv&2KuFCgS}lq&~Mv@NI4r zqV+3S)}QRfm5oMO!WT5(ru=dkRO0rXy(E~mU)FNId^Da;(ce#h(*$1Gb1}8zEQIZt zSjceiBNsHQXv2Mx$(_8{jJZzIN!DHkJhW!iHWs{;8hMC*A*%UqfPa10L+)Rs-daxW zzx^|az^X6Iycpq$QP~OH_eWLPQBz_L{^ClGwDpsv&Se`5<&nLkBdNj)R09)i$o@d! z^>K;wD;2oyju}mHVkdCiq-mCtJKECRupok6HnMZ-lSB$YvmTJY;IkS{@s&JJ2#VQ8 z@(`&e@3c5zJIEVu3ENk6dtqu?fbl%%RMu3QT(a!d?k#mWL}eGD214^Qh%FGp-<;58 zZ-mdFPb_BX9izHr&E;-%ur{)hK$`JI@Z)qcfgz;I%RITpm|SsGESJ|Y@Tiy8$kE9t z9^@)*1-%f#GJ9hPH}q%OX0O1m1Sfp73jDaD=0w<-E3%)wIYYlSHJhRiA;aJuo!J$5 zj2%U{UYr7vycro-NO=?*Z(>cX4}Ac_(7cSwvk_bfh6j2pB!LNa1XHV8)*Np_(lT~r zfv7;fvZIi@hO`#bUzJkgS$ULXLm?9p1&Abr%*?dSQxI?irRU!Ti(m~#$SoCi?WWUT z7q<_CPrRaCxt*q+Y^GI8iSGEXTVbD8Oc=v%cU09f9HV4L@PA|MouV^~0yW#16(<$v zk8RtwZQFJ#w(W{-+jhmaZFkN&cl7BVx9_<9wx0LXUTb`F&M_^|VYinDWllVMd zvH`mwv2%+Uu5J6Z)s9NC#Y3shmjb*80s@s)P_aISrM-nAi&=vS&n%n1=d50u|$qlmRQz~x^6ZQ0!*IjUU^4X^c51r~jFzukqip6#uOyqXPZ zE~^GVj9hvMCgEb=%>iC~RQS4F8&^O`u^0~ap+K+`QnJgQGa+U4t;(iuy`jAm4+YlE zUo+g&JDZr^@B$w_k_8eFO@Eu+<6l5NEBwX7Ig;%f?P3=x=`ImDPS@3!Rd80AGmZ_( zGj@}*PcfW3U}t;?6Y1R?6!NW*dc|Tas@45E-v-hnUW7tIF@~!6L?Q$nz^a+NF*OQL z9?A)bKe<<{hxTR8M9+SK3%fVPPlCf?5#<6Id|k>K<^MG+mXPc>8#rbe0(HlI_Py~^ z1#iQhw^aTjr3HUnS<+%7-wzUR0}Zvm+j=(g%tc^|pyLH-#jG&m&jFvy-Xd%)ILniD z#Vv=^JZ&_eGUkm&f?uT?H;r+Kts7I=P$rrND^MRlQ>$^e#kuFH+$SF73)CA)+DLehg!tF=0EWzF_UL&jRVQCqxxJ-0uL52Ek8KcuvKY1-!$w`Pxf zVH>Q&J&vMKH@II-8w?rVnkp;Xfh!m!K}j}HUWXZe%8&;-8-{|a_g2SM*-wRb?mN*c zM(b+`9YW{0kZ~`*ud}wVQbr;0*FKp0a;8E5l1GZ3-Xxzb?Sc{P=0XKqDHhZUdqf&e zd`Dy_Ebq`S^RL_v@m3Yz1Hf-oO|frG$p`CP*wsQEEN4q_7bGAehuO3kSW^fr_n?qV zDQ-{MyWhJ6=XiL>ez@H+53e*8^QmFg}^s_7E(9R^2R zq;O+g1jBxmJJJusgHFzZpWx)q_R<|{KDWXhtNm>`u@+ItS$JpI1J9NAi=?XV=jmW( zbLS-fc)n%aGe8%6m=n*Jm&qqEwYHN*h^mub4H!tUGi5&;KEjZ(wIsJINF2m-%sb-u zetiWde#d)U3#~kuDST>(C!hIq&UNLZoJ}R;25%Y9zofL5Aqks#W@q&~s^gV~J1gnJ zU*Co;JfW+tclXpSRRh0E>^wRYok<~=IP))iTtmPWNNJn4AU0^1Jta;c67~+zmTC0p z9UD4({AtA!MILOHUA$_gisKb^HkSZhJJ&^!DDbNWu<|-60^&VmN?K_9$`K z)H|GuGu;`%{Uxdd9X~`7Cv^BwTbhudN!Nxb3C>Z$DLre%zxW9GC!N?n0rWnBpxMSb2 ze?p9zYxd{3Q_2c>3d!17-H2nj`EuWU>KMPgM=~|wc9|O6LvfDRjhkfKVx5q3&R>@( z2e2n*G6u8~&jDdSwYYjwzODdbVNFFGpbu?M@gNBivi+y$HU%n%6Y}weS&m!$ahKVk zzFR-dBzP}3gyCW)fZHc{DVz}5UxZ-lk7``bcxjAIq!X>z?)3bj1npDwjKDfUSI8Kc z+pWwJTh1g(!>LGrIY?AKrXn;#)ob&*XOpE(3tef<=#)@~29#`ksOlh<4|5Vol{Ukg zi9td{xr&9qk{hDsQ(S&4%eMr+ynKFfGPhE{9wYS!s2H#7bjd?S%<-ah*R004;f@Pb z;6%3jGuT}b0$}w9^@S*lsM>IO3czIk)A&$1`& zt`Wf$md>@te#Mle&@d`)NK55EN)vX|WjI*F;&j$G^&zY$KNG^>E?O`p`D!soCW%F` zBNd_OR&)aZiUfR_*h(h1?Q1w0_& zCAp)rspq3gN;|b-!8~>M36B(8N2*^WPA;>Tl6Y#c9Ty(xFcps?iznPf#o#2$Jh?=k zdUGrfv6XG5g}@tzHvNrp2G1;tY@Y_Isl#0)bM6+R?2$(+OFc&#@3XVi$qPycS;tR; z-Fc`W;vux`BRZ?$OJlp}M9cBR)1Sbk#%+VJeEcq%)OR+yD(iSf#!CY4iQfVrYPU>7 zkT$x{H^LAu{to1S96KY={3-mvHg3!6h-+V@Vz#vOk#q&#b-dx5B^rXSpvYExBZ*qw zNi`tf(U}e3N0+B}d-B!hdS^^r4fPPp_LI<`5w?UT7i#WG_YJqQWd0L7Jk6nmI7guw z<#qZ-{D*y}1>sx0^Pe3`oMaV-<}``MgCS<2!cJugoQ2r7#b4~XtPCP3Bd3CIVV}Na zWN5T&M!;Dy35|j`t4N58u$mxMKym}$XEHTb`t|;Z;$3Ps#7Y}_(rC2`hk3O4!rfDL zUEM=Qv9Fai0qka2p5x`hn~MG$LLYL0QE;xO8hNmCeK4(NBW>=5fqTb~0ydR!<5sf# z!IW!ZrvYz@dw^RNC>pYKcB(m9oYz{97GU5EZ3o@mKKPh=#l4IpBe&TU&B3+WoqtYc zr0$paG$(-M<+Oaf;l}CuUiVcTUwpn+&{a_rQS}Ou*E8BxX~0gKlY6kuFvI29{sZVaG`LKuq{eWX~ zmbz?tGa{++6%ROIT4 z6&Fi4`@-Ycw5od2;nigZRxLF~gQ|t7VsIwIYt(0oO%pZguHhyKPUhy}F`j>@nPO|h zM)Om+oI-laA*%YM4rP+)J?1$Jxx!+^b6^UJ8fZ#nrU^LHizZuJg!<+GioMo>OI#sO z-8s;SdM*aHkji+<0}Gr=jVsxZE{yWqnUJSFgdWA42@W?lM39j4+fGl0BCN@y#U#8z zjMvowFZr1CprWu!2sW^kIlpTT4b}~AeY9&8&p*!{^$4j=g_pVZGmvgQyY&NBZhmf# z$Bah*$~mZRE*KMf0gP})OLO<|d$nog&2D7!ZOA>vxmd)0O$km-Chhf%*z!FMO+KB8 zlMfT7QL%1t4E@n!_ytU4stk3@O6v&?JG1*$JehX`#h)I+mDmqoP@PU}{_@^UZ!9S= z2xl+r+&kbfv`NSBK%ZB}yt>sUq=cLsYM+5#(F%$`EojiN1ymJ_H!>ZeNyXCPfrfV7 z{7ijZaz>V51@j_ZRUT#Fb*RsgY64=X3cPxqRSkGt3rqo}(m+zeUmMzw_Mwo5Xyfyp zuoX)fb$E~;W(iH~+zZ~ryzte=dyYqmJi=LzacR%0&{_pOK%kaQ&cH6=T*9GgPz2CA z2~tGqk%9dzjd6CxEXeYZ?Unn-QJ4+nJeCB08#{nonVGJ#1G_i zamjEy#dFitA_wk(K>~j^J8fkwwq6Z}*8wJksl;rJ?TbUmeJ^(6Kb$-urq~oK31acF z7=Quzdf}f{*5%adRUL=;4DmrV^y!?Vin<+eNCE&KK-l>18`s_CHsw8;T4xJqMmvNc z8j&(JrmF@>T-dS;OB$)DV~PCu+4hf*>0?agSe=>)li_~re8A}L6ul2xCT7OuqQh#2 z7vzkuoD|uTEwR0DEi^X3eIV78f^=OkyXwjOI>i}vRkNk*2vH6LMd{dEIi#%1w}M!Y z!YozbKq}+NNV!7XE@SRG&=RTLe~yP-N4e>aW&l$+an6UiUCh@k<3QK5=y^#jiy8)_ zkmoryDMZ;J?}7t=ghdMC9S@okkygQkkYHY#60ONe`sT z)wWbPYx;MDEwZcdBxR`yFJko;-*|)83GL#HgEK90|6%K~i%t~T;7f@V?cMPgu4Zv)D-vpw2MT*vl!4sI;U?xO>um zmid;yG2BxX*IGw!1~Q`az$%0s#cWmGMC*-E;7R(UbS6RNIa&VW14a0 z=Rt2Dg%YzDmmI`&kY2EM*dRsbe+~)SWnrA_pfl)qD0R)g`~oX{_~8H+|Re zIA&7IWLNbMNB^coxuqMzgF*_`Jm6KP=3*DP>)EaBFZn8(Cp9C;4j~`mA!sHex*&(L zKwbHn{>4FyG3R;SnWq>Nh7H4m?gEN((aE)0^fg32|G zoUp#NK8Ep^&S~c@%P+#VOG~+L03Dix9w9ay=NR-NxF1q0w<3RP7R1?vG$QNdfpN5+ zU|o?{>6&{p-*1go4c4JhRx(6Zh{FW7$LJi*6#2|jFy1KKvuiI#7uUt>dl_(LXIrCQ zS@)|yGC6!#=-wD0G?{skBRhK?1TO#zHKeg=Q(~z%6u22 zdV{zs^dbB1dKkffZy)Zm>^Y>h$9jMkRd_E;YT(UhzjZ&GOujX({MCVqP5R5~XuS)h zz@4cOq{OMOR4Kt52(oivBI%JBC)QF_ny6eSACH{Ei$bQ!K7jgDClSf-LqRAQj z6J=Tl#kDto?8akn%YrL#CRSFmI3M-*3B`97RO{#wQ(n$-Xrd+&D751cmF0@fL%kHq z*Pl`Mg?3Uk&(u9nXUlm@U<6$=^&HLE&7!f6s0XQ9`CTIid+C~q&4%jHIiV?hFpSp# zSeTqqKtZ2=tXL`!nePxvBIfsfnp3l3QrR$ZyNmY*#;ci$X%^PnI6Z(CPUEs0ZSfQ= z@89s>oEn*S5BjI2%J3(^P4D!GpBO~=V5>TJd?==wA=iq2^8*6ilfP^CY49zC z`eoXKxs&HWRH`M;ufI0!)OM9Ce=O?ZS9!+IviVdC_-iLT9Hv-emb1*PXl+GOOCG+1d~31vVMKAfm?eJy zww1e4B~@?8MTM1=WLZ7@C8vki$G^d#piYX;JFmptzv$Nx*TsIH0BH1(_ z??k<%D8-smVgP%vy`(~*D^>>W^GaqqouaPA7*}G4P@Zz+DqHd5;|Y+2NEF^a4mx(iW|;AkBe-dRh7t^ZYSbJaiQBvUVMF%u!EVw$HOn6Ong+v@d? zsfIm~vI79>n9bsfLp~de(d}V<<5&n|?Dem^En!k=!^2p54Y_VuwgPTNo-_~ml$wz% zL3JjS5cH&7H$Szan>8D=2NGVU38wTWn@QA{zrtn@=z~D>0mK-14h8N*%~~Gqhi6S< z{!S5Lp_CfiZPz@u7*Dek(~~gHs{IHENshiRP%A=KOSuXe6iwC+WS}Dy?;BN z*j@u;Wk&cO%pQdKuU*7qtWtsjQ(B3WRPxgS3z_Z*Aaheg5@@@nNCvyu-BRk7+AQx*;Q7d3fja}tv-l{ON zBD_ZmcMc3?qqgpUUN?w#I8QsyQP){{p@N19UeCS)RVJ9#0NQ*MQ-77i3l5{24w+L- zsy!Pqt2O8Tqz#lF&TdB2Iwmyl2}$P_(Zb_arzb=T!yr9L2BUhRr@n_hrHG;BeP8MY zcH!9&rw^@R;H*b_VvjyAt_>{6(v%~G1~%+EDK|iX^JkQ{G+oHyiVV8fiAR59#v(Za(ur{4}bM~7;kqJDJ>P?EUIj{hwsH=tRkn7AFw8R+lA}X@{RTJ=O zzA|dq$ED#9vBtuy<_wwX>;)H%(aPOUH4;N`Iw>A!y#6DD9^&|A z)E54r&(_i0QP|e&rV-vylkk=YtH5qy2Y2mRn98P7s+B{KuM^($xI^+4(Q*x1UsbS` zMu{G~+BnGp4l8YRgGp$*&@hv;7fINOwctT{#pCAr65w_^u8{>U>P00N_d=;cKINH4 zfy1P#Cra%*+Pe4O7K?1=lL_JZ25Bx@T;IdonoD=AlX2r>x3(XI@ue|7U*li0h9>s2 zH=s_{II>ONhGPhbmtQD0k|M(OZ&;28UZtYO-AJ(>jpt8=MxTj@01DdmbA>D!_q*zB zq&LI}P8q)DVv08jN5WT;2FkYF-FEOO0CKEh)4MqUAxK&c$ULJ z^CxlB7lKb}aOwX6=VW8}Ul_;#Kb%udQ%ObcKi$1QV%z@{&dJ33U+P{4`X6?ZjfMXI z+THs@h5jGiy=*_+=>G@KDM0rh`FJ@xMLH!q<^LxmZ~SBO{V&YZ#NEi+z~)EmYii;8 zWB0Xlar_bdntRxro7nz@<*n$ff70@{{~eb%a5S;CHZgUkv;U8iqlKCI&+)&C^Y+#* zPIM0csReejaR2Y@yoI&#f03jvbgpzBbe{ijqVzxc(f^$&W&B^h_J0$l96!+N|0GK3 z+1UOkVEVrirHu6K^#8X+X)CyVrVR?Mbbujv1Zo7zMpr8rsvG$bG(0f!#^z>`{6++t zTj-u`QLB{$RZ`;9z@pG zY%2fcOsjd1gQO+*wFHNBo=T9ud$PZXPKWf_y#X+GjrXcPI$a&deUrO4{ld>+|uYUI_K2uO2HS z1Mun^_G+8PS~}(3UOBWryl17ir~2mB@!K1n$U z{U6g8GhclaF)1&oG)!xYdn&OMJ<~jsltv~r$kjEFOMLw#y;})&P7s+q7dNBVhPEYF zd~~kZ9$C{A*B_*Gp5CS2Y_7J!*&bwE@}mqiSpKVTG5`^XjEW8&oeUf31PG`-L%sIH zG4IM0;e+M_PRQxzt`>3?bTZEZsEc~ae-;51p*Efg5y-(A#M9$L>t-7T1{=Hg-#i!y zJw%4qTKn+Lu6D`N@Fqc zPaf-=1{DRg4TL*w#RFKnQ@av~m6eqih>eY`_q@mTKZw$(eLXjm%SnEqEx!KXrPG?Y z?C%4h%Un=F$d?)#5yYf6exOS}VZWL2F-s61qj$gJ_iL(eKk9Fj!*9ul?`ZMyvEieZ ztS5xv@7RserTO7YIXH5sZ2VaYc_0C^zAHbKCV#)EYLMA~^J7nbMfHe8C(L1M=|Y%O zgHIvpk5hnF67}(UH1l$6Xok9%Ko-9pte&H(;d%JdUm#jvYxJ{Pm6hK_f$-_!EY6Ys z`Tss>Km^TBdVEPPrTL3{LZY)1Vf7DA%nw39E?FK1p>Om9Ws4|gAK89fYm=_{P!BLb z83pLQzYfCgD(bYYfqrW+i4mcMCGOLW*~NvT_5S^Mh91ZLz4)!-0ScbK#ZOy2{DTfN zjq-ss`+@n%@6bU*j^rkM2jr7uXu3$%vLr$O_S?6Xr)|K%PFD}KiR%6SqtWKu7xN9W zk`Khpz2mp1Z*=&A@>RoSPN0#O(Zf2*hrx#G)D$FY09hBrcuSXsn-Te1(*^Gg#>xIE zbrXW#YiI$fLz^Ps{RMtk{|%Dgu74u>wm91}#jmr*pZTJP-D#IcKKgB< z9rAPzu$k^LnB{8|%A7Q`GDZmT{|d?Lwx+qv>iu>P1(9V%l=8~-6FdxhYX;5u_O1Vv z^T?`S$PWff7kvJ#vHU=xYs7wHmEHNieT8)iT5|y7!VLU23C(^7 z^wqTZb?66*o|zlJd7*z)A;3XeL*vf*v1FlRMI~l7Y#&lVbkqut6F;6@7EgR%!@P}J8ao;3{^Qg1^gI2nnupVA7 zuJoE2g0uNi0@`6{Sx%b>0RD*$p6Kqa(UnRnn=4U@Go-I<*DZhA?Ntr1x^N%wk13=} z-Ta#FuN99!qB)SMH2E~R7|2PRPTHn;-jHlwk%I$(UKn0KubL|G{jG7OJMT8Lid+in zZh)4$NV{8Q9>pfG^;!nVB&~5c{96!BY&@q_a`S`pi?HD)o?_$2Q`c8g1q`fGcW=a^ z6z8wo5pR30h8?W%7^?btgpL<`4SbtU%;@^n$li8*#wtQGKm#pFWd!5v#!NYa>sjg| zxc`%v0YEoW;ZZXegmd~mad4Spz&3a$(O?_2)wH&SwkIJ)@20Ul&p(wc^9WC@Of3pi z+d*!~*zUl56uJAdQ#pBS8O^Egz3q|0oR#w4@@_0HIN~SWsF@2wEqXL)IwNg_rB|RZ zaV1n#QF~B+k9J%1Zaw_%ECVA>JP7E2T62NG zC}!sBMa1|P<@rF$Qehi)u@QR4IQ)34)=-Jf2UXx z19`Sk7+pQ`DLmQB(<}mp2Z}=;i{+bFcaaC-eXrkoo5)xYpwz#&Uev2vEvC5^qCS7q zm$mF;_HFn(Z8J*rqu<7)U|c`Xuw77iCMbw3e=Wv;J%AL*?>JriWB}WWq;GkIZ$kKp z8R&Ls+ZrSFXOe?NRpVA^U^ag;*A|cS6B$k*z}ehji=w%Z>49u|IiFEtl^3(s%Q`o> zTOl5@X7SG~1qJO;H)LadIGz9TczXFn&(i8I^JP=Z{;S-7YbuLBz8Se7;bA`=C=JdJ zbId7m2!}SLJ>*=cDJrugOfDHxj%`VRl-WwsKd-}&VtjS?2$Fq5h%lBTV-iLz()!Ei zMa{r~)zE^iy;hm6oB2pCqC|Zg`f4ix-c7a1HwDtmJXJ$=wEt#j<2V1&&ccc~YoMG^ z?bb%dJrM@uN0*78od9858%zVq!G&Kv?EFz^yeSwxX?|rsP(GF80|E zKOndQna3IV1fy|*AEo{Bgth3(UV66)DqvU5%{k+Kd}x?7b|bRMezHh-QF8OkBmGah zX`5Xt`lE((nOYdU#;UrS~yfuLI7O4uqC2K9WxRhv;{5GNCjE7 z6u#w9;47U>aB4-9!%m$As58hPPrFLArZZ>G*rMNHPlKJ73C~qlDV~UGDzO$l(=q1_ zbn*tZ{Smy}c&iZ2y}~hF8!fkua6mGC9F!h`HT9cON_c7ePr&O;1V)kKA8}`O%+n7_)Eq9UDpbcG9 zbaAy}PR>`RM};9~HYwMtNT*gC7VS^>T{YKo(UR9NPPIyVS?`dZnD5Uo=CBCtXQ{B!h6GomMcfqdzU18G+LoNyN z5(F=KYmDfbqi#xCpIHX3G^)jpaUY%Zm%g|C89{Xn4@??3vEl;>AYlkL4ZftOUD6Y} z5w|s2IcbfLFrpqSAoc8iSE@&*`*^6JIiEvqzUb|Taq3w)JiWfZ_(|vb)H^E4#onEl zEi~e;NN9|>kz+BS1Nvh-!rr@QSF^sNmOnivnmtQjA`qnL20J*a=~!Mokiycw*n`>X zw;jAySqUMHRmvQw-J&lolNTnVCd24GC-f&(S)N~iHHonfhzfpnjB~NW_hfpSkaEqM zoO@tL_Xf$XQ-Z{uhD9I#=3&fSr%TXHNF*F$KA;AmW?$r!=~4>6qR7ImZf02%Ch;Qt z`^EIRLFpYLaT~gQYu;zhags$=EH^DORlat)ZlURbFB z&Do4gxb2K%gg$t=*xGTmZOO!hXjgTD*Q8B6$hGpSMyiM^Y*_-gAIlIvTC!33scZwZ z@sw2l00mN9UVQpxWPM#taxN83Po<`i)6Y#g zgB7=7zu7B3mIK^u7@J>D!o6_HZLyn*c{XEOjIW(g&KiOXD|lf5Th0d6ZfJ)8B4DBa zXXCv;Gi_X$;Ru!JcV^Jq{XH;=w zhtQLIeJ-W`oA2y*&RqaFueX))H7S=@(_bXV>vZ5m=>YqYGE8@K)-ojDoxF=JNQr&QZh&2znX|UZh2JizF@XL$ZKwH zCmir%gtCeq@jDM@7G9X_t39es>CS~)SiHHer&7+HR z_pvbtC43h{-c5!3qd@hwE!E+8a|g^N&&+}2+lAfK!isFFM7uM@0SUo7BQn_)%A~0q z(>OjI`suPq6DJ+pW?r(llQg|T?3Rr~>(-DpO|?&=vqzKA*z;)SLnT%N{k}f-1~u7* zmB{$PkiF&Y;q@ZX1!S4>@`e2m@Z0f@$x&TCq9TATm5HeSs*Au0oYJ91F`9;Ul(?H1 zlZ7?PsX}2&lgyarG|D{byJ036H#Rb6L!Zd9Ct>b9YU*moXD^e{rzh)GoBz5^@n4h- z1;RZ60S7IBlfk!}dYGY&fL$rvyIGW|m4ZeWV*4^o3!Tr|qN7`ma{~J18PrDsBI3NE zX<6jyV?j9No;jYhu)ePC4v#$BFHe}tn8(ACjmAW2WE?dE9$e}aM&gXT)b}OW1NV-( z6}$lOdFH22_sg+gYX*_ZnmxKUbEuT2;>*5zemRsu@at;aYZgUnktS|^`7{r#BRcL1 zdn;=4x2z``nRU2W4oRT{Rz|p*1a~5MZ(U(eeG2D>Y%yB1qAxU)Z2s3GX_KaGno&U$ zq6<~J-E@}N2GrB}r(y_W?pgVNa-h(AL_QvwrA;MqrXF=*LBx-mI#`ODScy!F|{@==-%RdfXKqFXDwcJF~Pb zW1x07PO7L(-2+#MS|$*;6w9i#Yk_Oodiu>ouzfR6-b%{}UdA{rPxMUJQ6YHGa{}vX zpXr+%!v6NG^KV(;60Jd-zjJA=+&3=j%kJ1Me2AWxqW`!y%*UNoh*1!TB572>NRYx( zvA8cboz7dURYvVDR2mJsjV)fc$Boq-NjeHEPS{7M(e65P>f znn_L3Oy_803rX=bTD=K7+vw5tV37)<2~=zgBXtLtemnNah7Kam0OA2Pty>2jv5=KC znta;=5!2p+ITC$-6+JUXTtGI`AyJX?t#p0V;9eVPKA-d(GP;{S2J#U?KPeU8>#x1N9EbTxXU57_6JAn@JURRyIvks?3Ero~i zW%OPB1l#}=mB04YZX+eZGv6=^>CCK9M2~Gx5a0Lw4D;>>wS+bo7^a6V8os;MjE^7k zK=+Xl^jAn5O(9#VBK(~@g|06%=&`q1P1(EMG2JkT1Z;id`foCPMh>m6c0P@);(+{8 zBbOLBnNJ%%gZY7>hUZi^*wsMcJKx$+V2*L$Zd@&JxxCupUdvE!op9y`;i-hj^ZM0>Xlo+=UB)k@C5*VE5pulDI;<4# zCvFg1dK~cf;9ZMaxpXAh4jwy-nx;HF?5Oz^rJ4=VeD9uVv$!okX8Lmi5M%?}Ag%3?c=s{bdq65=qS^ ztT=1#$q@&qfKgYt!2c|~-M+Ljp&HTUzdm>-^zp!Y(Cs@89K)g62B9z3eBt~tI=}0z zVI#N6-y^;xba#DRC2Xdy5XPsUI9 z0eE@1rvr{7G+m>ivxcNGyotFmf)pS*V1>$T-07M!lY&VvCh6i$id!2*L zB#lTvPgF1Vn%lvxOe8l1eU~(!m%!UdY-$JAl9_>X<-%YcnDq9XVa-u}a@4f<;vv&D zX#$StIOqj~YTNKB01>Mtrj#n}sKc^Ck;sReq22Vinff_F)p>yFc*=phVst8PBx+ zDMp<}q&i-}2yD7w?f6|2r%|sa0SaWa*WB`z0E(=r_w+BzNCiuKWnV&9xx>i=nJYAb zhrTqDi3VUB4~Jb97_21J0qX$*pmvfDi|j}&8TO(>V2aszL`dst8k}JL5t?2en{6;6j zk;O-VU`=kqE~kRL*udu`D&o+yt!k&;1~App_BD}q$i9_k8`!kr_Dw;?8-21E^GsnH zQdW5wjccY8A0$$}Y0FHJAF((|nf1{=tj-*j-BwB*e&dsI@ zvK}qfG0Kq3jZ6xf^p+DeWSk1nvvgYHbVpd=f$0#+Idc-)cV;{Y7b0yOybWw(J#&$> z%K5SuA;jCX#!3_mRFqaqp5Nf%3bAx>yOdg{^9mI&%%}7bPo*_HLUF*ZinWZT(ZD>o zFJi?UE?K_%kXbCNw{5s4InH&10|c#d{nnz&V-3R(a|SKr;&UV}T6_2vEb!0P)w3+@ zGv@S3{XzxOR_!;J)Y$FHd6v8)Nx*GZ%df6Tm7TwC$IM{jHRYKR)r!lm(LyS`DB3xy zWvluoT8}!QhPTigNZGdr^s3%$on>itha1~e-Q&;*8$K(YeaYPX#v5Rk^>PLCU;h9O@<5NbM<$SFuO82u_O)9icxODgFH%&Rc!C8&?VW^f=tS7SkEG9H_-c;k76uUQ^eTDn^lq*JbFzM@ckwcn)rU#D`{F2lJFwtNS%KTeMoP%YpQFbM~(h+R=&@@ySe*jUt?q zT26-HRD@+|};$vaI(&IeM&(-k)Js1BvttMkkqtyskNtQ^%IdtuEEN+ex#MA*< zrISnx9=2+}%*)M;Tp%neL(7P?5p~GuqqKgQC8MUH z?W^ZT3m&&To7&A56U8fK+UZH8j))xaLYrhmWc0+=Ijnn}eB|NowfP~he$7@ihO{^e z#BpmCmZVRXh-7BDH;~6kYl3T$VvXf?8dE#lQ>80)JNIrE$j4Y;a%xKlD409)8LWiU zX6mYw7iYlaqb%I-_Qthxun%-K*I5@eyY|Ld-I6)_Js4lypoEq zXtf0~aHZk*H#n^CoLPuy6^g4ng6n>h!nRt|rDt0|N%UI&!jw%CjB=)v2*&ZoDHB0W1B7Jo(=5Hh zHI}q;+@*Ws*)phI^KE>n?UP<#b~%+t$*M~>Y;tuoU{)uMMwR%IFOx~0u>9FEF)vKO zE21*DY1HnhS3fsYsX}_U#3N6RCuF5uAw>pdSutycc6KC&zFNg*C|)HebTS z{2{#X`$dq~#4hv{*}Z+u_EV{RrRp}aQ~4|Ud`6)p^6eT3gd<3Fd4|lMf|)46-X;fN z6dA<2<#Xf03RSF`F<>DMKz3|wp;22%>v$SjT@&uVo=b&|L{)^TE?5hnVb!?qCodXn z5F5#|0CR8H2~R%)J5Ib}^T4gE)B?{6#TA7p+f^kpnaUyceSI)GmV6v3aWKfqL^|I1 z6H6ZFn2g_p(QRPG`NlFl1vVgD9Mw-APV(a9$@cu1yGG{Y#h~p|n`x#ih-{X4+O`V< z+*N903g|?|VX9^L;CrwkP~f&JKVZ#WZ!PEV^B;ukpn zR&;bi(g@Cmi#>k16)6Bz^z<@?)UlzhDr`qmGZFqPPZfB3&*Z+(QY4w%*z>#^HBFdP zH;2ttdl^#N{yns>N>hKpWT32<(EUuZvR&@Dy*O^*2(m%o7zP*sL~lu+bzvOYK14<8 zu~Cc{mN)%Lj|$2xk?04dV{7I1!%(UuB9@oFT1kM#n7}G_Gr~>x1*TdI@?o&Mx<-wh z>`85Ss4J4P$umPRFY0SYi~%HxY-c|WeMN;=&f}})8 zVoa}o`j&h6C;CWT!DzLcXV@|;V*R#~N*fx?ptP@7zw%mfP&^($|M#KGnu1`SJ@LRO z?f;vyG40H4i%Q6gl#Kmqk1a>xT6g?M5aFJ4!I(Zz1a>c6O<5%cLjgHPk7A||u#iUf zsIgk`q;zMkud-$W1A(Vx?@2YIzG9vd=Rtc&p18c|y()i{I>>8uZ@x3xN5)^uePl51 z=a$dx@?e`_{9|7zt9j-l29-{9wm&Kb{dv(d4&U0AE;aBiDc|us7iqOA9o&ir z$SIe9A&M96k%(6{q+^e$)*`07aZNp+^DlLDEra$hz2)7|S|xTL52k3R*p6!w-svRv znuimZLVnka;lN^G(*t>5ZXBREQSdW@d7FMUtl`I|g~UKiHpNpr zA7QEAT=tp}ABLy^j&VEGFPqj@iv?m4cfs7UkqLVgK822RN))6g{S<{}XviFF*h_|o zM4228#cPF0(z&wGW2%%Z1;*-@=ZU1md{4u6l6(r_IlJIy{cH|1}R0}thK9zhAoExgY9u-oAlvEe6u!0E zc&Zt=s(Z;Lg2c4M7IdXf9J4Oo$FaB%o;=)nXsapX4USUcZw5IsVEZrP30%J(1s4N} zKSk|{TBy2NP7mX;^6g&u+)W>))={cnjmN!d<$kS=izJ`g zNOFM%OD)&7tvrBB$L?p2yH|(fd59btoifV~<9wNxO3lH4(URnDrmA~e3Nbylb? z+0srRg%)6xq|d6f|0OEyR_)nVnzD(IUVMSuq8~yfl_0G4^*PaH@(bpBARlr5gUiHB zktuN^>_B@gtOt9IG8ZQHhO+uUW_X4n6mKKH(T251;dEyr$C7bIZ`rVXSPp9F(Es%nF?ZD~R9bRVpb0XuU;MLadGwqzJ zsa-SRFG)qA%X9H+F2Ar<&>pWckI^WOk7HMpke5%!sQB2-C}t-aEyaX_n+oCn?$C); z6ug=A&|&?`B$OB`t$jq%sSd6?Q`y2DyAKSt;#Fv6*=N9v4hP+ZxOCt%^)r<1SHE=W zXecH@cpzn`8!)^{BuTL~ps@Cq-YrbW7doaR6wy2aKOwfiN8^LhsC9op+4rOQ4!)a% zck6OEh>lI&Voh+yN;-C{Ue-aj+!Zr-0hE;l+`4GgaT0C5O=s)QZQ`1it%&P=8#fa` z`xS_3$rj}TO`lC_u*2zS4IIl3+(Rr$>%aVYg$$u@k1X?6Aq&5kg;&o^zvQ4BDo~IE z$;>Pbt+2+&3?{(I47`%U3J!%91jxUj!km3$`S@10M=@eY8 z`>)t*)t30IWxGwsecU6+CDR3HJ?QokM+|~n!K<{^*Lh4SGl#A1L0z+It_5BvV)6Cz z_1?~1LQoe2jBne95Vn&*(Ahx@Yb zO_Nk-Q)-K=GX?-B0oY(Jip(rvLG1!hb`aw?3(^xQNz|X`{WT%Uq-ZHlN_%Pxr5L9e z5ire~Kq*@o_y~1=-Cr}~n#MqU6I95L93drtdQ1hdDMpuIE|Ga_ahEyshVo23Tv;8?Y4Gp@}+NiQ}vs> zT{0}wGP9vDm`=l7l6|6JcXY_Ai+17@pP99u`k$|nV#cfb-{E!Q#J}!bhY}I%cig+ zWD!cy2H<-zR!t~GTb>hI0VM8Cs~We&8D=CO029G};ARuzINFNs5>iNa^K^FAk$moj z0~Xf=j)f51+TOA5<|G$pS&j2NwykD22F^J~I>gwrE?QSqtsg`QW z>ddgn=()vx#PIR5;mwH7EkDa!(|m7_drGDDjy&F!w8!!p0TVJu#74`JI%L5*Fd~f2 z+0TZ6S=)X%hmEHNQ-XP5wu4OGR>4TLGh|WurjRae%=Q~ATN@yDZ)=h=Ro1FCwm&Re zV30Jay&&vr)f%U()$3!f6m6Y^TA~+>hV`%{g4BP+cJx0TcYDv3_tK`s;?>J5Hg5?G zTq(0QQph6_`sx8L!$N;E!+xAZA3j7r-a-s1waz}g1r?W%9jc7sM08^_e+8u<92#Wt*RLIJs{8B6zdGl^Cptq#$an zrGBT&vf|QEXsp#Es(1RRvVNq6@ z@91lEKTSs6G>~<`4oFTc>9q@XvS@Yd)O)E{Hj)qKvX1Y+M0s*_O91VEFd*RrEIFB> zJ(qo_jf;<)*?^&9gRpnzzp(-i<=Lhb{W-NrLO&C`vfc#G{;ZQD2YbCRgW(V1LseW#?^c9whf0oZ(6ApP&Kh@Z@R zd>aFENN#ROy8javAtt6Osv`2^a;2!wK>y!^5sV!8G#sq-_zVmTtoUqfEdMVU@k2@c zm{jT8iW&a{9pJP6V_+q0>|khY?TAmq!14b9BWM_YIusp^tyJ)tf9Cyf&cPRnO5gDhoq@igg@dKO!#|Nd zox#tV#{ZiAujt?7e>$vwc1maLYW6eJ+R;qklFroLSpR30e{&dS)+T1wW{z%jX4XG_ z4#tL#W;WJzmc|Ya|GsW%V`^roZ>eu>ME5^KYa7S^gf{kcR{FLMjy7~wX4XFxhLw}0 zqnWLx8=bYWss29;{d;#dw#L>5PCqC653}*loAesK}*@0_NolJ?l0+dcM7Ej=ILA z?zk*!x@NYHD<3m%?$Oi2D|+dpZDF7>$zZ|!kparzikBGy;Kd-pfy5PV?=uK&#a?t% z!?%I1!bJ3DA-^MX&mcnfz*8}iMR!gOX8~~NhykcU0Vc?OjZygVeTl(|zv&2v6#;X> z9)I@&yz%?Og29X^+*TND-2NmusAB79`0xM)W(ET4xw)y=ZJz?5Aa5Y;f`|Y=ipHH5&>`GdZJ#J`HIS6=mt-Z7-$ zJNEGleh|QC1`Ghq|6BXY=BY*y{NdWDGyw_h5LRR#;SZWG6A;8Nbn_EHyKZ&{0A!eV zkwC&abV1%ltZ;ro9EiZ}EFnNl%3%O<{obB^{VZ;TD|Tx52>vfj`8`#Peu|0${c?0< z$mn7HGVjNd;F~}$glHVP+hdc>S#-R{@9iKaAQ*=)7Ldsa?SAa2n;UOCAn{9y`x>Wifdo8YEoE<52Aly*fU?lI-k2*OU zc7WqkP`HQhZ9kvt(q26P=-ohI_I_>nKjq&_WWBb>d=~wO9)zBN&G`OLy#TW{KQ3j~ zNC%(;xp6Pwvp(B3fy*>jPBeydd`RD1&gZDZXghSYFz_iU$wZ^d3b^=GWWeAbrYJ<@ zdp2mf--YG{SquQLd{c-rr@Am6-(5a=JzMZ#9}UTX!T1{N{3m>vEx-c&GJ$kA-!1b# zB_G=$UlrrulKbDAvB7AFuUym*TwgwcdE_97-zogFm1xnqK3>p$peNtO8vWm{DtNF$ zu6bWvU;^o|O#*v4+P>r`@isnE7GlAfH^2i#KHQt& z>-lrP!x1hH4}QCP=|R+g;P@kL+|PI|&B>sz(q)JX8Ue`3%93Y83dh9W(EsaG<YEp=%i54dViKxdQlJbX*Trq+#(=|*3$)$-^{2l{HI%TpS}cXIjS83!qR9MMb^{d z6`y-2c|)(=diRmP((dE=n`aaebR91_r;n5m7mF^2FVSMcj9;!8iki|Bc{F}|t!PP| z9)O_oKbk2TVx|MTUml4ClCMzrHY8N{dZ0-@EgFP0!9LFP|0I$-Sg-OY<`k`;o|&Sr zCa-Y!jdN$|HYw!BV4HbBLU=G2c9lAwi$oZ<<5zK71nP@A{Pw5-cc~~mD<&K|gZToO ziH84Jim#HgLa3H4+>u{+X$@Cu!ELwHni_~gSENf1FwGyl10`C7Dq~zP{nhLUx@T?F z`z!f?0eY+hav%q+JiBgX)@y3lZi}ovv7MskJ6IYT3-E8xhCCR{aVKjDNp4HqpKXpJ zM~-?p%2%e=5b-!G$rpYZOMhL!yAO-HKD2b0#;PG?!-1;O7dm1qHo-#m!q)SR#ldk7 z&g8cCxbu$e(!Q(5yv@x+mDe1M50sKH(wMtnmST`esMs){{)JQ(G{X5hEpWOtD+hPy zvjL55qEqBo#R>iH`hVb2Vu3_O4#<nQ(?0rp|5!MUCE}-sH@xgC*MfX4&yVQ&c&Mta zj$Iz3m|UUd-(uLrV=Kx^p^CitrjKbr>!K40P^x1I4<<@AKUGT!qOHE^re_Mby))ff zE~K8@0ZCkNoZk&i; zs&JNE4_|%!8$LpgSaK*{x2n`JUUY7!8o|0#LUcA3^KpZOeCDp#=WIjUWMKc>)nz{t zars4YA_6m2!`ho%c43Vi560NZxluy1jo;66G*961!JQqBn2cxaDmgh+o$Ufsy|nli<;QX5)FX{?jNjo!25g&P^?&iQ`P;dsKR0jO zo`KD{TKiZaYDPq=X!v~J39z#G?^14^m5^M?tdkKvf}8+v5mKu*ql#A|U4}0>w5V+K z%3h%my-sEMHLlR>X}SH>xV_T2wld$mURgmcQ0<=JAmr0J(E3~RflgDP+cZX-tEm?a zIxG)0!p9V!rs5;Unsz1sQVZwrmr!rfloW{fq_^$&>w|quAX?~J$VmWZp%tl3HA72v z=`2$WH?kb!P|m3JS45CCZziOP2g}B5T{KNTzr@k#RnUBw+xO}MFC~K*OQ2=PiMw1c zKe(x^ZaC?^XxDw=kOW4P(>79zhd`Keg585|e^A29R@g&oF?_&M_okQIwduqlbd^=} zwX}Qm87<{l{^CS_z^h<%va($#!-A)J;(5?yPTb19S>HUd*EQ~YffDGjPARp}9zu2^ zWSD&amu^f?73!y>nc!+e_*n=Zy5fe)>B0eq%I-#qdDlEoD%X>Al?ncLL8jx5@z(j@ zqL!2w*mKh+w?dtwFY9MPF(T9Hc*i<$tpQ5*!?#2S&)UY? z3~Z;f7x6QafENqcdOqDk(~Ue?3X^#UUOHEo%2>pNE4gs$HsQ}RKL)8+Mp+w+?5>WH zk;p&WOnU>x!Pw(wT+yk@?VK`hzrRa5gAL(*Ubo!Z?yjW_f_R0_fG$kXvh|WZ8k??( z6KEjo?6IrN8fHDW#Bw)SY@Oh}du;C~8Sq0{U;IttyU;}LuLStJ!x^qi-gz;MQh)Q< z*Sd-h9Ae}6waVhG1ozkxrb^RxLQ|@#&&_AtWdGrgWWTtqYn|3#@vcP$By9qYQ<;?@ zkJ@cw1vWa8w0<)^%I*$Vwlw(Lelw;Upu(RT2MThArW&Btv7oq+#zDbIo8RD3HK#-C z(vo_8QjUyfjFe9tnO72)WWg{-t-NU#-!525uyHHslmW_HHM?mgOst7ascF5a(%>f0 zmNsJ$c)~a&5C{pyH!+*3?TvQ6kf(K}-{%|jx0YsDA&=X`i>Oi4(S=)~4?sp49z z@2N8XhS1c|EC0#=E5$HClQ>CvCLv9yTP$Pg$6r_XT?1ZY0nv;Hw5c-Y0em*goxr2D zSU`T-0kYiz^(jcQ&OywVuJ*&zHdU}=u=twco>oW|Ta)*af8_9{(3))XdHBrA*ncJDpPL!9~*#p?y58Z7*yDjIFRZA`E+zpd%Kd~FkbMid0U60f7 zQQm#ulJIk|KIY!N_u21RhX^Bw#u;sS?2wva=rX}R+042LxUP0tO(c{*Ea1AM&%{%T?m$e#QI8(<&2(>4(g6R>wJYvdAYKM1=RH)nN-4iWp z^Nf^Ljm1rZ;j)LA_LBlnkzo^nth}w!9UA#iIOD41wf{DwA)-yliNNnT;_SkTRRY;G zyp#7@vj?s_we3SEF`kYishyX`gDDHQcQ!%1QI49+ALC^?`jsm;u#QH0+2JXdk|1IA zm0Mx1L@=BfnoC*TaTPNhrB5xK$*D42qtYe+rHT)h;4cP&# zhemFEkuy_u{4}{b)G#aS7wz~pi4novmcWSDuKk z(wmctlCs*!r#0-sAsvu5MnIV@f6}p26{DCwAteobVDp>kYZ9}o;tjf$rZrGBgK?x2 zE;6xPmMN#&Z5vjpJDL7$N6gybTOI6XAIK-T$u*DrykYtnKUwdlk6dP}X(d_nA~}Y* z4u^)d1jRWmaT>|9%uAi9pZF0D4D_Eo@#j=t?SCodxCp7l1vuwZ+?dzTTRb+ImnR2@;>;+SsjN3&X(Va%gm_uuq5*H_L(2xIL^( z2F&dkHTWCB?5!xSPQLUNva1p4#z)B7+iFCWf9`E^b(@bcF}O(e>1&9b}7t+Y<+;TkyxnTmzB0sg37@5T1tq zK}uOIwtPZjIvbce zmyey4%FySH{qqsWVRr$ZB^rCT?~A*-UP+pxDaditIM6p;?aa*0?h!lc;niK%;@!W# ze?Sg@PzP8)qU-imcnIzk=;3CKN%B?2>%H|d-5@h5W9KAbr%M||(U~&bpOXp7&v!<1 z7IG5@y1b@DNgOuJ*wJ)w)almAy;EzM2B+0!v9HNMWMG(8TXC#OBfAt_^~3R^!a{%O-!Lq_3_(qHRG^aPO=Z3?UHlI;FE#vW4>0y z;hqhrp}@Q0C-0&gV3}g)Z{{}AK6R926Tc>cBF@tQUR4Ef4+ zmW?AkpTvP}Bz5v=h(_Oj3=xJ}qJk`mZ!TN51g^OhO0M*gafVe)mw%_9e5}FD3wA~O z_0c`X$SG|rN-9p3qPsMafoTPuLcUU6c?!a=D{809Qb8|jGwBES#Jw(OX{flT^Ef{Z z*|4$1D;$mXf4055ckOsS;BHqGA&j1AxmIQ6j$U*as*f#maURUSt~k>HRUPe_=n|Gt zh&Iw8Z|oQIiAuL68Br$8?7rA&kp^>T8MHD9Rjl8@Qus9?bv;cdF0t7(JA`WmvZMjF zcD~GU@Y0}2E?PJk1taJ1x;`AuF{+NjA;3?5oP+V^GiP+0bWt8@@?RWNc>|ROW=DI5 zG$OS}>uoNRoOS!Z#37hmj?0!=8J2Ge4t$yQOSa&JT0xLF9oLZJ%gnYxetr})Yk{IX z7aL#;m?v>`55q+u_B8V&KaH26aP&`b{AyQ` znM5_cvFv7`?A&wgE;KhF`AXW_w^5etsGOWv6aIWle)XBWkV3)GinkLZm^qMr6IdyS zbIjl$zopc4iE6RHNfv$HC@nc8gDZ%9>JT^c`Lq5$v zs1~CxUrtXiThae32-B#fQYvlVM*guO)ALxfBvH2K9&pSnX|kX?h{fNuUCg_8!AGpQ z%7tZ1hwHo#!&jT|_E)7;@?O{JD8CE*YCfiAe@r^Q3~ETTYooj?IB1565-FmC8z7%3 zA`>rjN1|KL@Td6P5l8saT`cjbli#0|?tF$L0f&4M`_W658g;-4*rI2snnA1S_zSWD zQZUt>uTX?j(5zdxxQhK6d!z2g@V|a-aC{+KF6v&E!%~$u)#_1%+I2TkI6_}`WD8U( z?kO$usl)#H&rJJr88^R(Gl1}pkG0#ie0~MV3b)p&jMdZf-gc4En@9J)jKm>i z)pdbs7*h}U4tIpq^tZ2IR{R|eJJe$AVxl+I?B8IH8au-!)PBzCQNh9@izCc2+?%o5 zD_CoXb$rB9^LBH(`H{rALSX+Ufi-g+ZvsPj($B%=bEN&00AwV&HlDE(9f#EDVH+hE zE5w5CXYyO+Ej~bqpjQEk4-i=)i8mq4o>iYB)WP^8&0`ga`jML`C5&@m2B1+9F^QS# zpvzPEdLe~2K)$?M__;W3B6eAg3z`LFKuNIUp1&Nm-I^lXrknUlKLn42>Gdb@$O zsprb3m;IdWd8`E=ZwN^N3031>rqIh3njU{IDWI3i6idk5!uq%|s0K98n!nBoo;BR! z`rbk$4FPY45#Ia8p$@+d$mi&VvR4spY^9wl5`lKt!pa;ZmuZ5MA*tynLyp_Aar z4Nj(F)?9dn3HBiv@4KT&KW~h)3-zmf1QYKlGG056sSX@lhe%%9hG>{Kvn!}Ay!GGL z$3GKRWcQw{t_I9KvS)>^zpvaI$~s1{Gb-WXPQ`c8MJsqG@Noz2-@36PCzFx{(?YKTso12NhRo_INcy1ras4Yfh>e1Bn!16N5 zcHq<`MMXyw84f?2huA$7!h2}@t3Iz$kK0r4NL!xLWn`a8&KNPRVqY6)YB*1sx=Gi< zzI*?t=Q#M(e~XAgOAG!yWTr#su(3q*pft2WNY~u_V2GJ4j7oUP5Zd{?HYp!2OJYTe zxSe&1;#_o{x5}tSf$PP}yL)$c>Gk0fX}nkC$!|^L*?t-}>gy|=`U;CIia7%JVy%CC zuCf6V?-EVgi$7Sf2~qzN_xC0TX@Y5utiyVYfx~%`hoFU>h@D>uLvhTeG#48p^J$$p`GPNPKdy{tEFmw_s&(1?m zXiL0^D7U;#94>!};yGu__yuU5Jz?^a;Y$eyx_s@JBTEzVZp`rY9k7yF)4MbZRa}(v zzBKi&;N*1)!CkeFtU96vc?~)XD;nKrEa=r{o7Bfq%}Gm6RGyq$DCu_HBh~TgUTPw7)AZ5sZsz3XrCX$JN?VhAb)LPqi(*`wdGKE0O47tw?5pi3%pxei zm3^b1&m6+f!5<~{H8~x!jm@Zh@#C8RRz@{pcwma(^nzD%ucPCDO2fqIr&PLhQusxD z{Aus{`nTGnzsvMves{uNDGHagx^KgV!A9CBLbsF;66fo*H_4Wml@0(M3cKffR?3}8 z=V%_*cVT0Qa?3K9eL?B?3%BR*(97{m(dE~#oL=s||4wCP`7hGh|50TX6c-Vb|Ch@8 zQxxvMt3Jp4qp>ox<1;Y*sI6@5tp7h~tSpTGTaEQ!vf}?L4gMnp{;$#?>wh`l|04~u zvj435A8C-CfrH^ct^XQI3#e;sN+H6k;I~E^kpa*BsXz$KNY&-7FS7_ZR2UUfb{8)t|Ktr@Z@$ z00UL{<+kYYvZ1_5k2v0D*%=LBxfipn(1U{tDmrfgNJNiGI~`^!yokxqu-8@WPf7 zwq%V^i^Hg4Ye%{@05b4s{9+Ok{?9eGzWzjmppZcQ0PFmPKZIoi5%>v!E7&gq0_v{jTgUYaPQWLC~P#kUYPJk&=Vnecr;aT^qUU--k*wY2ePIg!j=HQ zn&f+MU(nW3j==5w0O-Adkp8{!so==a&~|`&tiQMwSAb5~1@wF}o4(j@fWCOKeBpa$ zdlo)%KDiK(pH%7LLHxNm0rmfoPlD;eIQarNDmA^tU5V)cz=M5Vf;;l}GTid3;x7XJ z39@^su*c_D7Jvg7WPWk+0FQ-Qgb3Ra<;U@EA-~~*IZ9O4(<5muAOZ;%hX1UV#W({3 z)Q`rYxiPJOqHo2TyuS`&K?ZC7+5|yAB-R5D;4HvD8~-Vmg`e+3j|Gm1PfAWgOG^pr z%MOfxg|F$ieF`%x6WbFh*rPA?Yb#sEmdux>7$THy5!3&b=uQ|wn*g8?3UcrAH7EF6 z2LS>CuvZQqQ4h4vuRru_EZUD?*=IR*w}XEZ(8M483IY(s=lko^#4isG9oB*Wd;e?2 z6BPPUNm+{7?aT4QCL^D417~N9j1YV$0TBrp96~%CkeIj-VCy^UHyZe72Xvp0!IJ*6 zt?y!vIm5_9O}O?qDZuge-VV@*OLd7Yv;_gcw2zoIEjcN8KX>3)PT800=r`VgkLhbq z+=ma8f(Qruhw;(J#Md_iFisxqNe>Qvp$Gv3&}^`w5x~2ys^KW!oVif1T;l$>#!?)A zBs{VnD>~ynMA#iv_*Y*ZxN<2MNF|hrzvZ{w(N9HbO>+^>dU=2UZ^MBT zD5ID*K6rGUFJphbgZu6G@?L)18=EYMh%jJZT3UYQIQ(Fl{!}*)NPQ59;MVUUBVPbM z=;*;f0D2yG;L2TE;hqsnLLm5F;l9l;Xeh&X;D|36!>#WqeSDB3*IaOq$zIFvC@2UB zAdpI5e2+k2_*=Z%+!veGLp}g~=p7&s0c`x`(QjXoui)8$u|>APum zos8L?kjW?TYvj5!9o8b2sS=+6>_Ct*qiOM{adVLBReZLD(y3}Gu{lzcV?X)FlM3=+ zXTbw2>~XWHibF@_>kbd$>Qd_^udm&a*;mMM0oYU1khk^llD=-au92!erOrB1_q+L}O>+URZ8{{3g7cQ` zq74C2SJIcxZ#0msJM?b6sM`jo@n7{d3^fCIuH=r{?d_^KNU_QaLBhPtKClenWutj| zB{pwBnGzIPW(^gXg(R&3-j0^z-w&f*)q#X-gA)V@11Mz z4bPtYo)m$(fCtCwd4MGMCySf3IK&OuD4x+xGVHpz%&7V3NN-OeKBg%fYotSfjP)(ZO9%yq z6$?d~Wt=>B#dTtK$a@WcOkk@9o|rPwiQcEZV|>bNK)ijeGHqKjBM+hhWYTVKS4-f` zZQzo?%DW$X^eQFl$P~)J0*Y39%1EDZJYKn`3ug^Zrw2^Xaxnvu&82MZ0xyg~pw zqYP=5K9ctT38^-@`7ox>3Q((H-=W{tJ*)fqs zMaJ28qcIxJJ2CMmG9wZ+(0{e}HzE(}zed8zOISBlanzft%dXZ<0WX+BStX%5G0mh6 zXmo9Vs(EPEROr)9Y>!0uO6pE~8wS7o+rH7Fh*sdwMgG<$epN913=*3K(s^c|DW>~4 zo<{+buzKbI=APdddy63XSJA3YaTN)qGz%#~+M3IX4BaL^3b4P(3`V+Lmb$biUk-!G&-eH-WQ6&>LCRL!mdd>(+FtaK zS&V~v2dp;u9=KY6lO;k9HY+Z=xn%wZDGQt32HTuZW{kCjsXGunaDy?K+{a=jS9AJ@ zva6P=Rd7Wx5zj+l_3|%0yQQH0m7@sdVv!6PPbKJacTOF&CIR!aoMQ$-LL=ulF~_Ct zG5dzA)9MA|x`up4-}p#F&JWAzbRtg2-Fpk&@MDN$?YXBW9k+AY+M9=XcSnoQW|JDK z4y6;3fpu!bF%4EMQAHv&V;{G=sf=icuE_|T7Cek8{vo!CI(xh7`SL2W_7k8Kti)B)hLqVmI-*&y_4*68|KZ$FcajS=GSqqK< zLdm_w6yx*vsC`R?0__$Vof=jVEUYsjtV&fPWu!KLdIFJwMUw4w6){Yip&z`tGykm-@9@*mOL4rj=1(F zS9*%~T4WMS#${slnh-adZS7nD*B!&6h>LYC)rO5B^yroDY808Z9 ze<242MFXg4we*iXyHE~XQ*h&t8+W;?VhYI@F9^ty^#I0WMJOV4GqII@t?zYxncHB= z>S~p!ls7$GViOEnxo4>`lrr#JbmKk0RX0UasPBoin-k&^3(*87?+eF#bY~^Hg=E|> zX0Y8O+x(VMk zAJX{?;g`&F;LGwn=Y`Dcty7bi-=axP8BbxIB{@piPLFmvF!f5?+lveW4zOrEu%2( zMyzp1j_`U5SHS5b@w7noyRgVDvuGgdR5lERG2{6_p$?oC>(Bqgym=xBix@fq)t3T*d+F@R!~~ zi>=s~)A}9E(fJ*H1dGC&GR^{^uVd<%?<1i_l z^XMS_C9D?`PXRqrGO`v@bmGRQOLZo0V)%f5_cufPgcsL_D-j3kt5d~1=NEYhJsRg6 z6riy2NEBbz_809s3O9&2qEdw>uTb}u<_AXF?9<&q_BX1~JAX|julvMGJVI9M9VAvy(mCMp9_Y^ad2bnQm!)57n z2dx7SUU!Fnx_{f8B}!j^dsP#AQjw?2fy^YmfE=pLaX(=aX>pDYI7*pduPN~Ll zw^jH(3kjH8L7cjgnbZRKt4g;Hvvj#S7`O3)lYG@Nze)^598p?%l=snb+gQQ&1ZA%- zRsKEEr_f*G=#x4Yoa#YwQ_|?S3qBwEZ49lMV)lFDw=ufdBaH(z177Dj;E6s)*-^rM z`=D$#h5n?b2@&N;4HAu&ooh?YB0-z{MWPfvrpouZ5D^DdOV_ey@}x1`=l=WuG3r1=_E|iv0da#oFU1 z1(|osrFza;5kJmG^q7O+!L7x0#;L6qx7k1jZdum$#Ok?)4Rtm2P02djU3_XQI^Lq{ z>&FqKUjb+Ux71bmqf#%z)M>b8&H18y6)LM-rq^V_2o$VTwcS+tMQ;;R`!>!C0Xxb=VSHdXxK?|KJ{t zMB*4O_+*@2(ek#N=AJNrC5Wx!Mf0CahR#tcM&eqWiRmOZSXpFfK2lq<&N#Q+6|dw7 zu!g0{Rg;7o%@|M)QW)ABy+)4RXFs`c%PxP`+FOxZCMgE5o|z*n)gkIYF!}5vc&fRu z1++eLi_y~9oJGp{7%B%(T2;PAp*2|0C4V*bJ<-oi)gV)jWE5*Mm$xWvF?(BA$`$ma zb9-qcNtacAG!?(w37P9(YO1OX7o%*@rW-c&pDx*$8~I#DPj;Z*UP(L;19>W9h1H3t{KxNY$AV3I^=)8WIKxj-<0 z(|7!lKq}%ba=-Bp26eZ)G|zvzc`X>rk-ebMjy41iHN0=u)l`e;WZs50F;W)W>i zWVJviS71mj_%-xI2&29TKA|oze_aKJtNaR-j}j5b}`qA`r;oe(HR=vKt!f{KPP z{-dn*f|6$}X^OX)&3oqK<+JL;hgHRD0*NAAwpH?NVwpkLn2cEJ9mZW;JRH;OgnO1U z40a~Mfz%NCcb4ulUJv|oPaCEygjKo+h*~Fd;&m;@KJvj8CPV?%s`XsRulzF%BM0~(@r&qh@G?`bjOe)WQwgz+;spk}4_qm3OaAJ| zY1}q8ULA<0!#oG7poF=1i-BJ*VdNe*BM(nJiWnHZ&aYyv_n#P@*eS%q)Y=8_p-^0D z{P$9Xj4BdYH6_u1cgrJKMs~CpVQNiM!OUjreT1i-$&X4)VY<1P6C4q!lqq5N#2D7y z2cIh}^Vv=_;oN11>kS9OwM46081;f^X zT_%y+8SNg$B4s6QZ*2f4@| z-4uBmr@EH#8JRvEc6ar3!8uVV<^wQ&EerQ!G|QzT@rWxeKFYfu>GU9AJpqb9%)Kg| zL*XF!FYQwZuvj0u_8;~a$bRe@;ZlQub6v%8kWP0qT-THLn4mTtNv@>&3c+2cLVAwh zZb&pu5*N&fvUy{v9lwlTh2;Epdrfo2E@pZVeeVW(*#!cN_omRybMK)gu*Wr#I;znr zt`=LzB1a*9`D}a`JH9rr9^-v=(>UqZg@82Pl!DZipD{V_7|*1x?@&33lwjMCG&h(s zjz4}}Hhm(adbZ3cc{*sihFCsBwl3dXVrQ6VMI9y^T2@mIZF+Ji*UsG%DHG!v_42{| z7AFJZ%TRH%%tlL@+X(sY)isxRwF**4L$P8!;W;1q^}@Yz9CDEWfY%~m-H-O6LB0@! zvTAs?-?{cvbmuv|jLDld1ayoV9#p2Q`n-1rGccNmZWLD?uIdE7mR%S7CVgJWa>e1b zAE|3WrNPOyyInnYWkGHVzJO9<8+8ft0Df%reLpq%Y08F*9QL~0yBbFrALE`CIk*$z z`q9fqI&nOKR}=peRENB}wKueQfBi(yTy;wteQ}KMX-n)Lql;_ko?xK7{V$QQhIG$H zyGdz}n-9R&rp!0UcYQ_L+t?G)6vnm4eqeGR9OA8Ja!wNO1D>5VzrV*qrCO|bYtB>i z7SECGTGmJdmY!mB7`3XuHr)a!Fh8ylwpHjNiWb(W`u;ZG~;pnyWt$V0FA5mUd1v0*&0 zD3Roi@}t2cE^nex9d+9%_CMtK=lkN z;mzE3;)%i|p=GOkN2}9S6Fk{%Ix_T$8)q3T5@2Ccmm`3GcghoVt+ebCdERbK;5f$t z5p=0?k4)6IAI_>}1c%5R@&a7A#P*x!A%7gt4y2l3IMqR&a^muNL(*ugrz#_3-i_fs z$Ybk~r`6fxb7A^;tCQyYa4XAJ!&-$v0AizLi;`{zrS3p|h%8EW7|VZ)uI9Rd3$YRZ1a6&2$5 zJ^qqBOO?k~O284Mqfu#m7rS7Z=uw}CXH5-vYp=0Bu3=K3u`GGp#-?e*UIFwJr(4-v z+!v9+;RCh_O-e=dCUBHPQmeAgcJ_IBpt}Z2|Ko-T5FhEobVepQ5BJ0xJ3dD&3Y)DK zmSa7p?3@bJs54yk1LrJxgGD6nHg~V}1m$)w*(P%ZI~|DtPBQmR9rlFbI(`KDGKpFj z-||9W;on%CLv<|h1}Wll!RLsn7Y>_U6(Q ztTsXZmSeuQ8}^)I#U6bkmd)5(q0*ZXxx|Ns*Y$T3wK6(>dCClh-4iuaSn3k*M<6|9 zkp<-_Q$RO`QLZz2A!sx+B=%Uf?w%o%7esG}BWO}K6bpF??8;OV_26yJXVgD3%ljy$ z*c&qT<0rGdFh_VKf+>*Ri4vyR5nnbRSMD40B-67PhHIxhcGi;#L0-E>fZh3KO9ye{ zF;6yj&<00?25R4m!#dmH>ycbeic=0RdCQ8AC9AWU_Qcf;bqcd#VYFduEiYa8%g`%- zNZ@rBcg4VRg$q|J-Xzo-C_o4<2p%lI5q!Eyv2yot;gUv`DNGGl;sfH(zObAEsP@f2UFmdJzxCAf zlL32yTZxLgExuGELvbj4c5)3w#wnLDLcdsvSLy*`9}YifMO1$X1r zejR6Z)9`OqQrnV*d3)Tyo`2H&s7k_fMCR0N^cpF$XhTmluiYpFaAg(7(6q(f4rhF= zXWU*Z79ZISxwHDPA>D>ywGQ50N3qS|-UF|_O5q+;nguYaBo{k+F>ndFZ5}MT$7l;)A7DY_ z4K~S~yH`o$e%*>ny8X23D>6cb$dNMFu^N-P8j0V z0Bl}8V1iFpWeEbnAPJ!R8`YK20PND$P0ck(H2OZiLw}GpIL8exW^a;l%kQ!H0rr73 z#t_DkG+LYdv@?1K5=;>U%A!w191GSq?15h@5>AOI6B&a#T9a33naV9 z7N#%Hnf8G&DN8QUR~xTT5FHHmrnFtW`G?kKrMASWpeJV`7WiTo35Lu z-v&wG#he`CjW0>+a1$c3A=_-x4rjE&;M`+LszxWNN_@4E^|zw`=!#t9Q06>`*k;}G zmmXp<4}gy1LTjhh1Mh=6_RN zN6uHKA=12W)*rs;eT`Qu1VX5k=$!f;>5v^%>u{k_uHm)p^mNV?xL= zw^`*hhn4h0LDgMHc93AEov!`Fc4UyKxFKQ=tK!WcEY#gUqoWmB50mDFSHvwGNn+`E zTQB_5${{I?Mf9F>to&$l-;O7IGch`;(4DR8q*(>DBJlx-odfAe1X*nVk1KtfN-n;@ ztQr})(U_b!-6V~siPgZmpkJkV?nV$fo679!dUc0saFHz@!P>PltjN@OBu<_XRa-fG zcYM<<(1(Yqz5-LJi9Z+xNR%K*@G3Kax&2F-7Bp;o#SXEYaTh1uLrCi4#iiOSf-gKW zD-3hI9(IVYb&)Je_G_LBuLpRjC@zw0dT{9)HX7!B?}K*7Yjvz)N<{JBCl6&i^S(d? z!Pw5k0>_P%e--$Z{3Ybx!hzRKu3IX8Z*gbN6wbpJ4w8(3!*X5nrc|)?X@3Cz4IY7D z-*+ct9C7}@$OYK@U1va1NURYxz%&y0gWk69M3XJ8L%v^fbzDi|&yRO7fqye4}7)#Z^k&6L_SxghsAu*B7;pMwzyj zgp6{dJ93r{*U2m~0Q?%5WcwJ?VO^SL5pYk(s%|vre)lXS=B)jAMjiX-Zqyd~Q5I-e z8f5`uRniS_kO;YkDEqXNq(5ADx+c!?QAus={H$_P`-cbf4{mf+w?l|xTkvQuQbsIk z^C%hp2NTIkPC#K6Gb}mK*6-J~b56`=x^t>siIsTSXEXaqZ@XG{?R1oDwr`24QzMbE z7r51ZL%BzO%rDnrLy z7Werd?wd$CmeoJM0>Go;&M*AFlhGIRl}Vl}0&9q+721Wxlho}H9Hu5qeTx{rL*B~o zc!Z$Yhd1VlRvUBZiz7^#L;%D!nS{R)IddX!qA@XKF5a0Om`5rDKb0Tk4W}V55nnBb z3g&(xs zDclKjKwS)SQwx?lOIEYnuMNb9Dl-5x^*>$**XrS2gylGbJN`@;c9G;}6kKgSJ%qOD z&+C?o=J#t&D9fQcFdp_FdJn^a91C#@pAFAaZX3z?geSxKzW{y|7_p5J9eqaK6shj3C?FYQ=g{|!Wgl)0@C#>oJg>5Ox ziwLVp{&#Ha{}vib_seZDGyl3V*qDFa80`N)a9d3O_t?Baw9 zbn(BbD*i``=>IZO{8#nFe^*WXSBmUEn6dv#k+J=!;r^c#83P^T?{NN4ij1Cxj{f(S z|3~*fV`TKK48PWq|7ibj!$jm8s9fg8yf5?t?q&eY^>3r;^Q!I3;bpX>Td@e=*b8`f{#GqaYJYTtXL`9 zwY{&my<=bmR!vKD`!;~E-vHwSqfQkfAi|uM-1PVeQ?OT8}H9NZZp7y~7Tr6e+ zK*hzSdFR~%By>KO;Zrd1@b#~YNNU^q2rC|L{>=;}pWPgK@DY%E&}eIAyJetn>*!#_ z++b()&!hr1I|aPvL!gA9g#cg`=5{oaWo$H8*@Gn)JvZzMLB5b9O#{rkRHDIV6R1WMK8W=^$O$ zpW;f{SM)V|?+R(3D00PF!&J5%(op&RLZegbx{EH91WZ0+osU!J~O_I)7z zfsDx)f4%2~4e=r=mjp2+JUUaB_az?&nQ+|9DzC{y% zR``EqCq8SIl;~K2+t!{;;~M4 zpfNuD%yrSGl}&w6?|<^7`;<@axSaaTB-OHlrhU~}R$^xY7?6@0$OgW+e92$~*d)JH z{mQ;x9Z~_MBA@Y7T+n(wqPhW~W0CstXp<9wd;i{toYL+C(S>~pasiNp{UH86k>c-o z`oMH!pMseHByT>a+~NH`VHp^`g`a=AMCHFiwhKzX1TO(do_-K#Jdh83La}-c@Beg} z7{BZ6yRM}9TkdGQ;z4qL;30B$_<`wo9(W zXU{`v`uBnWG{1*(&7YtfrM55VoeKLOm4F?_r&qM@lG8WR@0r?+c8;!+tNW9x$8N}< zJziep$tmthX@uls{$fx5WoCY>mnA~HEe!9dhI*gVp2*hVh4rLfhYb}-_yeC-{fP)o zR?WEZ2Ygp12XX8i`% zhCv>Se>jdksM&dac`lu=%qiYvL$Yg%ZYp|CV3JF={h=WAxHymz6H`;cAP9>z@!Q(u z?}CQL&4R(3Z~t6BU4Zfq_XH(&ASg$if9%P**=#9~4(8^-!P_n#iTZB9w=!StMG|~5 z!ndq{i(WO0fGbw~I;GN?qDz6JuMCFHq_jn}E(J!4)ER}~ECe6%1Vb!6@!2;05r%H5 za#mQkbI##tEkabpWoWK-c5+G1DM{jb5MupA&oup#GFc!?bjEpOZ=*lx>EWz$E;8e( z;^et_;sd5~${qLGx@inScwsP(;ehiI%}Cd;WnlhBA_MBQtC-cGQmvn}qc#`(aUzBI z{9&!Ggd8N$vy-H^dzoxFN&A4uy2LR&^iA^g%zyGn7;yr=*oLr9={+XFrW!P#Ud*F} zFeQSXrimOwOup$v>=Q_x=z@$6pv#X!AO@b?zwLlLB|m=Awd$l#RH@QCgGE9bpt?yH!V&uQ z-b5bNR<1G5O6S0akB7Bjxxh+w6KOM>sts5-{VV3$5ppO3)+9Db2XSJVQ*_HK zfM}G<`pV3xhDBz)PFKUtQM9h%CkJh5tW_5IA(?H~?2Kt0Zr;&hWRP$@YINyYS`)Ad z=i4uJUNM9zd}iE~%uDaFG~y(p>5tIv&s3#!Ai8AnIfcriD>gQjG3_^L=&-RB%Ax2# z0pVfMBbAcUJl0!<3H1g!+Cpu6xWZ4z zpF(p9c)K$NwM~p|KKRCdn0fpB=HqxtwViirbLE8o{%@0}?24WHDS?_+=7XK_R=D+gKONm4?H z(`M60;hz-DbH0+SB`7XqVu%xD)UulIdzMB_?d|eZ z)Z>gunBsK~gJ z#eKF5l0#s)fI|(guvphbzhj#=B3|`!AC@Z(|2atZ)aU(`Em6JAY$l_~_Tqxo9~=)| zxi1JeGXL(TuZ-9~ZsEtBH?9Y=wOfb2_nU8ae6*64?ZW1xk3m%J1}SeLJzIf6L3pt! zjwln*W#Reqw3jr;RRty`1-FTeP3J8~!mv1iMR%p+Qis_}`o4+o)?>ZAk4-O)IvCo{ zsYwTV7sDK7+sqLiacRk?2c%4Sxy&n^{l@wnar`ag=EB5}e$5kN z&bW#Id&9Jr6;!sU0ZR&NNN-0J;F}FDiJp5-itdwJ*bmqIu|wCVWE1pXcrljgFxBE< z*WR)WGuVFxD;!*uwJ6HIBNix9qKug~(j}PQ=WnG+x)j0&skH}rd1;u5E(UEAP6yq= zit$zRk^GATMjA0$!;n*`z z7EUCwMDkai08n}}gp8pR%TeczF63}Q2(XXa?NiSl)S}6Oi*h-F_!{|&ck@b-+i*)o zPJX2JZs|9rT~pUQrstA~{-6SKcLWF}q)KTep!gCeTav1**#uy&99Yz;A{Lbb8)Gz1 z&lj`Ji42*&H|jFaC`3v#&|-A1`}C12XRh|mPj!scEu%7HqYIJzqijf~K+Z+`SKV zWWDQ=Sia5>)q$f++5FG*;fR;m(BJYcFX5N@k9BA`$~4L~GMws7|1~97E%3wcjuxGT zwTLNi=ZnrP7eGIwWw2Wktd)76TNwQ1fT4xHBOa?1aJHZFH#Z)7`JgY15z9hoqFU}XM9piuDUG@W%Vwi&Co!o0Q9>M`V$-bs0N#T9SWL@r*U8q z#WmaDTHGlRaYyB0gJ`$kr3XcG-Qk2(rjtqY7K*;T<@Pge;TIKx+H%~+TQXoHnrR?q zNJDFE1|jQkx=PawNdWFg_1PtEa8o>58(8`Kia93B@FvxhA~GN0j#cD&HM9GK6!dZp z)G<6-mey`Qtqk`&h%Ai7DOaAK++)fay|23Wk5l(Vy}NHl6;PQRp7W`cI--(rLW!h8 z&|_H~GX+AZ_cT<8bq@hp+;^e4-s6wNE(Z_TzL5snwhH6{Y1%~vt#bi8S3h!t$W**Y zwZlC0i%l#MzhQ#Di+L2Invh@F;T()eGSDkqZ4#;l6T~?rGvcrHQ#Oz7*o>hXG1U*B zU@Rs%lo6YpH_J`pK>s3E{IiC%$T8C$X!OM48NftM<-SA9>m~JS6H>WzWI2%U)$vZJ z7$k3#1tjvNq`9Y}UEb5uYj$=&R>C}O{8~lft@K~1TGG?oUd!c;vG?RQ(dzkAI5+LP z&HXX4m2i>58{H%uxGR{!l!I@^O=Kt ziLV_>5X1BFsenAazPy}FvvmTI-rHOmr;eEUdkIGtGFea?iAGht>CcNMhHkzafCUUQ zQTh7YJKzhHJOV1FE_=kGU;1lJb2~ox;wEUehl!&sFNDF3qAu-tK< z*mMh9b7dWqaX!%$Crj&b%tdOHTHCI!Elx_Hkh1rRpTLEe5KD5E*`SQsKc^Z1hqIbf zk&v#npEi+yVSietlgIP9kV`D-{Rd0(j}W{98Nb;yXdtfl!%3h`eVKF3OK#&|U(Y82AETjO9_ zrU*u}Pi^T;S+O`BNQbK8eNJaw6;=(XdE)4(PrxLp)p;#Pw#h;T^Mpi2t}l|=Y}E(g zLczwo2+GSsG=qY8=jjO#=oBHh7EKKYX$u!9Te{v0?XqJkJj@U`3hFL)`Iq#-4zVxCqUYA=`I1_`gj%_SmiPs5mj#N*=RJ=1n7& zk}#bQ?U`oFRTv+;z8QPNM!J6F#uHSGVKgM=5JK3y9p@T$wX#hQSz9bFrQ`ctDa!3B zWt(DM&2wI1y3lr78MWIZHCrR1`)n{J$|Ay%w^BOY$Y)ynL*6H8GA|qlSVUt*vpL0J zuX19Qn9?hgv0RNka~h9x6SvaQ6Wk{h3`j^CIBC*0)bc4nhC&K_nSsCxhwJ+IlE>5o z=!Zk(*~e^)22!%-F7=N}GgXt*i2Z>EXV&BrwnQK#CC*>XuHT&Oet_8%=iAqDoxTU&mU zxq14^o1wI?XT-#GuBi?85Bf`vXNljD*UlmovDoLdj}dF?VpVxQ_^-3>;PF#4ihv4L zBFZ#&?zOK-??QUXw~g+vz0@@5*Q7@^($K%g=P*a>g41iM&HZdc2fp$`KhAN7nNigB>}@oliQpW=xZ}sN$`OI zhsEF|usEU3z(B$Tqy|>?6MX0N1176XP|Gc;Wzzdzg4PgEb1;v`by)JwnUV+#P;&Av z2t(bvd7JXMCS2x?C0svD!a0+4H%ALy#=FCS{q8$4E7pIkGvFA^bD7Tq0*8*=ls9qxBdZHCtM0X||4!rvX$YsDxWgc<{xQ0Dt3;!mHI{zK!I|s7 zCbUBn=Xo<_WD_c??xn3{L4ilsTC*;gwDMC~rXo{xwpBvlf_g228$PEUQS52jAzvwb z;kON-OXqTPHY3y5yL)j zCflnPNP7B#kxvu{X5%;G;8}DKmzpVJqI464V}-eiRKXb|Z~l$^k26G`-Qj1?9&_@Z zA3yO&)3qU4DZ6VY7pdN$dK9-GKivZi;qsJVQL zkCdFdxsh@0;A?KAJU76W@H*tQ+yp~$7uZ7U<$g#+`c{hV#6wBR@&6lx~7%>6SB%(gxS;)vW`Ojnqn)5 z(u-t=SMM3D3r5Z+20ZP>S6zlStNK$t@)VB0J=a?5K4VuMF`#<|16% zrj;DbAV6T2LofNzze1+A6p(P_CBIMGJZiVMVChhICWFrume_S`+mbvFhI6#c{>^Wp z*6qbE=f99T%f0xAU&$#`eqy5k%6-!HT@S#v;7Ag{MhnhW#qePt#Q{ zW%5g%QcFNx993_73E>ze=kio{3kGaBKB}S_Z2yGhehy0P4spjN>dC~>($=%S_M)&BZH!URKBn)j%Xy}U2uF}3~P2~q)7+%stahZg6q^5 zrc3xaZnIuFY#AjG{=A$}Fu6ale;BEc4q{$mO5H^Hwpb5`ftgT+%4F+XO79lE{k(deKP3mGK&HOzY+*_O2h$$)h<^Nt;53QYjbbp15W$q3msPU(1GxR+qu3%kge zNO%jM<Q2o`vvDpVqnLkL}u!Eca_M+Nd$*6jm6L_ZMg6`PJtX=kqzV|@$)-VZ1_XF@ac%INJ(J_LA}9$ zwpeTd6vM4qRk%F!n;|G4KjIjB*Vj1lJW`MYzQUy#t%P#V6lZX2CQs72`~>X6ht4Fk*L;P z-ZA6{p<|fPg46s5r%kGovQBTBi3tpSs6wu#cO%~BBJPYzwcIO$72q6lv)kq?2^gf# zP8xhL`EpQ!`LbDx_oGpX;Ecq}kV?wG)1h)W?yr46&?7q#@7hAio9zXXQkc=gL1Wmo zp9NgpJOvo?=`;%*46z1@a@7Ln5+rwxXV4Ux99$T@ATqT1RA*;?TuuVKj>wgE7SDi+ z0v0&%UI$rP;6TcGQGYo!9W}QW?;GbInWwEsCj`-LmexebFqCBq4Y7UXt>Wn38V1at zZxL#d`c^<1>-z_=Xk8{)k^DhmpRx3PmxaXXo9=5y_No-uP4u1T z$z5TeEcdI9+VDEA5VvDVOLKBfhPpgbe0IJ1m{Wl^rXB^6gp#w_<1gv1w3LxY5IJ>n zLI4o)I7p?kZa|p-?kxxMODUe^J4D!$kc^*EsCs=GliHCU+pl(itmW@ZtjelPoFB;T6LpMTE@>CBFtUZvqXIf~7@>6};dd%CdPa}^m0_+f!XSp)pJ9pqts3V*Wj~Z_H-NKgda1h@5OIy@PqJW=^ z-@YpmVy*pM1#%OM8Qv&u(%u4s?zEY@d4_JHRwS{sJr-(}%q3ecle?PpH9cYSkpaAH z_|=3Rs4z$cB@*VNc$@gfI*h+ILt7x{cq_!iM0_Xi?VeCuCUS9sg|?5=6Lj6x9QN3+ z7J#RZZv{Iu@mg<=*xA#96>FwW(6vfHO?>EjRhmm;{LrM@)X!(#DMn6aVaIzZ`;a{x zv1$J#5o6)pbFRy$1Sm7AKQ{Efs#&m)QubSm7-U{ff9wtDhc4KBW?3g_q6cyRm~|tA z@v7L(&`%q3VX|7rE$*!SGK?UxPG#l08Kw^VEne_{)%a`@CqA1NLH7den6*vMX(BtP zAyArTVqoY)RcQV>x^F*)?(WJI+X(a5gCZUEFr*-vsFQ~-*p{}OiaSmD=z=|*I3kv= z4B8KVRW4`2$4ccVgiW2~(MfYA1oZ3J<_}go;CU&M_mLFXC8HYV>3o}I zSjm$l_|TR*><9TwxuSb65HwXk)awi`vwxMb_{o#wQm*jlEyp-6ti$fS`r~58+{#qA ztodn^=qI@M`)u|^zzeF0$Z$dLgUdLnBga(c$CQf)IDT=I>tFdd&gCid*Jn7rBe2A1 z2)~0x!fb_~RhkJ=4h<(GB}L@V|S28TqlU0i$iV%RxVSGr;n5acf&?z&xl330~7 zO!bXo4i9Ovfb_ILxHmRVdoS5Wp9OrWeHrhwrr?rSINSp8K1QIvjPG7TO|rj-Hcj|G z`oR-*N=3+4pm~Tsq6ZLKfQP!`LuV!rP;Pfm!Tvy`2C{RyUl+@q0DomROd30vQIT~r zCh6fpW4I?`1f8cw;fs7`K)jys#&bN`pk!QC?CZL9KMzKCKLjr;GK3+4BbX@mux%Jg zeIP-1&Q-k162~vpvmQvF;K^%-DOg=)H12=w16l^&A~)Qb>B#21hE_|21P!-%a@KZ?6yCut79 zXGjljAlO-^va22Li1(BAy*Gs`5RU3MUG7~REbkK9TqFi+$5)@y3md68KV_aBCjZv? znm^GBV6;spNG#p#;gU*!+$i*?s5(j|XdbtlF5w)tM7Kr3d9Fa! zY}H~OFK>3ohx3-GvYXqK3_QNxmhoJ_$7wi_T&JC|z0B1X30e*IHr;#&E6f#{H&*K@ zBW0KS9vr^zsihWlju*o5r(EBNUeD)FSQ7A{`VQ5mvZ@!Lo$yX|AWU=um=z9V-y@ct z+m9uix&p1l8*quZlBniRIaMb$P~g}_-HvD&9Nv#RQ0p1YE&9o9eHbRUCgh-ySr;D% z#lm7^iS_QUAP80k-}oWPUGWPXF%<9lVTr+-kJ%x<2q#yHXxNC3F>RcqLZi zC% z`l*sws$!EV(!#=}3u-amk6NCr%rY)VZ`HtLa}k7D}0>X7THa zhfL=N7=Ox5tJ;fgt7mWk8)!J`906o0Y5A7(H#E5GF0A^eAx>A(_j;+$4TK#YAntnq z5!aFQ^yes8!>MZ(76j3utq=JYz0v3-UHbrVReNS8Ds-%+%4x&9 zKPhkG{eDC?sJl8GUaOSJH;32v$&4MND?fnjJIFhMkhqD31+gmaA2)K)dlCk6_S4J( z!(ksTytw0IVb*~)3w{}^`AO>@sP;?cFsN^KD|fhvO)V`8)i|lh(r*`CN_M@=gO;pl z1a7AmV0?7R@j9tZ2Bp-!!5DdA1Bi6PrjE6kBY6N~=oO9A9D;FgH^v7Mt~yT6Yr-KJLB1kWtwkoCu3ic%pm+Zl15=~0oBVo&L&(CKcIb%Nvk z_vKusnoYOy38Qrkhmh7d{o-1V_;)B|TF0`e4>w@J&knCCg($W&a-(xniSWqNCA-oG zP0Z?e=^>9*4)XI%vu*(JFP|dzA#})d;8?9W)?N9P5#%X z!G4`M`NJYx7&pa9XPra^%plU)jw(5w8({k~Wrpq@Wmsok#r1y|H2SenB^sdPQ9+Ee zTZmKfRWxkqO{1y?s`zN}12^`BlpOM#GE3f_AbeduQS6fS(P2~R8@iXT=mP2l;&mH$ z<_M4RQtKhf7MhWON4rutX6IL3pU2{98SX$Q;)DM}rSn8G{uDE~41Ea52f>FdCd?xK zc!CGo#~4ry&h}GVYR*tS>hW?D-|w)OvY~Z~t^4JywsaApZn7|a!|oJ!0sn;QtO(f# znLH4T`pt57$MYTqk=NKRgsT@uP?k6GcNM%6k%4D*qFUCX$(nl&9hB_6Rzz13J1>nj z05mf{z7THy12#P^9N=-2L!M*@Dk9(01OI+wTK%rCUf*V}2PZn2+DBUY^*YlMzNh_jhr;#$Q3Z*$dM~j*wt_9&zfXdIgcmlvcvG$X=d)44)=&g11D;-!l#; z1LjpNb2*8)V@M+_c%)SEv3VHksl=tI_is>`7BoBu%1yz~mWn!JqWX50OeGrT2WJ}? z5nO?>ragWf#F0m!Wjog1!Iz=;Bln3H7s`Mj2Dau(YsgG}X-Am{UEBANBVc+cLxMb( zZUjcbT-k&u1uT5-4XGGn4McnT`HeL2pe$zV*!iIDO8dUW+$e;S_wZ}ncRd_I!P9}?_&=<2>sVtp*qRUbjsJoBiBq9 z?4~*g?F7gS?)lA<3>L%gZ>sA+8@j}hm#w?XdIMoe9`;mDqRqL~^q{(3U9;EKdLDYZ zp~FC`x6Yk1STppF-boJJo)QY_G_e-3`=3^&j7Q~PB~(-PH13Fm#)^nU9ZsX;;Mp?# z`jEm%>_^$|E=k^K^%N8sgt;9)rj@Wq9aR4{o|Ec$;AFjW#Z~PXI1#z*R)_+#o6ddd z^ylWc)&6d?DvFnpfzbAO^P-F>|G+cYa@c+eK`l1vxCgQlb4M?C?gO;evB@*=&~JpQ zMyT*@E^5v52X>v@_M8{Oek0K%h_x6fnE3l^&Q-P4@>kGI>7Uk!_A{=;LI5woSHa07 zcX_xvH2~0tljQ4~`-ylsj$uNvh+xf{$Fcd$L?^~Oq*h$}kd3RR*+UKhXI4oBqd@#MoVe`#19A{*!a&`TS0VOVAZ=`3bh7av z@|V>Q5f+vftEK@n8xvL>483GxewGkcjZe z7|jHNG`OouG#xeg2dF2h%ovXRiQC^&yz6nwtT71zpH70+ilIn;8Fz@h??kFSnruOi zM_G#SZu^hfwuU&Gxx!X1>SvefR~TZs6s|+>;>}ZJPn`N9b<>Z@RsPrxo(#xIUOD5> zs)HL+OftUY62LQe`PNpl15=HDdqt$Rz5X_LOHwrt){r`GL@oKIv5QX$@n>6Q-oo)` zCe~=vcUef6m~QBS#Gx^Rr&I8C;`e|OJ>+vl88%kthDeW4BXzUZ^auN2>?uCM zKfTWQgQHA3>slntIZ}nddH#;W=Ik=JBQ~8siIcFnn^rPz7sk=XObz)b76(XyA4m!i zO(B3YF9i9@ur-2@IZd#1SXtM;U6^o01Z|AA8#je7Wzfit%QEB_7glNYczZ;2B3z@Kx;h*Gl}SV$vRf&vpZym)e?jZ}XrRT%ES_m^LNA&?jy8B+N3aoy&&!&=Q|zJvw@sIqi(cdB5J%LQ9-qeS&ix@AP@ zoKL%83g4}zmQ!5W%@cxWjWwZ2xIs&!hwJualf5ZvsL03f#_r=yQSNnQHR*zG)om80 zYlVcUux0A%$w(Z%v$o?^zUL4edJ3NyDx$71jIe_ixKEjm6xQ=}Payl6jEda0iv-!E zQsvf`E3k$}j@lJcF7s8-u~RA#mVbV(?IHV(*MbYH*GqM}0wNXlk#OG?IBUDMAiA-_ zK}={@#k;}Onh}!Ce4gu7H^3YY_#B<}W7bDh@058f+uj}1Y@R$JsP;=A;v;m@$e5z` zXs`P|jtJyzMQrn6jDg)11oqQM&RV7XGx!_O!bc7C=DP}g?^^{Z_ zxTy^Cw2;s_SCJ5jdAs2e$yzYOaw>LPPzFd^vAg!vp3*L8WZN+$&OsP2`fP?ZKesAk zP|8SN;GNK64>7IkjUL+_9otE;Pm(i7$;4awJJNog)m*f~l(bcM{oFf@>`?Ntc3ZHuan8w@rUx)B}br~(m{@;K7 z(;H`M@1doyLvV1ToQ9tU)Tv4jfhrVB27wVYrsM%zlz`S_t8@#wX%dzXQL(uErf7{wrJtjM7Mft#fx9f4= zB4g=1yY1i+{RIv&u+K&3Q)*ZbsOa#qu^E6 z#!peILJ@8NCwbrf%6%1jjd-(w02>!Yuqh2|S>P^672Y|ss=7J)SqEJ zEzev-_K_tY0yt05_om+Ie3$7v-#Z;JbQqmfBBCd)jI=?Ms>3_isD4h_RR7nbT{=z4 z9DRm=U6-A}ho*TF#bdd+4ah3R9}L6A9gD{ClCPzL4zAl_GZrxqsvfqNV3Ih%)T3u7 zHqIj+&KxPJaHT9$bjIuvGv0j97cT0v)>buDp=p?$t{O_UI=SG7RveXeSsK(m9Y-kO z7necz`MnvUi9V(X|PiG=b$E-ofd-TC)~{MyyF`7iw$0>B%e&cGjwBJc_G{whmUKI zoRTW;Tdh9E-S)-=dXAQTJOeF;`lb#{kSk)XjD{Q&@W`meM4p`| z9(md>d`=>X3Iy4RRgE@IYd}bkJJJmlkdwCmN&%NYOQ#s3`_cZnk_Cde=#o1wg}!_Q z+X%bobU?R{?i>(>dOHRA^{{%CRJvOqBIY#EwK=tPAJUq9#pC*E$XU?mi!krBK9cXKC`UXv>}>a2M18dn<(1}D(t=s zXw)wrkM@5?iV`N)yQHxJk(SKS0rL+dynwTCgZoE)j(GdylW}q;!!3ZA7;^IJ04L={SiO#<%~IwN z8q$tk-dQNPc+=-qCDDqu?I_2X1N!Q?Cuc0OdujvSO>1y4iprgoxti=op1QOMnztb0 zUZF+DyPuAF#+_g@zZ&`JnXcAOc?>Q#e~EBhaLd)N*Q6`yopW_{;OfGFmlByPiz z&pAaKy6-`ef?TjudAFb&AS(iz$^_2m%t9huI}QGqMyJ`(j(%8&Iu{)VS74L_T0rMu zK{A89Y&vSGpVca!tVOm-`mh5~c^EZgs`%z_Na-0V4#!&M-x9OAdOqJ&u?V|JQlRX{ zD;@QCiqy#pE%+~3-YD{QW0gvn-)SrZ@?v)ybQy7xxf|4xwY-Hbkq=k5yi_9zC^ykI zd%93fxtb|8V2|;)K6UOG-@BfUG}{t_2!`D^z4Q^r9jSnvWjYE2!xK={Jvsw9Zfw62 z%>KrW;l=YCEiZ^nvo@`&@|5b9MSQnyM?wdZsl5A&hUPv8Rjs0Ohi`!4AaHD}R0pLc!H6+KS=Og|;7x!@fEyHfY=hfv6X&6&>J^Zn9^ZlPd zb(0E;4CkS7XYDkX#o03iL&iNBX+NCg-lGBhW)DIW)*(@(j;@ve6}1`cRliSM&* z;_pI1=phY2I~A}$Elho6RiX_6VWps_IHw-K9o?K*juU28UMtL-_`K4 zP_j^IQO=RD(Mo5*uaYIbvt&;q)a;J@7=PX-UMfjMD4UIAoht7bYXtVp`p~v&bov;+ z#F9vHHS;F9GS>SqXvWhlC$_3u^c+W&aeBI}y{rmw{LyVBLq}N8NJnKL-MYk>{G)_8 zR>^DPC7@oVRH89-XpbpmEp~j`mulZ4wb7-InGE-}5~+>2en6wiyb`vNuq4qt+n!bs z9ME4YGj3Yp_4bLPZOw^YKocveYvKfcsAE#^;lh0whJ%YB(Rv7uuA$r5`y{gS(h%=v zSg}H%r0=+MR3lubO=5FFq+dFdA=d!ieZ&i)x}WN znvQ9@MxjISW}Z?$`R96nWG)DH=134JX-H~S7N0?-YSxu)E*P^JS`VP%zn-ebsU4sW z?GR_TOy{#CN<=w~QH0Mx%YfTicm|mp;~qOyCI5FNy(nqId(n=#bD;Kb-Y`w@_fuxw3Yh`65;Y@Tu|*1$zSU41!1EOs)#4d*w{PI_V}#vt zH1j|7=}gH>BnpBc>8>Ms2lB-sjHmX^<*!;MyFms`H zwlgBn%Ka(Nd;PGq$cE?Sv>*P&4AN#NIZmIac!oWD&cA2d`~Lg8{N0zFd0!O>Adq}i z;*gt9myjHWBsnf=0FI@3TiNvz%jj+pD)bG^+ed_(c&HZ1hb!fAw~g@cPo5$FmrZqc z@HwoO)6^x^yd2YGDT)jCIR~<5RyO%#1)V;82&(7R(!}7f0G^SN;Q+SV^D0R3Ga&V1 zoGx+Iz7gH{_RWyMt~j!b{R!(a8A!Fdi5K@gU=DCVaa6`8?b=&Y^(!@h_nh1Q)P1Le za|aB=h$18B1-HO9dV;%+D^4wRs!^fpVxMtpN=&_~vWeibtb2G;f67aU_G=mIkt7sJ zNYMziD@_?oO9}8GnSzy2{2D7+cR&bn1v4c4;|tHY{6xu9xUbzqc-#U8=u&S1=6~#bNY_K>s7N^TVNkNe`Fi-(0K|n&q76ThQ2pbEp z-GK@g7AlH`Viy8-$G>LpJ#c2`;C=Uh-}|nIwI|lBS+i=^%(PE`6%qOA_^)wYy}a{e z)^DaRjFdi2k#CteOKnx<{SSH8vK)IK?bo~4&xJ-W^L|~s#-eA#+k}p2_QUYa-ae5x zhux@U*P>;^t}ez&_7yr-KJvSE&#d9zmkUpR{ynG4&h4!SZ0a6dJs_rYy+>8LB^D0; zsA}kPs*OSD=S=mJl^0g#%*cH{q}#cDuP>||-7LQ#!r$fHqvrvu%qm6Ax?i-)Jl=0^ z%WhL!w=#I;bTe*@w9Db~Ym`&8u}ccB-M;#E^-iPB!w#G+7}D}uof(^EZ*22q+A>l6 zteiQuzhC<_>BfP!sYMSbgek*E#?E z%S4l~1`l>LlUFB~#T^f7w;0pS ztp@}*?SLc z^eS#>?$QosGb3kMEPC{Pqg94m=I!Cym-asl%ons46nMzoKqdFI>jvrjurikSSQ?(3-+N88Tvc#zR`U7pF|H=iXg=0zvX&Yo;|_4w^) z9Uf+Rs-BKEQ~FhVm~y>I=RcACj@Lapcvzifv(^ut61n}V$GlE^^V@Dt&NA|!(<6D_ zrsI_iYbBrf_^uAz(Apzmo|XFjoTJ7wx1_0LlXI8W>RIRW8PhFc!L1J+{4)CboPt+} zy6)>JcAnkIyiuhVK7j?}eazG9Kl~8i`qNJDe0RT*`)b}Y^qp|%wP#_9Q{(CFTBaI) zH<&!QeT~BEJO5m=erCR3y?=OAmx8rv@~HlfJ~q4W4K*35zN&R-Z`w(gv2WWCtFO}E zigaiDCr=Z9zHVexbaU07VOwH*pa1e}|C$??t!oX+{4neAlWA*fn90qCZm8pWGv{N! z(>)#?tYmS2yshE1Iu{IGT#hYWb2-{5UoCx>{!skg=s>GEtvgMBx?oVjidrt$kHv(W zrzGtj_GsPBTN~>?GYIn#wawk%?y`JTm*jGTkNJw7Kg=7x^5NXzoadeEFU`Gt!@Fw# z+2KdsbUvL?@Iclh<}zn#bql<%-ScF~?; z<>N;+E6lyIY-=}HpOz17r~Q~<5P$G=Na*;9b@U4v_`YuWYjbkL z$eo2#?rYliyyVwtT(=Vg%zM;p>DVN;R)pWAU3EK5vGQmTzO&NO-=c#%rWH7OhkuK& zJT5Xd{H^?OMuXeU&(wKzD|3PJcQcdkbNvfkZe3RFx?QEV$ArX-MouX~2i9-CYLR-Y zitp-S+tc=b+A)2-ch7X6oT{gayk92X9<6W^-wB(OZ`vYbWz3~F(?%2?{x#clg6GzP zuYP0hY`oHE*2eZ#qW6to=jY$wA*`I=ifhqbIz*(j*lUwDrU&0#taLQ+&f6V1vks5yIObBN3EgUc{m{b5z_xy(O)FK46aHfdJy`r{ zTg0?_u{O?#a-SWzSaLr@(J-c z*NAM-8BGiQpFLeszIRiVY|Q#)9uCh=!lMsK^F`UQ_J`&KPpnqZq@elr-9P7eMqQsf z$@^Bz!lFK7Up5<8aME~XtJ{Nb*43K#uWDeovb*86W7k%n-7zPl{LF-X`$N}l?O>`I zDQe!#_|5f`S+d;B!M;tyas&Qc74?w%EWhBfEqTqay5^nUwJBV<=~LR?d-wfCa`%14 zHSGffM)_9kGan3m z8o5l~9~Qc}=C$!3M!fJ@YLroJNJzostnW{2^!@tk%lw*AzRe@H{5sdX+4i5UddI~t z>J*T-zR{+)wU^a=bZhj$My6Z3=4)&8s9e>nl5K|L(^>cDwTkO^`%sPAtIpIJF(LPz zaVNXQcU@L^PDt@@{O4xgn!F3W)?D@P=YM3&jj7xBx-R(@HSPDoX^R?VE`8ivv+d_w zD_>`2tt}sY=A4^2Z%-S)J~PA~%Qy5(PSAJ;4wyG{QSS8>uj4&V4tF%4HrUc;dV{Lf z-)1{(4lCMXGR@*y#U($NdsJO=<)_E!_r7&qAN8C)WM%7i{%?nBzqPFWp>q4%54>(V z7u`9qaQB{=C26(2OdGVS+F-SPhik_ce%KIltZS8xOK-j`x*PrDM&+JQhm1WVzq@eS zo&i>oyL%aWUa5RWvLW67%C=kk6B{nwu;Nsv#zC?v{?vfAC#&RkmNad?wUsEUV95a+ zS@F{E?G9~!7}B}To0xt5{h#``%A9epzS*AL@dJ|A8NN{&%?=3N`^Kc>h3$SF+y=Vz z9&fsH=w!e3@4WrY9;gqPy&kqIsfv8qor~?7T)n+wM7do1`lqs6e_i&d;=?O%La&BB zI(&6=Y}EMH89o~`Hs8!%SFN@A;fYQW;lUi96aFs$Nd_ zl!W_uFCV-o{(^-^l}Ro;8oQ5g8!>&_w5el~U2^K4xG(qaqFC-`P*6Y7;=nGC8(S3D zKV?X@- zH0PB=+Whs+wy9D-+`V(g*gJ66f?+YU>V&Sbm^sbp>(+>iqw1vgoE=(ayws*;m4n3- zegu#H>^pt(a+8wDlXF#SFRE?z&%C#ls-B#GcJ0|=F8$PP5>8!>Jv8^* zz~5K%N4kuD9(}K?Seb2FF59q<^`=J)gO^7fex?quzKKD5@UIlr4_c8zMX^0{O8$!?B{!*{oI_0c*WAM=lSwQRqY zGZX>NT~^<7sO@zByb7N4ZwECA`r%-fBb5YXws}zrxVv5Xk+G9@aRI^nfxW6E6&K$#K*d9FSa+H=VlyZ zx~uxZg~#e|iySNoRm?W6vT5`FDw2z%V?Hm^9Qj>+Pu0r(dM9@zmGU*rc3Wlm2<{XY6RvAHPyZW!(a)YPn7VyolLb{Ptjz2D(bVQ-hfj&iYyDbxr-$RC zV97=6<2@FgT=mO+_Vs}W!{>c?x#LyB;75_e61(rqTzaKag-vVYj>b=2P`zi*rxjjT z(RZhcR_BtBf4ftqzlVoyzkYD1N*^bwME_e@a;2!FOeuj&Rb&d0S}7^LR7Is#7>R9t zA{_mL1B0SPDvjJoZ08?^ZYU9Tl%kJL(LSNUe%4`uq5c2?fM>M-$bL|=%*U{-#kOL5 zv7^{Y>@4mrb`yJuJ;i;*K4M?7pV%)vG&~IcJ94Ctc(~YK93Tz|2o}Tt1I0n&pxB5Y z|1fc|c!W4a94a0u4ikrqBg7Ftk^W(!{sGbauSkTcn7>IyJW3oXjuJ{ zvE=nB=&}^z`V@^shqC+)DN=YN3=xk1OD2*^q)Pl3aeInJuH`OI`5$gineSPxPo2Q} zmCC10^|mjlaN$Y#Q8zc6)}pBuD^_?^tLNA%eW$mpE}wkfQC6qTlFE^8)?2pRX!oga zJGVjC?zYSD7-abIrFKr2IZfM+ICaia?BBlKKYe`q9$8}I_Gb0o@z0Yd{~ljFrg*Y> ze$4pJR*Tx7-CEt$dQtTi#q(!%pQlhICzPxB?vsOw`GTZDwNF_*n!ftU0fXxel5Ka1lXY-&SR@*lR&m16lMQBl{oTA`d8;bTlgoMRtK#U^WNL*~>RFo{w>&yD z!~Jz=;`u(3=8{;$rYqY#tTyBKkk(^F{j3vDy461K=1{)xo4KajD$cI!(7pBeo>dY= zhM8OJyR06v^NT~@hT(IrRR8?ZU|gL0lxJ=gf}5P4x_h|E+-++QE5a8va`Z4s9A(?Q zRp3VpMMrmeBStn%3MQBmdcle(E*c{8%Q-NM#^ zbu%rNHEgxFs;tiWs;w%HswI6eZ|XY(i`k8)Zt<|){d-G|R!f5_Rgar=gQWru2E6WFAqMzh|p}>S>RU-SD@m^tIW9^oXhk4?C4JUKtlSLDY7Tac_ro_sh8p zlQwL+(f!Ku@=;Z_!zU*)HHdbjvaJaR(-Rh|L0zZf=?ftzU6j=(`nzRtR-i!x?Lz2d1ykniYsea zJ@&JT-0U!?N7bm-JID5N(i;9eS0|vea?!pkmkertm@_tR>u%q+%a59jJ+|?C{4Ddh z-If3RX?-l~*@<^~rq3pO{Q5Mn`M#d1Sw+$sUzarLTkAro+@N<{*3Jt3GTtp)W}SR> z+mM4j&6eIbkgnRA9BRI9wy3&ELK{H-ximz0sR{89tji$MVTlPC!F7#BK)6_OE|8U)#Q|+{#27Ut*1JtJ#oj>2K zdS~APlZK+Rua3F+Of?MoGvunoqvNDr*@Y)Mh|FI&9RJ}p=BTf&^RHt&nymSKG4Q5A64K zUxCZ`(a#;KI^67ab#KbzuLnjSR=z)T)8y4J$M5Mkk31-Bl?fs&KEP>pRCMaCgh{RT zP7K|UQSVpINb!ZS-YeoZ#w?#RbW+WCZrf`&ow`FMmp^EelU;Xb?tp*n((>~(Eq{)A zboXoZ&I!L~DuRc4kBaPjb=nf^#cMk^DSxox-TJq!I_>^#@K`C|e^YwqamM?!kUsA! zClsyFb{X}crI+U6-G}>}>K{uDm>4@K?P>0|_N$k^9dmB?$c~2Uf}Pd&w&=FAYM=VId-RVqvtKpFR&p9Qs@sv@L;R1YM90ss-f>&; zr@GsV!?f0K+O?nW&?Wrc>aEN7r9@?Y+3EGHQ~fR7eAICpeNvDAsJ$c0H#|8ZeD?OC zzbpM7QZHcSarv7!b!@%!?mN1CFuv&0IjzN{F{Y`g^LTA2tIscL4#Gl*8j6K-E!L{bm^>;QWcYOCMV8q2w-Xps? z-|P7GYxIQ=`9QwK)Jeb~ITXh7O(%TWWOCRp5h{PE%HIjPV5Vpa9ca^MM)uU~K9+%q>XY+ZqD z%!(14Ghg(dZ23UcZJFY6((*mdM}7>kk) zdpn2r&Q31&Wf?$HFn&6s|41b={y(KAkW{7CHGz~8um!LQ1V44{ANZ5EeiZP_OR$;X zr)`i=q^Ezh$U^KRQxO&jXK#=eh)ic_r51=5kiZs*Tq7-c6jav&QK%KN|JeeGs@!ME zpq%|v3@Vvav_FzyWKi32T?6-V^W^rl2n6r)6IFRoTWc!NH`hRo{y5OlD;o+zoRn z=iGRTQ`V`C&(^w?t1;ukZ{yRCo|Wr6y>lhQ!F4L^8|9@a-*RnSRI^9Y(Vy+K53_5T z*ceri3>XmnHaog|mf8GsqFP=L8^#4CjNX(t%T80?LDRBQ@0P#PrZ0@^y69!|%2UUV z9XqR8a#df=v6S@^)3+y03d`Fn%FiFuW5X2N3sahAnEgshG<7T|IdINolHt6F19mkl zHZ^u@>|)xoVXw6t5BazUb?JV%iRAiq!yQN0?mlty$cb{p9)5`^x6<^D>*4%6@iQd1 z*JM>`S^LGCxRZ+|UY$?Ye=@z&j5cp=Ye zVSYlvtTVC0j{i9jD)m}g*vxooQnk|+=Z=c84cYn|E>T)LdBW(R=Ax?g;)TEig&SlvF*bP@7BsZ@PxYVo z3{DLzXEd#)fhwqT_4*%OW9Bp(`QzfIW8IoQshT&%<7wpzYvWIJ+dQc5jCB!SZLW8F zyT-M;d+x1W5@r2wy}!A-4KRCAb?n@pJq^~^j+ozUciQ|ZUU1`na`L3JGbWY)y+)H^_QdY{47aE#nU>D=FV?&)oI102)1?06r)NWMMZgb_`ii=i%byn=+x^F;jn|$IXC3d?s%L$! zS&J4|9GeW@y3}J;+TgV}a(-CPU9)S_e!o`B`%m;y?@q60sl6#lHr|xs+&WThDLec! zbW?|RR;za|dVGC%k-@l%0V8f`K5v*|pl%;mVR~qlkq#@A{k-Q|UAa}`@TbC06%V=G ztA70Jsah*{`>(tF(ILULSax*%p^$_PYfp>r&-&IR{`Q-xuAA>Z7@fCt*rkRycP$uW zerR%hZ^H&1o@>?`j1OG0@@JA&zxZLc|!Hv5T=U>>K z^<}z5+_+`-G+gJ)^3w0nQ~QX7}!2P2fK*5z*vSIakc zTAt&bG;GqVX_cqGZanjy)-P#R-1$ANcWj>BDrE7Goeg@vntSGFhwQNXN%!B!`sb~G zoGkj4sPy`6 zku;=reoSVs*FKd74q0{DIIQ67@{L`d20ENSo_x51to=h@ugm?S4%$D;xxcJt&bLj@ z8{8EO8$4>**nN;ui~4gfId2KNd}w~&R_*F9=GDt zw`~72-_N%bi|zAcmfcJc4vdJ+2 zsq==!TCMJMb$#VM%|7)**(@wiA-#+$ihb4V(_Heq^;D+77kK0fG z{2ui!&DiDnl^1(u#xAKh2J~-i(V^iHS;ZY267piBUn#n&{C@N`y7}4Bv4Kqc%z0_- z*Q9UhPrtufmt)Yu?*ffepJp0j}|dE12#;$*3r0mNMiTplUAqqbzQc3Le z_U*y&2*YD-4r(`5Ja4r4&i>%Qb02T-OKq9IvfIG$ao>_MUQBs-Zji_6je|C6s>QVn zS$!km)6z=jn@@Wmv0LrB;rD|YukJK29Ae*ofq%0FqleuMNP2hc>p^Mq_zrpNdfh7s ztpBp1=fzH`eOClcI<`4sf8txmu9@G5_-;69sBM^HIy%g9`0;v4zco1nQ=ZuD^RBVv z;-Xm@$u4)duI>1%^U77`9+L-DeZI=WzTcX>iV2Pj0vGRSGd+D=E%mm}m&bRg7}iz% zbXE5-$+0m8i|3n+zmgu^t;^Lp?>@}@`SjTq&wf5JAJ^3B7WI$AYDM?Ht&8VGEJ|#Y z;2CeP2zXgt+Gkr%Y7a@s{&`-(A9F(khA+u+`LuL*?+QmdzkS!|$mgbeTP*L=@q0*W zzktz3E_GbfU!}PAU2)^mHO-)=oqlcW?lF4m>*TSn)#isawpp1pCvn%9))Pa`o_Fn> zwp3KGyisV_53f$QN47l|bguEIwS6|`j$f_5I>$JFi>QtK+K@$6f=*1x9DOX~hE>;T zC)OR^-R0(;Z>`2eH1M+@xWllU+1TqzBOZOxv>9Tz{?3{!$MR1$472S0pi$AA%#>xf zkH%~~G3#vK$61*zvc@-UX1e!%<%iav7kxN){6IUi^C3NITnc)6#k6VTLbr=eQjG09 z)&xG><=ZM@b#6|xdTZs?o_|OeS$z)K8awy!{E6$^np`{ZvuU5a#%mT{*%O}n{=t~+ zi|)(%kF~LFxT>$`=8PKyZZ8-i{wXWSNgObFe}vJvx4FmneLYfdvPbbIyYs4@ih?0M zDkOCrv?IfBSGtShmh@7`8nI6wJl=h^^^1cFU)Qwd`OErmt?^uayGuvMRqhirjxD;F zrA$An%s958)=~G#?sxaCF7N-X*+sYWOJdG7YuWr$)|MF4$3dT7^>u8MQm^k(hoIlT z&s+R6diD9r>1*!~o+*k^Kd^iJF1=ve?=ct6@748kP>qkgG^KrKAKT52agEQ`zq9U5 z1GgRi(r@>w{hVR(W95wV=VBkIe~yhf()sD?Hg>qbGY#_NQjao$F2F%V#aHscGKPpvRA+ zOWsVVe<%ES?3=JdPhUokzMPe#x{;>}>GjpBcG3Nx<#!o(>c2AjN6*K0{kDH-Wc$J+ zW5Yd{ls19&27T?a;$dU!?K{#MjNIHSI=$iN)aetW?r09mYlj?Kao}ET&j9E79j8w} zHTS^K?N1(=d0(%o89mZ?MxDZiIg8srZNC4&o#e-Tjkip?F;7{=}`bHFsBz8+c>Xo(3VOHIK9A z=b6-!bX`z%yJJj?xyK*e3^$$n>1^xQ#;F6Btqu%qv3ZBI&XZTpo@YgqUl}zroiNtt zQr7!z>V0oFK9#n+J~#1D;f7o5mOLJFD(c9EMz-?`){H#1WKn1LC&v{@*?qE;Up%|D z=s`toRg>a*pDMNLs)-z9Ti>dJmD`7r*ZREocS!iybz`@SE3)Sg9b@r(_m=qZ;KB26 zZ8{ZJDb#h;ht=!vZ5ou~Gj^nV)T&RRIjJAcJ=-2+lUVpV?#_TUpCen=IB`Gi&8oq> z24{|VK4MRgzAx*)zCP5f@0O#34!>*r@X?%Uo>M%;tIlt1xV>YiX31ug6Ro@D@3g#U zu-5;$O2(kfx#qdcPj_50;BftV$2M=a>+R(o_Qvu} zpFx{DjcEC9(8^XWmsjMg7CIo4Gr6d2SZz-sV=V5z3zrO_oj1`!PJ{M}Do~ z1mAwo9(9VkJTUafhbIotq$_p~o-|?DJF5lfns(~$a-jAb%LdlbJ7;uw-`Zzyw~9fh zpJXqe(ql`{rM>c3@2s|{u&{Ha=;dCMf$fIuy3uV?_Yot?b(AIrj`A^Fl{j$!;)2PV zzLWBbu66ABbm^_NKIQ+Jzw4n_%qHdLJ16RIDV%S6eb}gp!)H|8YO?Ci<`qLbBz2AY z9x}VwerB^@_lgGX-Qye3J|(5<(>k@<4YXU;Wu40PUHY=Saj$YlPHa`_ZIEB<6(0gK z+Kg}T^WCXAGiG|s9NggWO;rc0^ve_KO?bR=UEto_u;DAlUx+>3uv^TklY91UaWlNL zZvXTh_LY6VeNA!|wbGyJ{eBmZ=dBt&E+pUn%a0*jEbFCy zYCLbf(}uGZo#VT!XRHppvG9Da%Wcx{Cq(@U3ywMVXrq(pxU2WT*n*{eRu*UVi-Omt%g2 zBEDy2PK^o6{2FzAg42dG83PhCGe6tBNqc&wm&S9*_p8<9wHHtGo3^8x{qpd=jWT=A zjp-WaGH}sZ=d^=IHO+z#4DMf)zCNkXAw_!&Q`=u2xfM_Ed)K>g?7a~`2D|4ivlwJ{ zw_1A4>XW_3H!&=j8uB5a`q5(Bok8zcm<xTQg40AEYRn{=n~Nz|ggWqDK}aM>w3k5VpN2;e=9rbCZaY`4nE%c)YsA#z%}2AXOxkJod%tKC z9^3x%pF6pC`Y-dJHFEO0VL!@+ti1GW-;OV-759$xd46N&_ie*R&hG2Bx_?;s^UGeb zOWrO$l~Q-i{QIwxd_+YjH{E@k(7(speGksWwLaK5V_NsG+j15gSDR4t`FyeUtwGP4 z-g)LFtG2)HMU6t6Ti?o0b@Rf*E9d&>OzWCoW&M*~L$^eY)2I%(-t3)L$0Rnl-M6!q z&eRO5@wv#|Y=Gm%9sSc98@DlQ5PIg#q;KtFcDGDATkWa2p6)-q;h1d-in<9k<6}OUxilR^y;yBaNYDTZtvE+E^=JZcH+c#d5`DavR_xpcb9X)pK^s?o!96K z>_I$B6z)61s7n_k@xKN3Y}|Sb=+~!xZ%>=vWd-)&rHGCS23b{xt)7jZnsHmMy z?SBjFDO9i(S{m51755Umh}~f`bD-FNWJGjqlz%iC=|gcn-AJEW|4<=>7~>lq8{seF z#xFGz+xSHJJA}iAtGJ(wr(173*vhr>;sy*r6p4%sj))GA6ls(wD(ZpWZitMEMyQFn zI3c`PA^ZW2^$#8%9TX+fDCn0X)VguUQp*1go&G(0**Op7(Sd*@!jV7+4Uj+wy|m%1 zA06~ch%R-cG9^G*PWT%>J#Bh;x(on(?DdlewMgItp;;YtU{@DYM@~~m^WP`S!^z9Z zwJ%`Po8Nb*sl$(0cd}r5bkG5cmY{?7`*o?KP$>R0b!g@#6z)Tk3g)TZ0 z6ml+^EyQpo`0$KoWrbESnj@(U5$wOsmb0CUwSxzT4|?l`B9DsUWf|IaFF{A9OCEk= zOVLsPcj~y=^|SYI2W&j_tt=J8%Fw+IGC)vF8wHIFh@k&U8e3bpfsRfbGSCl08itP* zAj(Ryk%A;E!G_LoQ2uw)3>@I;>E_B|102C%!|<`1;2W8)(4qNQF4w=2^S4#r&(Uds zwJkzN4;!l(HddgQZ!p`abdZtL0$Hl~@5uBY=-Jnmqm3RORx>;-2c1!Z3@n<`iIVdi zR?5Sg|GuIe9sBp_XAhL|9H5VhIfdf^GgzV?2>FL}1!fyL%{B_9?z=+&n|g4xak6(r zOUiSAo|#fJT&#>n;vywPA6h@U*p#sq`8N)x zGqPxG7#{wM8mG}wLK4z{B@VqoO5wwekl-7{xFu|?%f&K!flH~b@+KLT~tbTQMvg9`bU8!7aju^7L3acWs^mVG#Z|=;$FeSqeO!g+`vSi^cEls7>{QUx~#kyIsg#@T7mDQA&*h-4C` zQ`!H!QyHZHp%KZ1PGu@i4v1u&F!B(|`OZXgDYtlaM=FOLLYnXXw~@-ZZfk+|e$*bV>qK8PK=A?~C!85%`q2(x` z+o@89@caMFsZz=}uHPPObhDs!ZQWaT+m3Gd`_ zjcR$ORY~|cRS8I_1hT6X%t%!#M4bO|q(rAGPF;A2R026w0t2Z8B-9dqq-st)c<7E) ztw5jtKb@+1=_5i}5NO0|rSPwc=W4Z@AGw-kB#o3+{RDYI!juRGVx$@g--$-bbFGFa ztL}(+QSz4&$#umJH%mr>*x}?AEOy?ggmuZ!CBN8!TRHv*#^G3!Aftwx_P=zB?6Q&} zk)3k929w84KhTkz5f2ehB&ruw^Dn(9!4~BCP!OmfSh+Ef1Y-HjH6}VVI1EW<&Rh`* z7$Pwbk^s#wmf3P0dCPgVCFlf4LryX;%8bO;BF<-mYQm^-D{hhgqeVQ+=(dEWm1;>) zJkS!yy-Z6k{$ry>jAPC9L$<`}Xu!l8gd9JVl9}Md5wwhul5wnsDIlQ8X*%4Cptd^7 zbTF3_l7gcFC!6{HgeHala1UH}a(+~$+KU5FmCYJ2agPnruxMl$l8)}OV|9s=<>KpC%HRbX{7GATigleuSk!PnDp4ac!WdN-*Ux2`(RDua0rBZQ=gT)y2jjL)Y5+mNyk1>!1oJn1ll>t3fykm~rlL0+d zTm-8GVHu*QUeHC&?x(0E2*~4#_g$ro*I(GYM`fvDh2e^ z2%e*Wh#GLx@Jm<^!q9bTIbEL6a@tov!fHfMQUs_GJxLJ&gp!id1Ui!v$RTWX`2nd+ zbWT;TC4qY7afM;&pHd;3AhZSqlJagFE(1MD32RP<1cnfM5NaWo z=XYfpvZ7u~N|BhBso;>Nl?qV}p)MjIVHG1iD4gffT%yuf8JMZK1kA}Ly?`ceS>WQ27EXc4BM z66h!6%_yODP>ul6QhFzY)YV? zjF6{Fpr4Eor%3n72!W+U6evTOqFx0|Nw-1E$#%V>6p$ch3~5anAz6{qlo9p}(wQBV-!VcrxDPVJHfH@@PUKf}q@-=tmQgkB>Crx`=#)A%k?Kj1Z$pRmuntScS;P zyS73*P^kfS0eQ$ zb`DCrz%ITqAQP&FbSFO_j!L_R{UsuB4JxvECw6E+g~9-#Cpej9usv(T{hXai55O{C+rwAo}s%Duy8X2{C%19Yg`%|70*l zy_S?BF)dRsX%PJg38_K!BP65-(T`Yf0FV;mN(%&(^U+cP1uY;WFJmd8PI*M36p3h= zYDo(OloO7I76^!P*h<+}3j~xC>qH9#lnYw~LXSW|IpGm#0UJ55QW=t>UWIz}aw=0X zX@P)pVV6g!3-prXsrC!*dN3&z)y;21;YSADV`S$gPB2xi75*ee+9Jh zPg=O@(^j}FOs*8m8w`W#mEyIIVKBi`y!J2*NF~LSgkgxSaZE{o!T4C)3YUleG2WEf z!s$9%gyAL;ZE>6m!w_w8SP8=rZLyt?VTiUkoP%LVY+yeK!;s*>ThgTtBK`^(lpszC zUyj?#!W;=7?3>`WkN^>OZA;ojA_SZLxEvB9*a#P3Fc?0kpadIah|BmX&|QnT4d@^D z0VN6kCN@5BfCl#i)Rj>bN2alipW4zk0U;SSeQ{kxU5yYN$1p@)A={t?A4D5|Ggm1a%{k27$7OfTMrlp)Rj|QrU2^7v7d~~0d8`<&CBpOI1;6p zQ?i?jrj^0t3ZSlBNct!lIg;N(asY+_k`yJ85ijTCUL`#P+EN@r5zq##;l89YBq8b@ z_dp}9Pc;f{LM^zafsocnmJx)NAu%r}Rw{rH&O-hS-!H&WIUIoJIsh1&&oTvJ3DR6a zl1cQbN!%!62x7TGeZ&yNaswD*2tp773^4?@NpO2WT7{60Q!*I9O~I3fVQ**!FwiMU zVqT`ggnB?-g+wqtgx(Q_2$?6dL~$7fcH(d`pss?D)=&=WDzE{L%K>T%-i+0UI3R!# zhkXwc@iJ8=^aSKp2zgT_^?|&Qy061MP!7nez@Z3?5h5=RMqn5sFU2b;+@fGjR9piv zDCwDU_=w$gLWavM5wGB=tC1L`WVV~t@zT_yGwF$}1y#1^dpLu-bOso@HM z046w%w?3B;w+X~mVmlebfVfINPF~t15Lb!aKwJ)JrNnL;h9TloT!z9kO5RP*%sqf1>QelSWUZ3oXB4VY5+n0MLgx zAb=5vk|e8?sWhP@L|z<4!#yGLQoM`eK1zyrQ4~ce$WDj#4l2Wn!(0E0PD6IL$3U=Gy0X~1v_d@W&d zt|WMWJVCNKL2@xh0H3jkgqpQoti>>>c}$it&jK4iAGs0a!j@ zR&weNGBJn`Fm5TEX(2QRc+jQEF(7-G9s|)l&`^p4VLBgR4uDT(dN6`7fU67(C9)16 z3&$V%wL^Y^eq?x8nfwA%CgV4kb>~N?3}>V04iiwI6fS2U{$-p{1K2=@_t112hc7@x z85We}7noBSR;}b0m|7VYQREkxVHr03i7&`#mGLHB83X09Bu7f`EpqXnzm62`_Q`Nk z4~YSq9=vx%enHcNcTUJJXnOD_Ir#-q6i0i>FF;W_znNX;NVz>px)#a1`ZPLO1LjAL zcgV>vFh6qaAdp{>l*TD9#1~}s!tJ|ym>1c;ax7@bIzUl5yZ=Iz;dV6%2!u$;k?M;g zlQm#|YW6b9Vxb3h#H99ai#(B0dc!tY9eN5Qw)f@$m}N>m&!NbjFZ3e zEm}A@GFs9$2u9w$7Iy524~Y0U6@>VJsD<4=;sa1ij<=(U4?rzByDME%L~1Fw1pG=z zi14EIg+7nGqyFmR zmjaHuqXZD;1#@mnnG*>fE+1;ZrZtHGA~QCy$uEdD*ajiLAmU(4g#3aQIU|}l4A3HH z(|E|*zzft!DX*Dht-p>GiF7%$$PfldyeV*iis+Y%NiYJ4s{_-cz}_oa2XIwjhlBhA z6jiWkcVrpBk{l_dj}QWgTPuGbDa?-oTV!PGFh2?${UX1>{3vkbhWrBaqrk=z@r4UL zU`K}hf+)%dD#~D9pdnyMj+9O$;hdkpjugeO71$RiF+lU9N8a!O4h8nh$vS9$^e%0b zj;UbG4#Wp2D-*7aK#Hi$k#Y$rWKWcj!?|>SA1Rt2#)#oCK=Xqg9-;&QG*~5?B+To42Yamg<* zKS~_sCcnV^D6#)aegRySIQ5470u)vL#rVTml5+|n6>_A1HHo-3V1AU?ZzM5*`B5^) zA6EzFM~M@0$T~1TN}Oy%d_gf2rC!O0Qel+5Sy<*eMPVUwq;wR8Ge`cqPEjmH$s3t; zTWEe5vk;9G#Z{DeUxyqInjf65Lw-RN#c4a_7erCsHY;fuV z8xNWvyhl#phSFV>j5mtvpkx~*?Tx9yMBh?`8(xVO`(ubH!k2-`eh!+@l8}S0l2UFo~dvZL8 z6L74P_=3{GRJ;N!bEF7Ma->j;oYQ|Xn84RXYZh;=kr<#QtH()!I%vh}QK9e!Em%D& z6uuyeGLaQT9WA0LucpczDZ-K(DZN<##bAPd(ER98dhi9!kDh=8d_nWWs3};&T)dwN zJa8Xi;?#J*poE~@7Z`+^-!>?Fpu{p2YLQd=S9^)80TZXjd2u8LFmYvQ!`Np)D|KEqgv4i zL;*&#q7R4wjAMsBpz-6)OQLr)d^Wv+D1x>($U)L<`&UZ|b&p8NxRvMw8av}vq7T5c zYP|WTgAIgh;EM(yjU&FG@P-DPiUGlaF_He3evo8|_AG#uQua`=PIV4P3#Jx1m-_4^ zstQbv6f3w0xIhQ3F`O^W{|#75alDI%KoJ?1(>w&wmEnVVJOtX6@y@(1GqRmq;Nm3a z`s^OQB(RJOZ}IRD;1wD67kLOUiJU|bCRC1vCtn6;QjP@^4}po2^II6YDD&T-R{>MX zXXH?!)f!g^tp*{i%Kr_7l;h>WLx7NSg7_$UCCAF1F9U>>V~>-E04@sNGh^_C>O7i| zFhdZOlT7;21oA2HW*grDkWYb^D-QwkDe$ff4*~KiaO9MS0QulW9X@oyK>%|;4*~M2@MZ`P0rIKv!4D1s(+t+J&hSuhNL2=d zqHq_FD3l^+UZ0NUI{*TzusY=-KtL6idpraPs3K+_1$$J)azp7bDq?sjl|{{Fua)#F zU`mN)F1n?cq};(@9H8Y}L4p|D2s{J`sK&kt2LZICSn%=yAfOt1g**gEpynfS%-nNF zesL+1r22FuUlItY#^yB-0RpOt^@~zoG}xHs%K)YtZ1nLEAfSfe1^`IeZQPPhd5Y2m z)u-pUD!`CZ9BSnNKu#&n6X5_rO(`}_qWt}YjdUOvlFYE+N?|Z$9P=p!!l>D>Iqq7g zGQIxwX)N3-=u(jMLgGp(5c1Rl@`J2x8Mg3{$Wo!e3P^B45q5XV?}fe76Rn>rd{3r8d5 zmTH8J8;!6oHT*V;Zg>0wN-h@$I)R0P6TTo-mYh3X zfhf>ZaP72$kk$&(MXj(bwL;{O&(9-vVz>^$NiFS<4(f8+l^URsvZocYV6?)83R=Om z(F(~aT3!M$0~9jaN-S)&B~7Qna9WS*R*0c#1+zmdXdtby{iYQ*+q8cPdU9QX3Mlni zP!N?_{H(0e3j1hUL6mC+Wv&%+5VeBkqvbONb;n#XPOdA^NMz^q&Il*OsF4ebR4bUY zTESw}3jUl{aNo3l@zzl1XiG)6b09k%6XZlE)w^J&Xa#3XE0}azAugyDl$n+{uge%Z z>I+n1Y4-p?8FK`4a{`<0owv)hLdZcY+sOjoU-pSA3+A?^eT zJe_r-k1=%(EP-l*p4SR`UMoaOw5%&cwT&1N6PU3yI5kd{@Q3;A9yi7JP=*+2RHA+)fC*SFcRY%9|6L-XK;NW zcLAK1H$wRGy~Bt5i~C0TRI)XZrpyMlWF<(q{PiQxbIcslaq5h*NHmJ*Q#9#&f&ii`zxjnGTD5}6T9 zBKjYCMguNVgH59V5eI_|SS~#geH4Y2z_@fh8iw?`E)4xfHWCR_DG)d6!r;`CMqgbd z$aTxXZ|+(K5(el3bLqmMJuX713xnU>@pTF&N46UQgA3b{9MFY9dz_=I3xnTsq(~?j zm$yK`Ang-v!Rf-FJ?>zGE)0Hi`=T_Arj-OXJCFgWTMpXe@;`K8@SEGIqhMTCIst?B zkbu>Nq4tm!uM30U8f2$YFixcqFcpNPD4Ifha%3|TnX~9|hAOrAflzmJ$XRxQv4-2lvb{ z;Vdi2PaAxoZ%)-wmt3wOWnGVS}H*fjxG%D zV&Z%~T^NjwJLISfgMPX5BQ%U22k@E-Im1*r4RSvym>#;QI5U|nrv?tB>OwXJGU>^3 z;7&2~rsfj;sd6B&n7Z5vDyke8rleq8M39EjGE5=?vy$zDGn$FIpzVfB%LFIug503#0`XSlHBjZat8ytAmk~$9nDK(1Mu7^d9Ctw>1>>$X*M$L3 za`&$2!a#j!ko!cz7~Ku!IIEg02eOVC8;DMZevm6c$xcuUtW5*=kI*&~ zflz(GI^xc3>y`r;ckYdZK~-ih;TSH9A9vPQw=Uqq<+o5U6|J|RoQjrL0ONK^$+{5E zqva4>X@*=4vK-h_^csY#QCNP47#YJG5XWNLgXv}HC+D7pAp3>T5JMM;+tBL`aAs{4 zcvXk)7wmtA*Wj8m6!4?^KtL&Dm?;Dw?f zD?t~ykA<;!0fvHrR5|V;92&;ZUM>ZJz|`gLyP)cF+u#(8wPWE~9fr=JEg3okO&R?G znwH^7IoLidep-gtmv6JU(& z1g%BOPN>V;=x{$8Z5Km11=<`T#|B49=(Pp+rZGGTH>aV!B&x0og>5Mq_w)=6Loq!H zra>`v5(ZaO({ck2iZL=9Zd7CJPPhhx@snXH+4TX}JyW_&0jScvnE8c`ZiWV6 zGB7y9>pBcw-~wp2UoAW5aN#r4FQ^ozU$|45=>zUNX8HhAis45DBj4uu_M!vwSu#AlkAV#kOjES`<;8G-p_Q1~!?IBFV&|aZo{7VqAjJ|~Hix~L_ z(Mfhb;Ls1#FQm!pfzk0M2q5WaI{%lVj{>xNV7%8xW0PidRnP6;N7#pLz;o>EByuiB*F7UVxEl=Ud28$m& zR7b53h>>v_tR&75h@<%#LKMuJ0sLs3K@YOA40x!Ap&x|S8T$pE4PyK#CHOeBY=X!u zqxVs0oz`z)!7(-*Ko}cN1*}HP7l1MTAgm(BA5?))Lem~#4BtcUCd2n|*o4_n0T@b1 zAm#(MT^RWcN5z;}Jsc2W);=8cV(9|pV{nH1lo&e0<%kSj;P@J?13-JQbb*Tim_EQh zrFj>&&=?&L$IO^@3D_~Z2Q)IXrUAy*g%^LAvB3j6%-F#6Va5iJ)G+e_CO^GCP)M5A zDWJ6&84F3S43EQGPK@4%P%|UjVHhY+hu{scI+<7jz)*?@RgR6r!4pS}{)IP=n6(9u z6frh6z!;kvwh|cr0~#>82Ov2z4#hM_5}8Kz%YGYtR1nqkHUlTOP6INikf>;PlpNNVt5 zX?d>()}>?)=p!zlkKhfI&w$4v zF`b1R5m+!aap0`pM_lh&w2e{(2o&jyi=mibjAj$LrhBi|dwuu>u)@EWJXj_e@0l*l(NBj0P zZvc#;GbA0-wj)Rq$mk+%AAoU>Vi9u*iMH%G;HCmBcS~phdY{1=+&6j+LM|ASYXC5m zQ%d#=&wFAWP|^q7GQji;+c<0=On!s}5{TJ(Lk1w(FVKKXoF#FAHAB$~JQrr480vDD z2kO>EFxqAX7zE~-e!1IksJh%e$`p*r8-ez?Crznx+&!N(jJ7SHE(FpUT)4v$x^=rrFeu0PzX0QI9-`_hXjTqDV!mCMf>|umx-$YjJu$pzy)Bm zzYpbWO_WSTIMeZVi2O4-N)Q>5()tZx+*vNN52c3o4WJKZUjyy_(y>hxeW7EU z0ORiZBl`e$q1Qfa*U~W_sLMT5P1WUY*rs6IJGC^7-V=fLSe*yif3%+m%1uH0lJH=t zl-4~^4w8jveuhLdqpsvQU@93}X}Pm_y5&G3GQK243AtM> zbjtyZd%TE*L5z{^19k#wzZU8;d1(OS-iasMlX0&-P%tJ&0dx8LtOzaiP zmHN(@HvmTaA5f0jn*bQQH-UUk%zxPDL@>;M0u00-o5R9Wg#T|zIXGFy&_%=D(?*Sr zJ3mUoz#wPp!Zs((_i!45k(Jy$g4FAF9$F%JT;-1N;L27}a6~Jh_7|L;vo>2XQ@k5Ob z!r6>$f*l*$zl8SK^#&`Sj+;SZ1sJzX9}v`MVBAx?B!0j`v@Vk?nfNaB0a-D0d$4E7 zz#y)Nc^t1JaF1wz5L6jNzv%X0?~|4XkXcLTSwdaz03K0s!( z=YU{_nDIhp6df0U7nEVchaQK9*;j*d+{<7D&afpy?SyHM^KK*_dzg5j)S$q z$Z^OdX5=`)82pk6A|mW8@I16h;<<$folO;5B#dMM`oU zum)+_305Mb7XU`@`+-7XWxEpgvS_{n7-NILsWC>c0*sN_AnEkTY}Vfbvyrw46k0i=hj|*JzyrsSu0~K=z=zYY2JnSDN|054Tp{(Fy$ca zi?-{OaJ>h!j^GXsT3$i+I1{%(;c*r}Hg2JWJ0KXkfT&~plgAGqR7OaaEm$UktW*?z%( zrfCJ4tIT|WSH{RrIBCh~577E_{uQ|KtUdx5#5^GU%;*_-NsG~|0At4iw{+0!Lxm2+(sK@ns_8WYN9WjaKDlzUgzRT#9B{Oc83(9% zX6*xvmWg0Lv#~x1pE7 zF**uhjE(}W#po!2F@7>+YB2T-6Eg=GOBYD=pyd_h6|j9k5(dqa zP>$hokaUbbhe#F62cVJ}UV}6lx(~2KnRN+!>WqyE`{In92;DLzW)LQs#%QG)DACT#vN0~mLu4~a97fN2j> zIhpp*<|5rMA|L}}au(qcC?>Xv!cDa9Mo|@dj}Kr>z7N2d^HBf;%|PM;FeV=z!eOx6 zMwf##D=duJzl6Hn!?wEg0~j2xV%p=bRU^xx!^3nrID^mN3>yrTu7Hpm_qr?99;_O= zJusgszJkyk2o9zk9OPqQdT0tkOUjmq_L%)GF4V{L0ZX6h0|Gy6IapjYF7QkcQx1X! z6i-5!5C}up1(D743l1>FyHFRjGF=xXy)!T=tt%iD$@q<2c#@$NyFUm<4x{q`#^mk; zjM<+77;{GeXgtXNpm7HA!iz+OHb z;{oG}>Uv5L5fidzKHWqk?8l8MzC=NET-}OUuw1;>FCILlBRa2k5vJElSAqg16!BYwo-dL zdutmT2v6CoY;06=J3F