Finished product measure
This commit is contained in:
parent
376213d8d5
commit
6fcc9b8e04
|
@ -9,4 +9,5 @@
|
|||
\subfile{sections/contents_measures.tex}
|
||||
\subfile{sections/integrals.tex}
|
||||
\subfile{sections/int_real_nums.tex}
|
||||
\subfile{sections/product_measures.tex}
|
||||
\end{document}
|
311
chapters/sections/product_measures.tex
Normal file
311
chapters/sections/product_measures.tex
Normal file
|
@ -0,0 +1,311 @@
|
|||
% !TeX root = ../../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\section{Product measures and Fubini's Theorem}
|
||||
|
||||
\begin{eg}
|
||||
Let
|
||||
\[
|
||||
f: [0, 1] \times [0, 1] \longrightarrow [0, \infty)
|
||||
\]
|
||||
Question: What is the volume (or the $\lambda^2$ measure) under the graph of $f$, i.e.
|
||||
\[
|
||||
\set[0 \le z \le f(x, y)]{(x, y, z) \in \realn^3}
|
||||
\]
|
||||
The possibilities are
|
||||
\begin{gather*}
|
||||
\int f \dd\lambda^2 \\
|
||||
\int_0^1 \int_0^1 f(x, y) \dd x \dd y ~~\text{ or }~~ \int_0^1 \int_0^1 f(x, y) \dd y \dd x
|
||||
\end{gather*}
|
||||
\end{eg}
|
||||
From now on we define $\measure$ and $(\Phi, \setfamb, \nu)$ to be measure spaces.
|
||||
\begin{defi}
|
||||
The product $\sigma$-algebra $\setfam \otimes \setfamb$ is the smallest $\sigma$-algebra on $\Omega \times \Phi$ that contains
|
||||
all sets of type $A \times B$ for $A \in \setfam, B \in \setfamb$.
|
||||
|
||||
Examples for $A \times B$ are
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}{.49\linewidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[very thick, ->] (0, 0) -- (5, 0);
|
||||
\draw[very thick, ->] (0, 0) -- (0, 5);
|
||||
|
||||
\draw (1, 1) -- (4, 1) -- (4, 4) -- (1, 4) -- (1, 1);
|
||||
|
||||
\draw[dashed] (0, 4) -- (1, 4);
|
||||
\draw[dashed] (0, 1) -- (1, 1);
|
||||
\draw[dashed] (1, 0) -- (1, 1);
|
||||
\draw[dashed] (4, 0) -- (4, 1);
|
||||
|
||||
\node[below] at (2.5, 0) {$A$};
|
||||
\node[left] at (0, 2.5) {$B$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\begin{minipage}{.49\linewidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[very thick, ->] (0, 0) -- (5, 0);
|
||||
\draw[very thick, ->] (0, 0) -- (0, 5);
|
||||
|
||||
\draw (1, 1) -- (2, 1) -- (2, 2) -- (1, 2) -- (1, 1);
|
||||
\draw (3, 1) -- (4, 1) -- (4, 2) -- (3, 2) -- (3, 1);
|
||||
\draw (1, 3) -- (2, 3) -- (2, 4) -- (1, 4) -- (1, 3);
|
||||
\draw (3, 3) -- (4, 3) -- (4, 4) -- (3, 4) -- (3, 3);
|
||||
|
||||
\draw[dashed] (0, 4) -- (1, 4);
|
||||
\draw[dashed] (0, 3) -- (1, 3);
|
||||
\draw[dashed] (0, 2) -- (1, 2);
|
||||
\draw[dashed] (0, 1) -- (1, 1);
|
||||
\draw[dashed] (4, 0) -- (4, 1);
|
||||
\draw[dashed] (3, 0) -- (3, 1);
|
||||
\draw[dashed] (2, 0) -- (2, 1);
|
||||
\draw[dashed] (1, 0) -- (1, 1);
|
||||
|
||||
\node[left] at (0, 3.5) {$B$};
|
||||
\node[left] at (0, 1.5) {$B$};
|
||||
\node[below] at (1.5, 0) {$A$};
|
||||
\node[below] at (3.5, 0) {$A$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
\pagebreak NO examples for $A \times B$ are
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}{.49\linewidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[very thick, ->] (0, 0) -- (5, 0);
|
||||
\draw[very thick, ->] (0, 0) -- (0, 5);
|
||||
|
||||
\draw (1, 1) -- (2, 1) -- (2, 2) -- (1, 2) -- (1, 1);
|
||||
\draw (3, 1) -- (4, 1) -- (4, 2) -- (3, 2) -- (3, 1);
|
||||
\draw (1, 3) -- (2, 3) -- (2, 4) -- (1, 4) -- (1, 3);
|
||||
|
||||
\draw[dashed] (0, 4) -- (1, 4);
|
||||
\draw[dashed] (0, 3) -- (1, 3);
|
||||
\draw[dashed] (0, 2) -- (1, 2);
|
||||
\draw[dashed] (0, 1) -- (1, 1);
|
||||
\draw[dashed] (4, 0) -- (4, 1);
|
||||
\draw[dashed] (3, 0) -- (3, 1);
|
||||
\draw[dashed] (2, 0) -- (2, 1);
|
||||
\draw[dashed] (1, 0) -- (1, 1);
|
||||
|
||||
\node[left] at (0, 3.5) {$B$};
|
||||
\node[left] at (0, 1.5) {$B$};
|
||||
\node[below] at (1.5, 0) {$A$};
|
||||
\node[below] at (3.5, 0) {$A$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\begin{minipage}{.49\linewidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[very thick, ->] (0, 0) -- (5, 0);
|
||||
\draw[very thick, ->] (0, 0) -- (0, 5);
|
||||
|
||||
\draw (2.5, 2.5) circle[radius=1.5];
|
||||
|
||||
\node[below] at (0, 0) {\quad};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
A measure $\vartheta$ defined on $\setfam \otimes \setfamb$ is said to be a product measure of $\mu, \nu$ if
|
||||
\[
|
||||
\vartheta(A \times B) = \mu(A) \nu(B) ~~A \in \setfam, B \in \setfamb
|
||||
\]
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
Product measures always exist. For $\sigma$-finite measure spaces they are unique. Notation:
|
||||
\[
|
||||
\mu \otimes \nu ~~\text{ or }~~ \mu^2 = \mu \otimes \mu
|
||||
\]
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
$\realn$ with Lebesgue measure $\lambda$. $\lambda^2$ is the product measure on $\realn^2$.
|
||||
\begin{align*}
|
||||
\lambda^2([a, b] \times [c, d]) &= \lambda([a, b])\lambda([c, d]) \\
|
||||
&= (b - a)(d - c)
|
||||
\end{align*}
|
||||
This means the product measure characterizes the area. Analogously this can be extended for $\lambda^3$, $\lambda^4$ etc.
|
||||
\end{eg}
|
||||
|
||||
\begin{eg}
|
||||
Consider
|
||||
\begin{align*}
|
||||
f: \realn^2 &\longrightarrow \realn \\
|
||||
f &= \sum_{n=0}^{\infty} \left(\charfun_{[n, n+1)^2} - \charfun_{[n+1, n+2) \times [n, n+1)}\right)
|
||||
\end{align*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[->, very thick] (0, 0) -- (0, 3.5) node[above] {$y$};
|
||||
\draw[->, very thick] (0, 0) -- (5.5, 0) node[right] {$x$};
|
||||
|
||||
\foreach \x in {1,...,5} \draw (\x, -0.1) -- (\x, 0.1);
|
||||
\foreach \y in {1,...,3} \draw (-0.1, \y) -- (0.1, \y);
|
||||
|
||||
\draw (0, 1) -- (3, 1);
|
||||
\draw (1, 2) -- (4, 2);
|
||||
\draw (2, 3) -- (4, 3);
|
||||
\draw (1, 2) -- (1, 0);
|
||||
\draw (2, 3) -- (2, 0);
|
||||
\draw (3, 3) -- (3, 1);
|
||||
\draw (4, 3) -- (4, 2);
|
||||
|
||||
\node at (4.5, 2.5) {$\cdots$};
|
||||
\node at (0.5, 0.5) {$1$};
|
||||
\node at (1.5, 0.5) {$-1$};
|
||||
\node at (1.5, 1.5) {$1$};
|
||||
\node at (2.5, 1.5) {$-1$};
|
||||
\node at (2.5, 2.5) {$1$};
|
||||
\node at (3.5, 2.5) {$-1$};
|
||||
|
||||
\draw[dashed] (0, 0.8) -- (5, 0.8) node[right] {$=0$};
|
||||
\draw[dashed] (0.4, 0) -- (0.4, 3) node[above] {$=1$};
|
||||
\draw[dashed] (1.8, 0) -- (1.8, 3) node[above] {$=0$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\begin{align*}
|
||||
\iint f(x, y) \dd x \dd y = 0 && \iint f(x, y) \dd y \dd x = 1
|
||||
\end{align*}
|
||||
But the integral $\int f \dd\lambda^2$ doesn't exist
|
||||
\[
|
||||
\int \abs{f} \dd\lambda^2 = \sum_{n=0}^{\infty} 2 = \infty
|
||||
\]
|
||||
\end{eg}
|
||||
|
||||
\begin{thm}[Tonelli's Theorem]
|
||||
Let $f: \Omega \times \Phi \rightarrow [0, \infty)$ be measurable (in terms of $\setfam \otimes \setfamb$).
|
||||
Then the functions
|
||||
\[
|
||||
\omega \longmapsto f(\omega, \phi)
|
||||
\]
|
||||
are measurable for almost all $\phi \in \Phi$. Analogously
|
||||
\[
|
||||
\phi \longmapsto f(\omega, \phi)
|
||||
\]
|
||||
is measurable for almost all $\omega \in \Omega$.
|
||||
\begin{align*}
|
||||
\phi &\longmapsto \int f(\omega, \phi) \dd\mu(\omega) \text{ measurable} \\
|
||||
\omega &\longmapsto \int f(\omega, \phi) \dd\mu(\phi) \text{ measurable}
|
||||
\end{align*}
|
||||
and
|
||||
\begin{align*}
|
||||
\int f(\omega, \phi) \dd (\mu \otimes \nu) (\omega, \phi) &= \iint f(\omega, \phi) \dd\mu(\omega) \dd\nu(\phi) \\
|
||||
&= \iint f(\omega, \phi) \dd\nu(\phi) \dd\mu(\omega)
|
||||
\end{align*}
|
||||
Furthermore, $f$ is integrable in terms of $\mu \otimes \nu$ is one of the above integrals is finite.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Without proof.
|
||||
\end{proof}
|
||||
|
||||
\begin{cor}[Cavalieri's Principle]
|
||||
Let $A \subset \setfam \otimes \setfamb$. Define
|
||||
\[
|
||||
A_{\omega} = \set[(\omega, \phi) \in A]{\phi \in \Phi}
|
||||
\]
|
||||
Then
|
||||
\[
|
||||
\omega \longmapsto \nu(A_{\omega})
|
||||
\]
|
||||
is measurable and
|
||||
\[
|
||||
(\mu \otimes \nu)(A) = \int \nu(A_{\omega}) \dd\mu(A_{\omega})
|
||||
\]
|
||||
\end{cor}
|
||||
\begin{proof}
|
||||
It is easy to see
|
||||
\begin{equation}
|
||||
(\omega, \phi) \in A \iff \phi \in A_{\omega}
|
||||
\end{equation}
|
||||
Thus we can see
|
||||
\begin{equation}
|
||||
\charfun_A(\omega, \phi) = \charfun_{A_{\omega}} (\phi)
|
||||
\end{equation}
|
||||
And then
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
(\mu \otimes \nu)(A) &= \int \charfun_A(\omega, \phi) \dd{(\mu \otimes \nu)}(\omega, \phi) \\
|
||||
&= \iint \underbrace{\charfun_A (\omega, \phi)}_{\charfun_{A_{\omega}}(\phi)} \dd{\nu}(\phi) \dd{\mu}(\omega) \\
|
||||
&= \int \nu(A_{\omega}) \dd{\mu}(\omega)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}[Fubini's Theorem]
|
||||
Let $f: \Omega \times \Phi \rightarrow \field$ be measurable with measures $\mu, \nu$, which is integrable in terms of $\mu \otimes \nu$.
|
||||
Then the functions $\omega \mapsto f(\omega, \phi)$ are measurable and integrable for $\nu$-almost every $\phi \in \Phi$,
|
||||
and the functions $\phi \mapsto f(\omega, \phi)$ are measurable and integrable for $\mu$-almost every $\omega \in \Omega$.
|
||||
The functions
|
||||
\begin{align*}
|
||||
\omega &\longmapsto \int f(\omega, \phi) \dd{\nu}(\phi) && \phi \longmapsto \int f(\omega, \phi) \dd{\mu}(\omega)
|
||||
\end{align*}
|
||||
are measurable and integrable, and
|
||||
\begin{align*}
|
||||
\int f(\omega, \phi) \dd{(\mu \otimes \nu)} &= \iint f(\omega, \phi) \dd{\nu}(\phi) \dd{\mu}(\omega) \\
|
||||
&= \iint f(\omega, \phi) \dd{\mu}(\omega) \dd{\nu}(\phi)
|
||||
\end{align*}
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Without proof.
|
||||
\end{proof}
|
||||
|
||||
\begin{cor}
|
||||
Let $a_i, b_i \in \realn$, $a_i < b_i ~~\forall i \in \set{1, \cdots, n}$.
|
||||
\[
|
||||
D = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]
|
||||
\]
|
||||
Let $f: D \rightarrow \realn$ be continuous or bounded. Then
|
||||
\[
|
||||
\int_D f \dd{\lambda^n} = \int\limits_{a_1}^{b_1} \cdots \int\limits_{a_n}^{b_n} f(x_1, \cdots, x_n) \dd{x_n} \cdots \dd{x_1}
|
||||
\]
|
||||
and the order of integration is irrelevant.
|
||||
\end{cor}
|
||||
\begin{proof}
|
||||
$f$ is bounded by $k \in \realn$ (continuous with compact domain)
|
||||
\begin{equation}
|
||||
\int_D \abs{f} \dd{\lambda^n} \le \int_D k \dd{\lambda^n} = k \cdot (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) < \infty
|
||||
\end{equation}
|
||||
$f$ is $\lambda^n$-integrable. By applying Fubini's theorem the desired statement follows.
|
||||
\end{proof}
|
||||
|
||||
\begin{eg}
|
||||
Calculate the center of mass of
|
||||
\[
|
||||
A = \set[x \ge y^2 \wedge x \le 1]{(x, y) \in \realn^2}
|
||||
\]
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2]
|
||||
\draw[->, thick] (-0.5, 0) -- (3.5, 0);
|
||||
\draw[->, thick] (0, -1.2) -- (0, 1.2);
|
||||
|
||||
\draw[domain=-1:1, smooth, variable=\y] plot({3*\y*\y}, {\y});
|
||||
\draw[dashed] (3, -1) -- (3, 1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The center of mass is defined by
|
||||
\[
|
||||
\int \begin{pmatrix}
|
||||
x \\ y
|
||||
\end{pmatrix} \underbrace{\dd{\lambda^2}(x, y)}_{\dd A}
|
||||
\]
|
||||
In component form this is
|
||||
\begin{align*}
|
||||
\int_A x \dd{\lambda^2}(x, y) &= \int x \charfun_A(x, y) \dd{\lambda^2}(x, y) \\
|
||||
&= \int_{[0, 1] \times [-1, 1]} x \charfun_A(x, y) \dd{\lambda^2}(x, y) \\
|
||||
&= \int_0^1 \int_{-1}^1 x \charfun_{[-\sqrt{x}, \sqrt{x}]}(y) \dd{y}\dd{x} \\
|
||||
&= \int_0^1 x \cdot 2 \cdot \sqrt{x} \dd{x} = \frac{4}{5}
|
||||
\end{align*}
|
||||
Meaning the center of mass is at $(\frac{4}{5}, 0)$.
|
||||
\end{eg}
|
||||
\end{document}
|
BIN
script.pdf
BIN
script.pdf
Binary file not shown.
|
@ -91,6 +91,7 @@
|
|||
\renewcommand{\kbrdelim}{)}
|
||||
|
||||
\newcommand{\setfam}{\mathcal{A}}
|
||||
\newcommand{\setfamb}{\mathcal{B}}
|
||||
\newcommand{\measureable}{(\Omega, \setfam)}
|
||||
\newcommand{\measure}{(\Omega, \setfam, \mu)}
|
||||
\newcommand{\intervals}{\mathcal{I}}
|
||||
|
|
Loading…
Reference in a new issue