added spectral theory
This commit is contained in:
parent
4d9ed1844b
commit
c2b8b1d3de
|
@ -75,8 +75,7 @@ The topics covered in this script will be:
|
|||
|
||||
13. Spectral Theory
|
||||
13.1 Spectral Theory of Bounded Linear Operators
|
||||
13.2 Spectral Representation of Bounded Self-Adjoint Operators I
|
||||
13.3 Spectral Representation of Bounded Self-Adjoint Operators II
|
||||
13.2 Spectral Representation of Bounded Self-Adjoint Operators
|
||||
13.4 Compact Linear Operators
|
||||
13.5 Unbounded Linear Operators
|
||||
13.6 Spectral Representation of Unbounded Self-Adjoint Operaotrs
|
||||
|
|
191
chapters/sections/spectral_theory_bounded_operators.tex
Normal file
191
chapters/sections/spectral_theory_bounded_operators.tex
Normal file
|
@ -0,0 +1,191 @@
|
|||
% !TeX root = ../../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\section{Spectral Theory of Bounded Linear Operators}
|
||||
|
||||
In this chapter all spaces are assumed to be complex.
|
||||
|
||||
\begin{defi}
|
||||
Assume $X \ne \varnothing$ is a complex normed space and consider the operators
|
||||
\begin{align*}
|
||||
T: \domain(T) &\longrightarrow X \\
|
||||
T - \lambda I: \domain(T) &\longrightarrow X
|
||||
\end{align*}
|
||||
where $Ix = x$ and $\lambda \in \cmpln$. If it exists, denote
|
||||
\[
|
||||
R_{\lambda} := R_{\lambda}(T) = (T - \lambda I)^{-1}
|
||||
\]
|
||||
Note that $R_{\lambda}$ is a linear operator.
|
||||
\end{defi}
|
||||
|
||||
\begin{defi}
|
||||
A regular value of $T$ is a complex number $\lambda$ such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $R_{\lambda}(T)$ exists
|
||||
\item $R_{\lambda}(T)$ is bounded
|
||||
\item $R_{\lambda}(T)$ is defined on a dense subset of $X$
|
||||
\end{enumerate}
|
||||
The resolvent set $\rho(T)$ is the set of all regular values of $T$. Furthermore we define $\sigma(T) = \cmpln \setminus \rho(T)$ as the spectrum of $T$.
|
||||
A value $\lambda \in \sigma(T)$ is called a spectral value of $T$.
|
||||
\end{defi}
|
||||
|
||||
\begin{defi}
|
||||
The spectrum $\sigma(T)$ is partitioned into three disjoint sets:
|
||||
\begin{itemize}
|
||||
\item The point spectrum or discrete spectrum $\sigma_p(T)$ is the set of values for which $R_{\lambda}(T)$ does not exist
|
||||
\item The continuous spectrum $\sigma_c(T)$ is the set of values for which $R_{\lambda}(T)$ exists and is defined on a dense subset of $X$, but is unbounded
|
||||
\item The residual spectrum $\sigma_r(T)$ is the set of values for which $R_{\lambda}(T)$ exists but the domain of $R_{\lambda}(T)$ is not dense in $X$
|
||||
\end{itemize}
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
These sets are disjoint and $\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$. Also note that $R_{\lambda}(T)$ does not exist if and only if $T - \lambda I$ is not injective, i.e.
|
||||
\[
|
||||
\exists x \ne 0: \quad (T - \lambda I)x = Tx - \lambda x = 0
|
||||
\]
|
||||
Then $\lambda \in \sigma_p(T) \iff \exists x \ne 0: \quad Tx - \lambda x = 0$, and the vector $x$ is called an eigenvector of $T$.
|
||||
If $X$ is finite dimensional, then
|
||||
\[
|
||||
\sigma_c(T) = \sigma_r(T) = \varnothing
|
||||
\]
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
Consider $X = l^2$ and define $T: l^2 \rightarrow l^2$ such that
|
||||
\[
|
||||
Tx = (0, \xi_1, \xi_2, \xi_3, \cdots), \quad x = (\xi_k)
|
||||
\]
|
||||
$T$ is called a right-shift operator and $\domain(T) = l^2$. We have
|
||||
\[
|
||||
\norm{Tx}^2 = \sum_{k=1}^{\infty} \abs{\xi_k}^2 = \norm{x}^2 \implies \norm{T} = 1
|
||||
\]
|
||||
Now consider the case where $\lambda = 0$. Then we have $R_0 = T^{-1}$ defined on the domain $\domain(T^{-1}) = \set[\eta_1 = 0]{y = (\eta_k)}$, and
|
||||
\[
|
||||
T^{-1} y = (\eta_2, \eta_3, \cdots), \quad y \in \domain(T^{-1})
|
||||
\]
|
||||
$R_0$ does exist, but $\domain(T^{-1})$ is not dense in $X$. Thus $\lambda = 0$ is part of the residual spectrum of $T$.
|
||||
\end{eg}
|
||||
|
||||
\begin{rem}
|
||||
Let $X$ be a complete Banach space and take $T \in B(X, X)$ and $\lambda \in \rho(T)$. Then $R_{\lambda}(T)$ is defined on the entire set $X$ and is bounded.
|
||||
\end{rem}
|
||||
|
||||
\begin{thm}\label{thm:20.5}
|
||||
Take $T \in B(X, X)$, where $X$ is a Banach space. If $\norm{T} < 1$, then $\inv{(I - T)}$ exists, belongs to $B(X, X)$ and
|
||||
\[
|
||||
\inv{(I - T)} = \sum_{k=0}^{\infty} T^k = I + T + T^2 + \cdots
|
||||
\]
|
||||
where the series converges on $B(X, X)$.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Firstly, note that $\norm{T^k} \le \norm{T}^k$. Since $\norm{T} < 1$ we can find that
|
||||
\begin{equation}
|
||||
\sum_{k=0}^{\infty} \norm{T^k} \le \sum_{k=0}^{\infty} \norm{T}^k < \infty
|
||||
\end{equation}
|
||||
This implies that the series
|
||||
\begin{equation}
|
||||
S := \sum_{k=0}^{\infty} T^k
|
||||
\end{equation}
|
||||
converges. Then we can compute
|
||||
\begin{equation}
|
||||
(I - T)(T + T + T^2 + \cdots + T^n) = (I + T + T^2 + \cdots + T^n)(I - T) = I - T^{n+1}
|
||||
\end{equation}
|
||||
Since $\norm{T^{n+1}} \le \norm{T}^{n+1} \conv{n \rightarrow \infty} 0$, we get $(I - T)S = S(I - T) = I$ and thus finally $S = (I - T)^{-1}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}\label{thm:20.6}
|
||||
The resolvent set $\rho(T)$ of $T \in B(X, X)$ on a complex Banach space $X$ is open. Hence the spectrum $\sigma(T)$ is closed.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
\noproof
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}
|
||||
The spectrum $\sigma(T)$ of $T \in B(X, X)$ on a complex Banach space $X$ is compact and lies in the disk $\abs{\lambda} \le \norm{T}$.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Take $\lambda \ne 0$ and denote $\theta = \rec{\lambda}$. Using \Cref{thm:20.5} we obtain
|
||||
\begin{equation}
|
||||
R_{\lambda} = (T - \lambda I)^{-1} = -\theta(I - \theta T)^{-1} = -\theta \sum_{k=0}^{\infty} (\theta T)^k = -\rec{\lambda} \sum_{k=0}^{\infty} \left(\rec{\lambda} T \right)^k
|
||||
\end{equation}
|
||||
where the series converges on
|
||||
\begin{equation}
|
||||
\norm{\rec{\lambda} T} = \frac{\norm{T}}{\abs{\lambda}} < 1
|
||||
\end{equation}
|
||||
So by \Cref{thm:20.5} $R_{\lambda} \in B(X, X)$. Since $\sigma(T)$ is closed by \Cref{thm:20.6} and bounded, we have that $\sigma(T)$ is compact.
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}
|
||||
Let $X$ be a Banach space and $T \in B(X, X)$. Then for every $\lambda_0 \in \rho(T)$ the resolvent $R_{\lambda}(T)$ has the representation
|
||||
\[
|
||||
R_{\lambda}(T) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}^{k+1}
|
||||
\]
|
||||
where the series converges absolutely for $\lambda$ in the open disk
|
||||
\[
|
||||
\abs{\lambda - \lambda_0} < \rec{\norm{R_{\lambda_0}}}
|
||||
\]
|
||||
in the complex plane.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
\noproof
|
||||
\end{proof}
|
||||
|
||||
\begin{defi}
|
||||
The spectral radius $r_{\sigma}(T)$ of $T \in B(X, X)$ is the radius
|
||||
\[
|
||||
r_{\sigma}(T) = \sup_{\lambda \in \sigma(T)} \abs{T}
|
||||
\]
|
||||
One can show that
|
||||
\[
|
||||
r_{\sigma(T)} = \lim_{n \rightarrow \infty} \sqrt[n]{\norm{T^n}}
|
||||
\]
|
||||
\end{defi}
|
||||
|
||||
\begin{thm}[Resolvent Equation, Commutativity]
|
||||
Let $X$ be a complete Banach space and take $T \in B(X, X)$ and $\lambda, \mu \in \rho(T)$. Then
|
||||
\begin{enumerate}[(i)]
|
||||
\item $R_{\mu} - R_{\lambda} = (\mu - \lambda) R_{\mu} R_{\lambda}$
|
||||
\item $R_{\lambda}$ commutes with any $S \in B(X, X)$ which commutes with $T$
|
||||
\item $R_{\lambda} R_{\mu} = R_{\mu} R_{\lambda}$
|
||||
\end{enumerate}
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
To prove the first statement, we can simply compute
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
R_{\mu} - R_{\lambda} &= R_{\mu} I - I R_{\lambda} \\
|
||||
&= R_{\mu}\left((T - \lambda I) R_{\lambda} \right) - \left(R_{\mu}(T - \mu I)\right) R_{\lambda} \\
|
||||
&= R_{\mu}(T - \lambda I - T + \mu I) R_{\lambda} \\
|
||||
&= R_{\mu}(\mu - \lambda) R_{\lambda} = (\mu - \lambda) R_{\mu} R_{\lambda}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The second statement assumes that $TS = ST$. This implies $(T - \lambda I)S = S(T - \lambda I)$. Thus
|
||||
\begin{equation}
|
||||
R_{\lambda} S = R_{\lambda} S(T - \lambda I) R_{\lambda} = R_{\lambda} (T - \lambda I) S R_{\lambda} = S R_{\lambda}
|
||||
\end{equation}
|
||||
The third statement follows directly from the second.
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}
|
||||
Let $X$ be a complex Banach space. Consider $T \in B(X, X)$ and the polynomial
|
||||
\[
|
||||
p(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \cdots + \alpha_0, \quad \alpha_n \ne 0
|
||||
\]
|
||||
Then
|
||||
\[
|
||||
\sigma(p(T)) = p(\sigma(T))
|
||||
\]
|
||||
where $p(T) = \alpha_n T^n + \alpha_{n-1} T^{n-1} + \cdots + \alpha_0 T$ and $p(\sigma(T)) = \set[\lambda \in \sigma(T)]{p(\lambda) \in \cmpln}$
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
\noproof
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}
|
||||
The eigenvectors $\set{x_1, \cdots, x_n}$ corresponding to different eigenvalues $\lambda_1, \cdots, \lambda_n$ of a linear operator $T$ on a vector space $X$ are linearly independent.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
\noproof
|
||||
\end{proof}
|
||||
\end{document}
|
11
chapters/spectral_theory.tex
Normal file
11
chapters/spectral_theory.tex
Normal file
|
@ -0,0 +1,11 @@
|
|||
% !TeX root = ../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\chapter{Spectral Theory}
|
||||
\vspace*{\fill}\par
|
||||
\pagebreak
|
||||
|
||||
\subfile{sections/spectral_theory_bounded_operators.tex}
|
||||
|
||||
\end{document}
|
29750
script.pdf
29750
script.pdf
File diff suppressed because it is too large
Load diff
|
@ -195,5 +195,6 @@
|
|||
\subfile{chapters/complex_analysis.tex}
|
||||
\subfile{chapters/fourier_transform.tex}
|
||||
\subfile{chapters/operator_theory.tex}
|
||||
\subfile{chapters/spectral_theory.tex}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue