Finished two sections

This commit is contained in:
Robert 2021-03-26 22:56:06 +01:00
parent 42b06eda82
commit 5a9ecc2d55
7 changed files with 352 additions and 3 deletions

View file

@ -198,7 +198,7 @@ Then $\forall J \subset \natn \finite$
Therefore $\series[n]{k} |x_k|$ is bounded and monotonic increasing, and hence it is converging. So $\series{k} |x_k| < \infty$. Therefore $\series[n]{k} |x_k|$ is bounded and monotonic increasing, and hence it is converging. So $\series{k} |x_k| < \infty$.
\end{proof} \end{proof}
\begin{thm} \begin{thm}\label{259}
Every absolutely convergent series converges and the limit does not depend on the order of summation. Every absolutely convergent series converges and the limit does not depend on the order of summation.
\end{thm} \end{thm}
\begin{proof} \begin{proof}

View file

@ -0,0 +1,142 @@
\documentclass[../../script.tex] {subfiles}
%! TEX root = ../../script.tex
\begin{document}
\section{Metric and Normed spaces}
\begin{defi}[Metric space]
A metric space $(X, d)$ is an ordered pair consisting of a set $X$ and a mapping
\[
d: X \times X \longrightarrow [0, \infty]
\]
called metric. This mapping must fulfil the following conditions $\forall x, y, z \in X$:
\begin{itemize}
\item $d(x, y) \ge 0$ \text{ (Positivity)}
\item $d(x, y) = 0 \iff x = y$ \text{ (Definedness)}
\item $d(x, y) = d(y, x)$ \text{ (Symmetry)}
\item $d(x, y) \le d(x, z) + d(z, y)$ \text{ (Triangle inequality)}
\end{itemize}
\end{defi}
\begin{eg}
\begin{enumerate}[(i)]
\item Let $M$ be a set. Then
\[
d(x, y) = \begin{cases}
1, & x \ne y \\
0, & \text{else}
\end{cases}
\]
is called the discrete metric.
\item Let $X$ be the set of edges of a graph.
\begin{align*}
d(x, y) := &\mbox{ Minimum amount of edges that have} \\
&\mbox{ to be passed to get from } x \mbox{ to } y
\end{align*}
\begin{center}
\begin{tikzpicture}[scale=0.75]
\node[shape=circle, draw=black, fill=black] (A) at (0, 0) {};
\node[shape=circle, draw=black] (B) at (1, -4) {};
\node[shape=circle, draw=black] (C) at (3, -2) {};
\node[shape=circle, draw=black] (D) at (5, -3.5) {};
\node[shape=circle, draw=black] (E) at (6.5, -5.5) {};
\node[shape=circle, draw=black, fill=black] (F) at (7, -1) {};
\path [-] (A) edge node[left] {$1$} (B);
\path [-] (B) edge node[above left] {$2$} (C);
\path [-] (B) edge (D);
\path [-] (B) edge (E);
\path [-] (C) edge (D);
\path [-] (C) edge node[above] {$3$} (F);
\path [-] (E) edge (F);
\node[above=0.3cm] at (A) {$x$};
\node[above=0.3cm] at (F) {$y$};
\end{tikzpicture}
\end{center}
\item Let $X$ be the surface of a sphere.
\[
d(x, y) := \text{"Bee line"}
\]
\item Let $X$ be the set of points of the European street network.
\[
d(x, y) := \text{ Shortest route along this network}
\]
\item Let $(X, d_X)$, $(Y, d_Y)$ be metric spaces. Then
\[
d_{X \times Y}((x_1, y_1), (x_2, y_2)) := d_X(x_1, x_2) + d_Y(y_1, y_2)
\]
defines a metric on $X \times Y$.
\end{enumerate}
\end{eg}
\begin{defi}[Normed space]
$(V, \dnorm)$ is said to be a normed space if $V$ is a vector space and
\[
\dnorm: V \longrightarrow [0, \infty)
\]
is a mapping (called norm) with the following properties
\begin{itemize}
\item $\norm{x} \ge 0$ (Positivity)
\item $\norm{x} = 0 \iff x = 0$ (Definedness)
\item $\norm{\lambda x} = |\lambda|\norm{x}$
\item $\norm{x + y} \le \norm{x} + \norm{y}$ (Triangle inequality)
\end{itemize}
To every norm belongs a unique induced metric
\[
d(x, y) = \norm{x - y}
\]
\end{defi}
\begin{eg}[$\realn^n$ with Euclidian norm]
\begin{align*}
\dnorm: \realn^n &\longrightarrow [0, \infty) \\
(x_1, x_2, \cdots, x_n) &\longmapsto \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}
\end{align*}
Then $(\realn^n, \dnorm)$ is a normed space.
\end{eg}
\begin{eg}
\begin{enumerate}[(i)]
\item $(x_1, x_2, \cdots, x_n) \mapsto |x_1| + |x_2| + \cdots + |x_n|$ is also a norm on $\realn^n$.
\item On
\[
V = \set[f \text{ continuous}]{f: [0, 1] \longrightarrow \realn}
\]
we can define the supremum norm
\[
\supnorm{f} = \sup \set[{x \in [0, 1]}]{|f(x)|}
\]
\item We can define sequence spaces as
\[
\ell^p = \set[\series{n} |x_n|^p < \infty]{\anyseqdef{\cmpln^n}}
\]
with the norm
\[
\norm{(x_n)}_p := \sqrt{\series{n} |x_n|^2}
\]
A special space is $\ell^2$, called Hilbert space
\end{enumerate}
\end{eg}
\begin{rem}
The Minkowski metric is not a metric in this sense.
\end{rem}
\begin{defi}[Balls and Boundedness]
Let $\metric$ be a metric space, and $x \in X, r > 0$. We then define
\begin{align*}
\Oball(x) = \set[d(x, y) < r]{y \in X} && \text{Open ball} \\
\Cball(x) = \set[d(x, y) \le r]{y \in X} && \text{Closed ball}
\end{align*}
A subset $M \subset X$ is called bounded if
\[
\exists x \in X, r > 0: ~~M \subset \Oball(x)
\]
\end{defi}
\end{document}

View file

@ -0,0 +1,188 @@
\documentclass[../../script.tex] {subfiles}
%! TEX root = ../../script.tex
\begin{document}
\section{Sequences, Series and Limits}
\begin{defi}[Sequences and Convergence]
Let $\metric$ be a metric space. A sequence is a mapping $\natn \rightarrow X$. We write $\seq{x}_{n \in \natn}$ or $\seq{x}$.
The sequence $\seq{x}$ is said to be convergent to $x \in X$ if
\[
\forall \epsilon > 0 ~\exists N \in \natn ~\forall n \ge N: ~~d(x_n, x) < \epsilon
\]
$x$ is said to be the limit, and sequences that aren't convergent are called divergent.
\end{defi}
\begin{rem}
On $\realn$ the metric is the Euclidian metric $|\cdot|$, therefore this new definition of convergence is merely a generalization of the old one.
\end{rem}
\begin{thm}
Let $\seq{x}$ be a sequence in the metric space $\metric$ and $x \in X$. Then the following statements are equivalent:
\begin{enumerate}[(i)]
\item $\seq{x}$ converges to $x$
\item $\forall \epsilon > 0$ $\oball(x)$ contains all but finitely many elements of the sequence (almost every (a.e.) element)
\item $(d(x, x_n))$ is a null sequence
\end{enumerate}
\end{thm}
\begin{proof}
(ii) is merely a reformulation of (i), and $(ii) \iff (iii)$ follows from
\begin{equation}
d(x_n, x) = |d(x_n, x) - 0|
\end{equation}
\end{proof}
\begin{thm}
Let $\left(x^{(n)}\right) = (x_1^{(n)}, x_2^{(n)}, \cdots, x_d^{(n)}) \subset \realn^d$ and
\[
x = (x_1, \cdots, x_d) \in \realn^d
\]
$\left(x^{(n)}\right)$ is said to converge to $x$ if and only if $x_i^{(n)}$ converges to $x_i$ for all $i$ in $\set{1, \cdots, d}$
\end{thm}
\begin{proof}
For $y = (y_1, \cdots, y_d) \in \realn^d$ we have
\begin{equation}
\norm{y_i} < \norm{y} ~~\forall i \in \set{1, \cdots, d}
\end{equation}
If $\left(x^{(n)}\right)$ converges to $x$, then
\begin{equation}
\abs{x_i^{(n)} - x_i} \le \norm{x^{(n)} - x} \conv{} 0
\end{equation}
If $(x_i^{(n)})$ converges to $x_i ~~\forall i \in \set{1, \cdots d}$, then
\begin{equation}
\forall \epsilon > 0 ~\exists N \in \natn ~\forall n > N: ~~\abs{x_i^{(n)} - x_i} < \frac{\epsilon}{\sqrt{d}} ~~\forall i \in \set{1, \cdots d}
\end{equation}
Thus
\begin{equation}
\begin{split}
\norm{x^{(n)} - x} &= \sqrt{(x_1^{(n)} - x_1)^2 + (x_2^{(n)} - x_2)^2 + \cdots + (x_d^{(n)} - x_d)^2} \\
&\le \sqrt{\frac{\epsilon^2}{d} + \frac{\epsilon^2}{d} + \cdots + \frac{\epsilon}{2}} \\
&= \epsilon
\end{split}
\end{equation}
So $\left(x^{(n)}\right)$ converges to $x$.
\end{proof}
\begin{thm}
Every convergent sequence has exactly one limit and is bounded.
\end{thm}
\begin{proof}
Assume that $x, y$ are limits of $(x_n)$ with $x \ne y$. Then $d(x, y) > 0$. There exists $N_1, N_2 \in \natn$, such that
\begin{subequations}
\begin{align}
d(x_n, x) &< \frac{d(x, y)}{2} ~~\forall n \ge N_1 \\
d(x_n, x) &< \frac{d(x, y)}{2} ~~\forall n \ge N_2
\end{align}
\end{subequations}
From this follows that
\begin{equation}
d(x, y) \le d(x, x_n) + d(x_n, y) < d(x, y) ~~\forall \max\set{N_1, N_2}
\end{equation}
which is a contradiction, thus sequences can have only one limit.
Now if $\seq{x}$ converges to $x$, then
\begin{equation}
\exists N \in \natn ~\forall n \ge N: ~~d(x_n, x) < 1
\end{equation}
Then
\begin{equation}
d(x_n, x) \le \max\set{d(x_1, x), d(x_2, x), \cdots, d(x_{N-1}, x), 1}
\end{equation}
\end{proof}
\begin{thm}
Let $\normed$ be a normed space over $\field$. Let $\seq{x}, \seq{y} \subset V$ be sequences with limits $x, y \in V$
and $\anyseqdef[\lambda]{\field}$ a sequence with limit $\lambda \in \field$. Then
\begin{align*}
x_n + y_n \longrightarrow x + y && \lambda_n x_n \longrightarrow \lambda x
\end{align*}
\end{thm}
\begin{proof}
\reader
\end{proof}
\begin{defi}[Cauchy sequences and completeness]
A sequence $\seq{x}$ in a metric space $\metric$ is called Cauchy sequence if
\[
\forall \epsilon > 0 ~\exists N \in \natn: ~~d(x_n, x_m) < \epsilon ~~\forall m, n \ge N
\]
A metric space is complete if every Cauchy sequence converges. A complete normed space is called Banach space.
\end{defi}
\begin{eg}
\item $(\realn, \abs{\cdot})$ and $(\cmpln, \abs{\cdot})$ are complete
\item $(\ratn, \abs{\cdot})$ is not complete
\end{eg}
\begin{thm}
Every convering series is a Cauchy sequence
\end{thm}
\begin{proof}
Let $\seq{x} \conv{} x$. This means that
\begin{equation}
\forall \epsilon > 0 ~\epsilon N \in \natn: ~~d(x_n, x) < \frac{\epsilon}{2} ~~\forall n \ge N
\end{equation}
Then
\begin{equation}
d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \epsilon ~~\forall m, n \ge N
\end{equation}
\end{proof}
\begin{thm}
$\realn^n$ with the Euclidian norm is complete.
\end{thm}
\begin{proof}
Let $\left(x^{(n)}\right) \subset \realn^n$ be a Cauchy sequence. We know that
\begin{equation}
\forall y \in \realn^n: ~~\abs{y_i} \le \norm{y} ~~\forall i \in \set{1, \cdots, n}
\end{equation}
We also know that $(x_i^{(n)})$ are Cauchy sequences because
\begin{equation}
\abs{(x_i^{(n)} - x_i^{m})} \le \norm{x^{(n)} - x^{(m)}} ~~\forall i \in \set{1, \dots, n}
\end{equation}
Thus $x_i^{(n)} \conv{} x_i$ and therefore $\left(x^{(n)}\right) \conv{} x$.
\end{proof}
\begin{defi}[Series and (absolute) convergence]
Let $\normed$ be a normed space and $\anyseqdef{V}$. The series
\[
\series{k} x_k
\]
is the sequence of partial sums
\[
s_n = \series[n]{k} x_k
\]
If the series converges then $\series{k} x_k$ also denotes the limit.
The series is said to absolutely convergent if
\[
\series{k} \norm{x_k} < \infty
\]
\end{defi}
\begin{thm}
In Banach spaces every absolutely convergent series is convergent.
\end{thm}
\begin{proof}
Let $\normed$, $\anyseqdef{V}$ and require $\series{n} \normed{x_n} < \infty$. We need to show that $s_n = \series[n]{k} x_k$ is a Cauchy sequence.
Let $\epsilon > 0$ and $t_n = \series[n]{k} \norm{x_k}$. $\seq{t}$ is convergent in $\realn$, and thus a Cauchy sequence.
I.e.
\begin{equation}
\exists N \in \natn: ~~|t_n - t| < \epsilon ~~\forall m, n \ge N
\end{equation}
For $n > m > N$:
\begin{equation}
\norm{s_n - s_m} = \norm{\sum_{k=m+1}^n x_k} \le \sum_{k=m+1}^n \norm{x_k} = t_n - t_m = |t_n - t_m| < \epsilon
\end{equation}
\end{proof}
\begin{thm}
Let $\normed$ be a Banach space, $\series{k} x_k$ absolutely convergent and let $\sigma: \natn \rightarrow \natn$ be a bijective mapping. Then
\[
\series{k} x_k = \series{k} x_{\sigma(k)}
\]
\end{thm}
\begin{proof}
Analogous to $\Cref{259}$
\end{proof}
\end{document}

View file

@ -0,0 +1,9 @@
\documentclass[../script.tex]{subfiles}
%! TEX root = ../../script.tex
\begin{document}
\chapter{Topology in Metric spaces}
\subfile{sections/metr_and_normed.tex}
\subfile{sections/seq_ser_limits.tex}
\end{document}

0
script.loe Normal file
View file

Binary file not shown.

View file

@ -50,7 +50,7 @@
\newcommand{\limz}{\lim_{n \rightarrow 0}} \newcommand{\limz}{\lim_{n \rightarrow 0}}
\newcommand{\limsupn}{\limsup_{n \rightarrow \infty}} \newcommand{\limsupn}{\limsup_{n \rightarrow \infty}}
\newcommand{\liminfn}{\liminf_{n \rightarrow \infty}} \newcommand{\liminfn}{\liminf_{n \rightarrow \infty}}
\newcommand{\seq}[1]{(#1_n)} \newcommand{\seq}[1]{\left(#1_n\right)}
\newcommand{\nseqdef}[1]{\seq{#1} \subset \natn} \newcommand{\nseqdef}[1]{\seq{#1} \subset \natn}
\newcommand{\rseqdef}[1]{\seq{#1} \subset \realn} \newcommand{\rseqdef}[1]{\seq{#1} \subset \realn}
\newcommand{\cseqdef}[1]{\seq{#1} \subset \cmpln} \newcommand{\cseqdef}[1]{\seq{#1} \subset \cmpln}
@ -59,10 +59,19 @@
\newcommand{\series}[2][\infty]{\sum_{#2 = 1}^{#1}} \newcommand{\series}[2][\infty]{\sum_{#2 = 1}^{#1}}
\newcommand{\finite}{\text{ finite}} \newcommand{\finite}{\text{ finite}}
\newcommand{\conj}[1]{\overline{#1}} \newcommand{\conj}[1]{\overline{#1}}
\newcommand{\oball}[1][\epsilon]{B_{#1}}
\newcommand{\closure}[1]{\overline{#1}} \newcommand{\closure}[1]{\overline{#1}}
\newcommand{\must}[1][=]{\stackrel{!}{#1}} \newcommand{\must}[1][=]{\stackrel{!}{#1}}
\newcommand{\metric}[1][X]{(#1, d)}
\newcommand{\dnorm}{\norm{\cdot}}
\newcommand{\normed}[1][V]{(#1, \dnorm)}
\newcommand{\supnorm}[1]{\norm{#1}_{\infty}}
\newcommand{\oball}[1][\epsilon]{B_{#1}}
\newcommand{\cball}[1][\epsilon]{K_{#1}}
\newcommand{\Oball}{\oball[r]}
\newcommand{\Cball}{\cball[r]}
\newcommand{\conv}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}} \newcommand{\conv}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}}
\newcommand{\convinf}{\conv{n \rightarrow \infty}} \newcommand{\convinf}{\conv{n \rightarrow \infty}}
@ -141,5 +150,6 @@
\subfile{chapters/real_analysis_1.tex} \subfile{chapters/real_analysis_1.tex}
\subfile{chapters/linear_algebra.tex} \subfile{chapters/linear_algebra.tex}
\subfile{chapters/real_analysis_2.tex} \subfile{chapters/real_analysis_2.tex}
\subfile{chapters/topo_of_metr_spaces.tex}
\end{document} \end{document}