finished laurent series

This commit is contained in:
Robert 2021-05-14 14:39:26 +02:00
parent a9a3bd7d0f
commit 600457b421
3 changed files with 14383 additions and 13541 deletions

View file

@ -9,4 +9,5 @@
\subfile{sections/complex_diff.tex}
\subfile{sections/contour_integrals.tex}
\subfile{sections/identity_continuation.tex}
\subfile{sections/laurent_series.tex}
\end{document}

View file

@ -0,0 +1,289 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Laurent Series}
\begin{defi}[Classification of isolated singularities]
Let $f: U \rightarrow \cmpln$ and $U \subset \cmpln$ open. Then $z_0 \in \cmpln \setminus \set{U}$ is said to be an isolated singularity if
there exists an $\epsilon > 0$ such that $\oball[\epsilon](z_0) \setminus \set{z_0} \subset U$.
An isolated singularity $z_0$ is said to be
\begin{enumerate}[(i)]
\item \textit{removable} if $f$ can be analytically continued on $U \cup \set{z_0}$
\item a \textit{pole} if $\exists m \ge 1$ such that
\[
(z- z_0)^m f(z)
\]
has a removable singularity in $z_0$. The smallest such $m$ is the order of the pole.
\item \textit{essential} if it is neither removable nor a pole of finite degree.
\end{enumerate}
\end{defi}
\begin{eg}
\begin{enumerate}[(i)]
\item The function $f(z) = \frac{\sin z}{z}$ is holomorphic on $\cmpln \setminus \set{0}$, and has a removable singularity in $z_0 = 0$.
An analytic continuation of $f$ on all of $\cmpln$ is given by
\[
z \longmapsto \sum_{n = 0}^{\infty} (-1)^n \frac{z^{2n}}{(2n + 1)!}
\]
\item Let $g: U \rightarrow \cmpln$ be holomorphic with $g(z_0) \ne 0$ for $z_0 \in U$. The function
\[
f(z) = \frac{g(z)}{(z - z_0)^m}
\]
has a pole of $m$-th degree in $z_0$.
\item Consider the function
\begin{align*}
f: \cmpln \setminus \set{0} &\longrightarrow \cmpln \\
z &\longmapsto e^{\rec{z}}
\end{align*}
$f$ has an essential singularity in $z_0 = 0$. The power series representation of $f$ is
\[
f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} \rec{z^n}
\]
This doesn't remove the sungularity in $z_0$, and the pole is of infinite order
\[
z^k \abs{f(z)} \conv{z \rightarrow 0} \infty, \quad \forall k \in \natn
\]
\end{enumerate}
\end{eg}
\begin{thm}[Riemann's Theorem]
An isolated singularity $z_0 \in U$ of a holomorphic function $f: U \setminus \set{z_0} \rightarrow \cmpln$ is removable if and only if
$f$ is bounded in a punctured neighbourhood of $z_0$, i.e.
\[
\exists \epsilon > 0, c \ge 0: \quad \abs{f(z)} \le c \quad \forall z \in \set[0 < \abs{\zeta - z_0} < \epsilon]{\zeta \in \cmpln}
\]
\end{thm}
\begin{proof}
If $f$ can be analytically continued on $U \cup \set{z_0}$, then this continuation is continuous in $z_0$ and thus bounded in a neighbourhood of $z_0$.
Inversely, if there exists some $c \ge 0$ and $\epsilon > 0$ such that
\begin{equation}
\abs{f(z)} \le c \quad \forall z \in \set[0 < \abs{\zeta - z_0} < \epsilon]{\zeta \in \cmpln}
\end{equation}
Define the function
\begin{equation}
\begin{split}
g: U &\longrightarrow \cmpln \\
z &\longmapsto \begin{cases}
(z - z_0)^2 f(z), & z \ne z_0 \\
0, & z = z_0
\end{cases}
\end{split}
\end{equation}
Then
\begin{align}
\lim_{z \rightarrow z_0} \frac{\abs{g(z) - g(z_0)}}{\abs{z - z_0}} = \lim_{z \rightarrow z_0} \frac{\abs{z - z_0}^2 \abs{f(z)}}{\abs{z - z_0}} = \lim_{z \rightarrow z_0} \left( \abs{z - z_0} \abs{f(z)} \right) = 0
\end{align}
Thus $g$ is holomorphic on $U$ with $g(z_0) = g'(z_0) = 0$, meaning that
\begin{equation}
g(z) = \sum_{n=2}^{\infty} c_n (z - z_0)^n
\end{equation}
with $c_n \in \cmpln$. So the function
\begin{align}
\tilde{f}: U &\longrightarrow \cmpln \\
z &\longmapsto \sum_{n=2}^{\infty} c_n (z - z_0)^{n-2} = \sum_{n=0}^{\infty} c_{n+2} (z - z_n)^n
\end{align}
is a holomorphic continuation of $f$ on $U \cup \set{z_0}$.
\end{proof}
\begin{defi}[Laurent Series]
If we define the coefficients $c_n \in \cmpln$ for $n \in \intn$, and $z, z_0 \in \cmpln$, then the series
\[
\sum_{n \in \intn} c_n (z - z_0)^n := \underbrace{\sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}}_{\text{Analytic part}} + \underbrace{\sum_{n=0}^{\infty} c_n (z - z_0)^n}_{\text{Principal part}}
\]
is said to be a Laurent series. It converges absolutely if the parts do so.
If $\frac{1}{r} \in [0, \infty]$ is the convergence radius of the principal part and $R \in [0, \infty]$ the convergence radius of the analytic branch,
then the Laurent series converges on the annulus
\[
K_{r,R}(z_0) := \set[r < \abs{z - z_0} < R]{z \in \cmpln}
\]
and is holomorphic.
\end{defi}
\begin{lem}
If the series $f(z) := \sum_{n \in \intn} c_n (z - z_0)^n$ converges on $\cball[r,R](z_0)$, then for $\rho \in (r, R)$
\[
c_n = \rec{2\pi i} \oint_{|z - z_0| = \rho} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}, \quad n \in \intn
\]
\end{lem}
\begin{proof}
Due to the uniform convergence of the series on $\cball[r,R](z_0)$, we have
\begin{equation}
\begin{split}
\oint_{|z - z_0| = \rho} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z} = &\sum_{k \in \intn} c_k \oint_{|z - z_0| = \rho} (z - z_0)^{k-n-1} \dd{z} \\
= &\sum_{k \in \intn} c_k \cdot 2\pi i \delta_{k-n-1, -1} = 2\pi i \cdot c_n
\end{split}
\end{equation}
with $\delta_{i,j}$ the Kronecker delta, defined as
\begin{equation}
\delta_{i, j} := \begin{cases}
1, & i = j \\
0, & i \ne j
\end{cases}
\end{equation}
\end{proof}
\begin{thm}
Let $f: \cball[r,R](z_0) \rightarrow \cmpln$ be holomorphic, then
\[
f(z) = \sum_{n \in \intn} c_n (z - z_0)^n
\]
with
\[
c_n = \rec{2\pi i} \oint_{|z - z_0| = \rho} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}, \quad n \in \intn, ~\rho \in (r, R)
\]
\end{thm}
\begin{proof}
W.l.o.g. we set $z_0 = 0$. Similar to the proof of Cauchy's theorem, we can prove Cauchy's theorem for annuli.
To do that we define the following integration path
\begin{center}
\begin{tikzpicture}[scale=0.6]
\draw[fill] (-7, 0) node[below] {$z_0$} circle [radius=0.05];
\draw (-7, 0) circle [radius=4];
\draw (-7, 0) circle [radius=1.5];
\draw (-7, 0) -- node[right] {$r$} ({-7 + 1.5*cos(70)}, {0 + 1.5*sin(70)});
\draw (-7, 0) -- node[above left=0.2] {$R$} ({-7 + 4*cos(110)}, {0 + 4*sin(110)});
\draw[fill] (-7, -2.75) node[left] {$z$} circle [radius=0.05];
\draw (-7, -2.75) -- node[below] {$\epsilon$} ({-7 + 1*cos(10)}, {-2.75 + 1*sin(10)});
\begin{scope}[decoration={
markings,
mark=at position 0.5 with {\arrow{latex}}}
]
\draw[thick, postaction={decorate}, domain=180:0] plot ({-7 + 1*cos(\x)}, {-2.75 + 1*sin(\x)});
\draw[thick, postaction={decorate}, domain=0:-180] plot ({-7 + 1*cos(\x)}, {-2.75 + 1*sin(\x)});
\end{scope}
\draw[very thick, ->, >={latex}] (-2, 0) -- (2, 0);
\draw[fill] (7, 0) node[below] {$z_0$} circle [radius=0.05];
\draw (7, 0) circle [radius=4];
\draw (7, 0) circle [radius=1.5];
\draw (7, 0) -- node[right] {$r$} ({7 + 1.5*cos(70)}, {0 + 1.5*sin(70)});
\draw (7, 0) -- node[above left=0.2] {$R$} ({7 + 4*cos(110)}, {0 + 4*sin(110)});
\draw[fill] (7, -2.75) node[left] {$z$} circle [radius=0.05];
\begin{scope}[decoration={
markings,
mark= between positions 0.2 and 0.8 step 0.3 with {\arrow{latex}}}
]
\draw[thick, postaction={decorate}, domain=5:355, samples=50] plot ({7 + 1.75*cos(\x)}, {0 + 1.75*sin(\x)});
\draw[thick, postaction={decorate}, domain=-2:-358, samples=50] plot ({7 + 3.75*cos(\x)}, {0 + 3.75*sin(\x)});
\end{scope}
\begin{scope}[decoration={
markings,
mark= at position 0.5 with {\arrow{latex}}}
]
\draw[thick, postaction={decorate}] ({7 + 1.75*cos(355)}, {0 + 1.75*sin(355)}) -- ({7 + 3.75*cos(357.5)}, {0 + 3.75*sin(357.5)});
\draw[thick, postaction={decorate}] ({7 + 3.75*cos(2)}, {0 + 3.75*sin(2)}) -- ({7 + 1.75*cos(5)}, {0 + 1.75*sin(5)});
\end{scope}
\draw ({7 + 1.5*cos(200)}, {0 + 1.5*sin(200)}) node[right] {$\delta$} -- ({7 + 1.75*cos(200)}, {0 + 1.75*sin(200)});
\draw ({7 + 3.75*cos(200)}, {0 + 3.75*sin(200)}) -- ({7 + 4*cos(200)}, {0 + 4*sin(200)}) node[left] {$\delta$};
\end{tikzpicture}
\end{center}
The two parallel path segments in the right figure are actually overlapping. They have been drawn next to each other for visual clarity.
Now we can write
\begin{equation}
\begin{split}
f(z) = &\rec{2\pi i} \oint_{|\zeta - z| = \epsilon} \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \\
= &\rec{2\pi i} \oint_{|\zeta| = R - \delta} \frac{f(\zeta)}{\zeta - z} \dd{\zeta} - \rec{2\pi i} \oint_{|\zeta| = r + \delta} \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \\
= &\rec{2\pi i} \oint_{|\zeta| = R - \delta} \frac{f(\zeta)}{\zeta} \rec{1 - \frac{z}{\zeta}} \dd{\zeta} + \rec{2\pi i} \rec{z} \oint_{|\zeta| = r + \delta} f(\zeta) \rec{1 - \frac{\zeta}{z}} \dd{\zeta}
\end{split}
\end{equation}
We can now make use of the geometric series:
\begin{subequations}
\begin{equation}
\rec{1 - \frac{z}{\zeta}} = \sum_{n=0}^{\infty} \left( \frac{z}{\zeta} \right)^n, \quad \abs{z} < \abs{\zeta}
\end{equation}
\begin{equation}
\rec{1 - \frac{\zeta}{z}} = \sum_{n=0}^{\infty} \left( \frac{\zeta}{z} \right)^n, \quad \abs{\zeta} < \abs{z}
\end{equation}
\end{subequations}
Thus we get
\begin{equation}
\begin{split}
f(z) = &\rec{2\pi i} \oint_{|\zeta| = R - \delta} \frac{f(\zeta)}{\zeta} \sum_{n=0}^{\infty} \frac{z^n}{\zeta^n} \dd{\zeta} + \rec{2\pi i} \rec{z} \oint_{|\zeta| = r + \delta} f(\zeta) \sum_{n=0}^{\infty} \frac{\zeta^n}{z^n} \dd{\zeta} \\
= &\sum_{n=0}^{\infty} z^n \left(\rec{2\pi i} \oint_{|\zeta| = R - \delta} \frac{f(\zeta)}{\zeta^{n+1}} \dd{\zeta}\right) + \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \left(\rec{2\pi i} \oint_{|\zeta| = r + \delta} f(\zeta)\zeta^n \dd{\zeta}\right) \\
= &\sum_{n=0}^{\infty} c_n z^n + \sum_{n=1}^{\infty} z^{-n} \underbrace{\left(\rec{2\pi i} \oint_{|\zeta| = r + \delta} \frac{f(\zeta)}{\zeta^{-n + 1}} \dd{\zeta} \right)}_{= c_{-n}}
\end{split}
\end{equation}
\end{proof}
\begin{eg}
Consider
\[
f(z) = \frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}
\]
Using the geometric series we can then find for $\cball[0,1](0)$
\[
f(z) = -\rec{z} - \sum_{n=0}^{\infty} z^n
\]
the Laurent series of $f$ around $z_0 = 0$. For $\cball[0,1](1)$ we get
\begin{align*}
f(z) &= \rec{z-1} - \rec{z-1+1} = \rec{z-1} - \rec{1 - (1 - z)} \\
&= \underbrace{\rec{z-1}}_{\text{Principal part}} - \underbrace{\sum_{n=0}^{\infty} (1-z)^n}_{\text{Analytic part}}
\end{align*}
\end{eg}
\begin{eg}
\[
f(z) = e^{\rec{z}} = \sum_{n=0}^{\infty} \rec{n!}\left(\rec{z}\right)^n = 1 + \underbrace{\sum_{n=1}^{\infty} \rec{n!} \rec{z^n}}_{\text{Principal part}}
\]
converges on $\cball[0, \infty](0)$.
\end{eg}
\begin{thm}
If $f: U \setminus\set{z_0} \rightarrow \cmpln$ has an essential singularity in $z_0 \in U$, then for every $\epsilon > 0$ the
image $f(\oball[\epsilon](z_0) \setminus \set{z_0})$ is dense in $\cmpln$, i.e.
\[
\forall \alpha \in \cmpln ~\exists \anyseqdef[z]{U \setminus \set{z_0}}: \quad z_n \longrightarrow z_0 \implies f(z_n) \longrightarrow \alpha
\]
\end{thm}
\begin{proof}
\reader
\end{proof}
\begin{rem}
We have essentially noticed three things:
\begin{enumerate}[(i)]
\item
\begin{align*}
&f \text{ has a removable singularity in } z_0 \\
\iff &f \text{ is bounded in a neighbourhood of } z_0 \\
\iff &\lim_{\abs{z - z_0} \rightarrow 0} f(z) \text{ exists and is bounded}
\end{align*}
\item
\begin{align*}
&f \text{ has a pole of order } m \ge 1 \text{ in } z_0 \\
\iff &\lim_{\abs{z - z_0} \rightarrow 0} \abs{f(z)} = \infty \text{ and } \lim_{\abs{z - z_0} \rightarrow 0} (z- z_0)^m f(z) < \infty
\end{align*}
\item
\begin{align*}
&f \text{ has an essential singularity in } z_0 \\
\iff &\text{the set of accumulation points of } f(z) \text{ for } z \longrightarrow z_0 \text{ is all of } \cmpln
\end{align*}
\end{enumerate}
\end{rem}
\begin{defi}
Let $U \subset \cmpln$ be a domain. For holomorphic $g, h: U \rightarrow \cmpln$ with $h \ne 0$ the function
\begin{align*}
f: U \setminus \set[h(z) = 0]{z \in U} &\longrightarrow \cmpln \\
z &\longmapsto \frac{g(z)}{h(z)}
\end{align*}
\sloppy is said to be a meromorphic function. Meromorphic functions are holomorphic on ${U \setminus \set{h(z) = 0}}$.
If $z_0 \in U$ a root of order $m \in \natn$ of $h$ and a root of order $k \in \natn_0$ of $g$, then the isolated singularity in $z_0$ of $f$ is
\begin{itemize}
\item removable for $k \ge m$
\item a pole of order $m - k$ for $k < m$
\end{itemize}
\end{defi}
\end{document}

27634
script.pdf

File diff suppressed because it is too large Load diff