diff --git a/assets/conv_rad.pdf b/assets/conv_rad.pdf new file mode 100644 index 0000000..b32d4f4 Binary files /dev/null and b/assets/conv_rad.pdf differ diff --git a/chapters/multivar_calc.tex b/chapters/multivar_calc.tex index de486bf..f0fd494 100644 --- a/chapters/multivar_calc.tex +++ b/chapters/multivar_calc.tex @@ -6,4 +6,5 @@ \subfile{sections/partial_total_diff.tex} \subfile{sections/higher_derivs.tex} + \subfile{sections/functionseq_and_diff.tex} \end{document} \ No newline at end of file diff --git a/chapters/sections/functionseq_and_diff.tex b/chapters/sections/functionseq_and_diff.tex new file mode 100644 index 0000000..bfa9f43 --- /dev/null +++ b/chapters/sections/functionseq_and_diff.tex @@ -0,0 +1,252 @@ +% !TeX root = ../../script.tex +\documentclass[../../script.tex]{subfiles} + +\begin{document} +\section{Function Sequences and Differentiability} + +\begin{eg} + Consider $\seq{f}$: + \begin{align*} + f_n: \realn &\longrightarrow \cmpln \\ + x &\longmapsto \frac{1}{n} e^{inx} + \end{align*} + Then + \begin{gather*} + \supnorm{f_n} = \frac{1}{n} \conv{} 0 \\ + \iff\\ + \seq{f} \text{ converges uniformly to the zero function} + \end{gather*} + But + \[ + f_n'(x) = ie^{inx} = i(e^{ix})^n + \] + converges (pointwise even) only for $x = 2k\pi, ~~k \in \intn$. +\end{eg} + +\begin{rem} + Let $f: X \rightarrow V$ where $V$ is a normed vector space. Define + \[ + \supnorm{f} = \sup\set[x \in X]{\norm{f(x)}} + \] + the supermum norm. Also define + \begin{itemize} + \item $B(X, V)$ the space of bounded functions from $X \rightarrow V$ + \item $C_B(X, V)$ the space of continuous, bounded functions from $X \rightarrow V$ + \end{itemize} +\end{rem} + +\begin{thm} + Let $U \subset \realn^n$ be open and $f_n: U \rightarrow \realn^m$ continuously differentiable $\forall n \in \natn$. + If $\seq{f}$ and $(Df_n)$ converge uniformly to $f: U \rightarrow \realn^m$ and $g:U \rightarrow \realn^{m \times m}$, + then $f$ is differentiable and $Df = g$. +\end{thm} +\begin{proof} + First consider $m = 1$. We use the operator norm on $\realn^{m \times m}$. + First, let $Df_n$ be continuous $\forall n$ and thus $g$ is continuous. + Choose $x \in U$ and $\epsilon > 0$, then + \begin{equation} + \exists \delta > 0: ~~\norm{g(y) - g(x)} < \frac{\epsilon}{3} ~~\text{ if }~~ \norm{y - x} < \delta + \end{equation} + Furthermore + \begin{equation} + \exists N \in \natn: ~~\supnorm{Df_n - g} < \frac{\epsilon}{3} ~~\forall n > N + \end{equation} + Let $y \in \oball[\delta](x)$. Then according to the intermediate value theorem, + \begin{equation} + \forall n \in \natn ~\exists \xi_n \in \oline = \set[{t \in [0, 1]}]{x + t(y - x)} + \end{equation} + such that + \begin{equation} + f_n(y) - f_n(x) = Df_n(\xi_n)(y - x) + \end{equation} + We have $\xi_m \in \oball[\delta](x)$. Then + \begin{equation} + \begin{split} + &\frac{1}{\norm{y - x}} \left| f_n(y) - f_n(x) - Df_n(x)(y - x) \right| \\ + = &\frac{1}{\norm{y - x}} \underbrace{\abs{(Df_n(\xi_n) - Df_n(x))(y - x)}}_{\norm{Df_n(\xi_n)} - Df_n(x)\norm{y - x}} \\ + \le &\norm{Df_n(\xi_n) - Df_n(x)} \\ + \le &\norm{Df_n(\xi_n) - g(\xi_n)} + \norm{g(\xi_n) - g(x)} + \norm{g(x) - Df_n(x)} \\ + \le &\supnorm{Df_n - g} + \norm{g(\xi_n) - g(x)} + \supnorm{g - Df_n} \\ + = &2\supnorm{Df_n - g} + \norm{g(\xi_n) - g(x)} < \epsilon + \end{split} + \end{equation} + For $n \rightarrow \infty$ we have + \begin{equation} + \frac{1}{\norm{y - x}} \abs{f(y) - f(x) - g(x)(y - x)} < \epsilon ~~\forall y \in \oball[\delta](x) + \end{equation} + Since $\epsilon > 0$ is arbitrary, we get + \begin{equation} + \limes{y}{x} \frac{1}{\norm{y - x}} \abs{f(y) - f(x) - g(x)(y - x)} = 0 + \end{equation} + This means that $f$ is differentiable in $x$ with $Df(x) = g(x)$. +\end{proof} + +\begin{rem} + On $C_B^1(U, \realn^m)$ (the space of continuous, differentiable and bounded functions with bounded derivative) we can define a norm: + \[ + \cnorm{f} := \supnorm{f} + \supnorm{Df} + \] + Then the above theorem is equivalent to the statement that $C_B^1(U, \realn^m)$ with $\cnorm{f}$ is complete. +\end{rem} + +\begin{thm} + Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with positive convergence radius $\rho$. + Then $f$ is differentiable on $\oball[\rho](0)$ and + \[ + f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} + \] +\end{thm} +\begin{proof} + We need to inspect the convergence radius $R$ of + \begin{equation} + \sum_{n=0}^{\infty} n a_n x^{n-1} = \frac{1}{x} \sum_{n=0}^{\infty} n a_n x^{n} + \end{equation} + $(\sqrt[n]{n})$ converges to $1$, so $\exists \epsilon > 0$ such that for sufficiently big $n$ we have + \begin{equation} + (1 - \epsilon)\sqrt[n]{a_n} \le \sqrt{n a_n} \le (1 + \epsilon)^n \sqrt{a_n} + \end{equation} + and thus + \begin{equation} + \frac{1 - \epsilon}{\rho} = (1 - \epsilon) \cdot \limsupn \sqrt[n]{\abs{a_n}} \le \limsupn \sqrt[n]{\abs{n a_n}} = \frac{1}{R} \le \frac{1 + \epsilon}{\rho} + \end{equation} + So + \begin{equation} + \implies \frac{1 - \epsilon}{\rho} \le \frac{1}{R} \le \frac{1 + \epsilon}{\rho} + \end{equation} + Since this holds for every $\epsilon$, this implies $\rho = R$. + Now for $x \in \oball[\rho](0)$ set + \begin{equation} + g(x) := \series{k} n a_n x^{n - 1} + \end{equation} + Let $x \in \oball[\rho](0)$ be fixed and choose $a > 0$ such that $\abs{x} < a < \rho$. + This means that + \begin{align*} + f_N(x) := \sum_{n=0}^{N} a_n x^n && \text{and} && g_N(x) := \sum_{n=0}^{N} a_nx^{n-1} + \end{align*} + converge uniformly on $\oball[a](0)$ to $f$ and $g$. + Obviously, $f_N' = g_N$, so $f$ is differentiable and $f' = g$. + Since differentiabiility is a local property, the desired statement follows $\forall x \in \oball[\rho](0)$. +\end{proof} + +\begin{cor} + Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with convergence radius $\rho > 0$. Then $f \in C^{\infty}(\oball[r](0))$, and + \[ + a_k = f^{(k)}(0) \cdot \inv(k!) + \] + Furthermore, the series representation (if it exists) is unique. +\end{cor} +\begin{proof} + The infinite Differentiability follows inductively from the previous theorem. Also inductively we have + \begin{equation} + f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1) \cdots (n - k + 1) a_nx^{n-k} + \end{equation} + Choose $x = 0$ and receive + \begin{equation} + f^{(k)}(0) = n (n-1) \cdots (n - k + 1) a_n + \end{equation} +\end{proof} + +\begin{eg}[Derivative of the exponential function] + \[ + (e^x)' = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)' = \sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x + \] +\end{eg} + +\begin{rem}[Taylor Series] + We can define the Taylor series for $f: \field \rightarrow \field$ + \[ + \sum_{n=0}^{\infty} \frac{f^(n)(0)}{n!} x^n = f(x) + \] + \begin{itemize} + \item In general, this doesn't hold true for all $x$, not even for $f \in C^{\infty}$. + \item The convergence radius could be $0$ + \item There are examples of convergent Taylor series that don't converge to the initial function, e.g. + \[ + f: x \mapsto \begin{cases} + \exp\left(-\frac{1}{x}\right), & x > 0 \\ + 0, & \text{else} + \end{cases} + \] + $f$ is infinitely continuously differentiable in $0$, but the Taylor series would converge to $0$. + \end{itemize} +\end{rem} + +\begin{defi} + Let $a_{\eta} \in \field$ (Multiindex notation) be coefficients $\forall \eta \in \natn_0^d$. Then + \[ + \sum_{\eta \in \natn_0^d} a_{\eta} x^{\eta} + \] + is said to be a (formal) power series with $d$ variables. + + A function $f: U \rightarrow \field$ with $U$ neighbourhood around $0$ is said to be analytic in $0$, if and only if + \[ + \exists \epsilon > 0, a_{\eta} \in \field: ~~f(x) = \sum_{\eta \in \natn_0^d} a_{\eta} x^{\eta} ~~\forall x \in \oball(0) + \] +\end{defi} + +\begin{rem} + \begin{enumerate}[(i)] + \item The convergence of the series to $S(x)$ can be defined as follows: + $\forall \epsilon > 0 ~\exists A \subset \natn_0^d \text{ finite}$ such that $\forall B \supset A$ finite we have + \[ + \abs{\sum_{\eta \in B} a_{\eta} x^{\eta} - S(x)} < \epsilon + \] + + \item If the series converges in $(y_1, \cdots, y_n)$, then it also absolutely converges in the open cuboid + \[ + \set[\abs{x_i} < \abs{y_i} ~~\forall i \in \set{1, \cdots, d}]{x \in \realn^d} + \] + which means + \[ + \sum_{\eta \in \natn_0^d} \abs{a_{\eta}} (\abs{x_1}, \cdots, \abs{x_d})^{\eta} < \infty + \] + + \item If the power series converges on a neighbourhood $U$ around $0$, then it is infinitely differentiable and + \[ + a_{\eta} = \frac{\partial^{\eta} f(0)}{\eta!} + \] + with + \begin{align*} + \partial^{\eta} := \partial_1^{\eta_1} \partial_2^{\eta_2} \cdots \partial_d^{\eta_d} && \eta! := \eta_1! \eta_2! \cdots \eta_d! + \end{align*} + + \item The formula above is only rarely useful to calculate the Taylor series. By inverting it we can calculate the + derivative of a known series representation. E.g. + \[ + f(x) = xe^{x^2} = x \cdot \sum_{k = 0}^{\infty} \frac{(x^2)^k}{k!} = \series_{k=0}^{\infty} \frac{x^{2k + 1}}{k!} ~~\forall x \in \field + \] + $f^{(k)}(0) = 0$ is $k$ is even, and it is something else if $k$ is odd. + + \item $C^{\omega}(U)$ is the space of all analytic functions. + \[ + C(U) \supset C^1(U) \supset C^2(U) \supset \cdots \supset C^k(U) \supset \cdots \supset C^{\infty}(U) \supset C^{\omega}(U) + \] + + \item The analytic functions are closed among sums, products and concatinations. + A power series is analytic within its converges radius. + \end{enumerate} +\end{rem} + +\begin{eg} + Consider the power series + \[ + \sum_{n=0}^{\infty} (xy)^n = \sum_{\eta \in \natn_0^2} (x y)^{\eta} \cdot a_{\eta} + \] + with + \begin{align*} + &a_{\eta} = 1 \text{ if } \eta_1 = \eta_2 \\ + &a_{\eta} = 0 \text{ else} + \end{align*} + This series converges on + \[ + \set[\abs{xy} < 1]{(x, y)} + \] + to $\frac{1}{1 - xy}$. + + \begin{center} + \includegraphics[scale=0.5]{../../assets/conv_rad.pdf} + \end{center} + + So the convergence area must not necessarily be a sphere. The limit function is also defined outside of the convergence area. +\end{eg} +\end{document} \ No newline at end of file diff --git a/script.pdf b/script.pdf index 3ebb785..846967d 100644 Binary files a/script.pdf and b/script.pdf differ diff --git a/script.tex b/script.tex index eec9227..cba753a 100644 --- a/script.tex +++ b/script.tex @@ -9,7 +9,10 @@ \usepackage{tikz, pgfplots} \usepackage{kbordermatrix} \usepackage{fancyhdr} -\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles} +\usepackage{pdfpages} +\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles,patterns} + +\graphicspath{assets} \usepackage{color} \usepackage{hyperref} @@ -66,6 +69,7 @@ \newcommand{\dnorm}{\norm{\cdot}} \newcommand{\normed}[1][V]{(#1, \dnorm)} \newcommand{\supnorm}[1]{\norm{#1}_{\infty}} +\newcommand{\cnorm}[2][1]{\norm{#2}_{C_{#1}}} \newcommand{\oball}[1][\epsilon]{B_{#1}} \newcommand{\cball}[1][\epsilon]{K_{#1}} @@ -141,6 +145,9 @@ \pgfplotsset{compat=1.17} +\newcommand{\drawge}{-- (rel axis cs:1,0) -- (rel axis cs:1,1) -- (rel axis cs:0,1) \closedcycle} +\newcommand{\drawle}{-- (rel axis cs:1,1) -- (rel axis cs:1,0) -- (rel axis cs:0,0) \closedcycle} + \begin{document} \begin{titlepage} \begin{center}