Finished determinant section

This commit is contained in:
Robert 2021-03-24 17:09:55 +01:00
parent 29fd154750
commit 60c10631fc
5 changed files with 262 additions and 1 deletions

View file

@ -7,4 +7,5 @@
\subfile{sections/vector_spaces.tex}
\subfile{sections/matrices.tex}
\subfile{sections/determinant.tex}
\end{document}

View file

@ -0,0 +1,255 @@
\documentclass[../../script.tex]{subfiles}
% !TEX root = ../../script.tex
\begin{document}
\section{The Determinant}
In this section we always define $A \in \field^{n \times n}$ and $z_1, \cdots, z_n$ the row vectors of $A$. We declare the mapping
\[
\det: \field^{n \times n} \longrightarrow \field
\]
and define
\[
\det(A) := \det(z_1, z_2, \dots, z_n)
\]
\begin{defi}
There exists exactly one mapping $\det$ such that
\begin{enumerate}[(i)]
\item It is linear in the first row, i.e.
\[
\det(z_1 + \lambda\tilde{z_1}, z_2, \cdots, z_n) = \det(z_1, z_2, \cdots, z_n) + \lambda \det(\tilde{z_1}, z_2, \cdots, z_n)
\]
\item If $\tilde{A}$ is obtained from $A$ by swapping two rows
\[
\det(A) = -\det(\tilde{A})
\]
\item $\det(I) = 1$
\end{enumerate}
This mapping is called the determinant, and we write
\[
\det A = \begin{vmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn} \\
\end{vmatrix}
\]
\end{defi}
\begin{eg}
\[
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix}
= a_{11}a_{22} - a_{21}a_{12}
\]
\begin{align*}
\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{vmatrix}
= &a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\
&- a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}
\end{align*}
\end{eg}
\begin{rem}
\begin{enumerate}[(i)]
\item Every determinant is linear in every row
\item If two rows are equal then $\det(A) = 0$
\item If one row (w.l.o.g. $z_1$) is a linear combination of the others, so
\[
z_1 = \alpha_2z_2 + \alpha_3z_3 + \cdots + \alpha_nz_n, ~~\alpha_1, \cdots, \alpha_n \in \field
\]
then
\begin{align*}
\det(z_1, z_2, \cdots, z_n) = &\alpha_2 \underbrace{\det(z_2, z_2, z_3, \cdots, z_n)}_0 + \\
&\alpha_3 \underbrace{\det(z_3, z_2, z_3, \cdots, z_n)}_0 + \\
&\cdots + \\
&\alpha_n \underbrace{\det(z_n, z_2, z_3, \cdots, z_n)}_0 \\
&= 0
\end{align*}
\item Adding a multiple of a row to another doesn't change the determinant
\item Define
\begin{align*}
T_{ij} && \text{ swaps rows } i \text{ and } j \\
M_i(\lambda) && \text{ multiplies row } i \text{ with } \lambda \ne 0 \\
L_{ij}(\lambda) && \text{ adds } \lambda \text{-times row } j \text{ to row } i \\
\end{align*}
Then
\begin{align*}
\det(T_{ij} A) &= -\det(A) \\
\det(L_{ij}(\lambda) A) &= \det(A) \\
\det(M_i(\lambda) A) &= \lambda\det(A)
\end{align*}
\end{enumerate}
\end{rem}
\begin{lem}
Let $\det$ be the determinent, and $A, B \in \field^{n \times n}$. Let $A$ be in row echelon form, then
\[
\det(AB) = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn} \cdot \det(B)
\]
\end{lem}
\begin{proof}
First consider the case of $A$ not being invertible. This means that the last row of $A$ is a zero row, which in turn means that $\det(A) = 0$.
This also means that the last row of $AB$ is a zero row and therefore $\det(AB) = 0$.
Now let $A$ be invertible. This means that all the diagonal entries are non-zero. It is possible to bring $A$ into diagonal form without changing
the diagonal entries themselves. So, w.l.o.g. let $A$ be in diagonal form:
\begin{equation}
A = M_n(a_{nn}) \cdot \cdots \cdot M_2(a_{22})M_1(a_{11}) I
\end{equation}
and thus
\begin{equation}
\begin{split}
\det(AB) &= \det(M_n(a_{nn}) \cdot \cdots \cdot M_2(a_{22})M_1(a_{11}) B) \\
&= a_{nn} \cdot \cdots \cdot a_{22} \cdot a_{11} \det(B)
\end{split}
\end{equation}
\end{proof}
\begin{rem}
For $B = I$ this results in
\[
\det(A) = a_{11} a_{22} \cdots a_{nn}
\]
\end{rem}
\begin{thm}
Let $A, B \in \field^{n \times n}$. Then
\[
\det AB = \det A \cdot \det B
\]
\end{thm}
\begin{proof}
Let $i, j \in \set{1, \cdots, n}$ and $\lambda \ne 0$. Then
\begin{subequations}
\begin{equation}
\det(T_{ij} AB) = -\det(AB)
\end{equation}
\begin{equation}
\det(L_{ij}(\lambda) AB) = \det(AB)
\end{equation}
\end{subequations}
Bring $A$ with $T_{ij}$ and $L_{ij}(\lambda)$ operations into row echelon form. Then
\begin{equation}
\det(AB) = a_{11}a_{22} \cdots a_{nn} \cdot \det(B)
\end{equation}
and therefore
\begin{equation}
\det(AB) = \det A \cdot \det B
\end{equation}
\end{proof}
\begin{cor}
\[
A \in \field^{n \times n} \text{ invertible } \iff \det A \ne 0
\]
\end{cor}
\begin{proof}
Row operations don't effect the invertibility or the determinant (except for the sign) of a matrix. Therefore we can limit ourselves to matrices in
row echelon form (w.l.o.g.). Let $A$ be in row echelon form, then
\begin{equation}
\begin{split}
\det A \ne 0 &\iff a_{11} a_{22} \cdots a_{nn} \ne 0 \\
&\iff a_{11} \ne 0, a_{22} \ne 0, \cdots, a_{nn} \ne 0 \\
&\iff A \text{ invertible since diagonal entries are non-zero}
\end{split}
\end{equation}
\end{proof}
\begin{thm}
\[
\det A = \det A^T
\]
\end{thm}
\begin{proof}
First consider the explicit representation of row operations:
\begin{subequations}
\begin{equation}
T_{ij} = \kbordermatrix{
& & j & & i & \\
& 1 & & & & \\
i & & 0 & & 1 & \\
& & & 1 & & \\
j & & 1 & & 0 & \\
& & & & & 1 \\
}
\end{equation}
\begin{equation}
L_{ij}(\lambda) = \kbordermatrix{
& & & & j & \\
& 1 & & & & \\
i & & 1 & & \lambda & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1 \\
}
\end{equation}
\end{subequations}
Thus we can see
\begin{subequations}
\begin{equation}
\det(T_{ij}) = \det(T_{ij}^T) = -1
\end{equation}
\begin{equation}
\det(L_{ij}(\lambda)) = \det(L_{ij}(\lambda)^T) = 1
\end{equation}
\end{subequations}
Let $T$ be one of those matrices. Then
\begin{equation}
\begin{split}
\det((TA)^T) &= \det(A^T \cdot T^T) \\
&= \det A^T \cdot \det T^T \\
&= \det A^T \cdot \det T \\
\end{split}
\end{equation}
and
\begin{equation}
\det TA = \det A \cdot \det T
\end{equation}
And therefore
\begin{equation}
\det((TA)^T) = \det(TA) \iff \det A^T = \det A
\end{equation}
Now w.l.o.g. let $A$ be in row echelon form. Let $A$ be non-invertible, i.e. the last row is a zero row. Thus $\det A = 0$.
This implies that $A^T$ has a zero column. Row operations that bring $A^T$ into row echelon form (w.l.o.g.) perserve this zero column. Therefore the
resulting matrix must also have a zero column, and thus $\det(A^T) = 0$.
Now assume $A$ is invertible, and use row operations to bring $A$ into a diagonalised form (w.l.o.g.). For diagonalised matrices we know that
\begin{equation}
A = A^T \implies \det A = \det A^T
\end{equation}
\end{proof}
\begin{rem}
Let $A_{ij}$ be the matrix you get by removing the $i$-th row and the $j$-th column from $A$.
\[
\det A = \sum_{i=1}^n (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij}), ~~j \in \set{1, \cdots, n}
\]
\end{rem}
\begin{rem}[Leibniz formula]
Let $n \in \natn$, and let there be a bijective mapping
\[
\sigma: \set{1, \cdots, n} \longrightarrow \set{1, \cdots, n}
\]
$\sigma$ is a permutation. The set of all permutations is labeled $S_n$, and it contains $n!$ elements. Then
\[
\det A = \sum_{\sigma \in S_n} \sgn(\sigma) \prod_{i=1}^n a_{i, \sigma(i)}
\]
A permutation that swaps exactly two elements is called elementary permutation. Every permutation can be written as a number of consecutively executed elementary permutations.
\[
\sgn(\sigma) = (-1)^k
\]
where $\sigma$ is the permutation in question and $k$ is the number of elementary permutations it consists of.
\end{rem}
\end{document}

Binary file not shown.

0
script.synctex(busy) Normal file
View file

View file

@ -7,6 +7,7 @@
\usepackage[shortlabels]{enumitem}
\usepackage{multicol}
\usepackage{tikz}
\usepackage{kbordermatrix}
\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles}
\usepackage{color}
@ -23,6 +24,7 @@
\DeclareMathOperator{\spn}{span}
%\DeclareMathOperator{\dim}{dim}
\DeclareMathOperator{\sgn}{sgn}
\newcommand{\natn}{\mathbb{N}}
\newcommand{\intn}{\mathbb{Z}}
@ -54,6 +56,9 @@
\newcommand{\conv}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}}
\newcommand{\convinf}{\conv{n \rightarrow \infty}}
\renewcommand{\kbldelim}{(}
\renewcommand{\kbrdelim}{)}
\newcommand{\reader}{Left as an exercise for the reader.}
\newcommand{\setvert}{\,\vert\,}
\newcommand{\set}[2][]{%
@ -99,7 +104,7 @@
\begin{document}
\title{Mathemacs for Physicists}
\title{Mathematics for Physicists}
\author{https://www.github.com/Lauchmelder23/Mathematics}
\maketitle
\tableofcontents