minor tweaks in first two chapters
This commit is contained in:
parent
2d333df67a
commit
43d97281b6
3 changed files with 14746 additions and 14695 deletions
|
@ -5,7 +5,7 @@
|
|||
\begin{document}
|
||||
\section{Logic}
|
||||
\begin{defi}[Statements]
|
||||
A statement is a sentence (mathematically or colloquially) which can be either true or false.
|
||||
A statement is a sentence (mathematical or colloquial) which can be either true or false.
|
||||
\end{defi}
|
||||
|
||||
\begin{eg}
|
||||
|
@ -54,7 +54,7 @@ are also statements. We can represent connectives with truth tables
|
|||
\end{rem}
|
||||
|
||||
\begin{defi}[Hierarchy of logical operators]
|
||||
$\neg$ is stronger than $\wedge$ and $\vee$, which are stronger than $\implies$ and $\iff$.
|
||||
$\neg$ binds stronger than $\wedge$ and $\vee$, which bind stronger than $\implies$ and $\iff$.
|
||||
\end{defi}
|
||||
|
||||
\begin{eg}\leavevmode
|
||||
|
@ -88,7 +88,7 @@ Let $\Phi(x)$ be a statement depending on $x$. Then $\forall x ~\Phi(x)$ and $\e
|
|||
\item If the domain is infinite the truth value of $\forall x ~\Phi(x)$ cannot be algorithmically determined.
|
||||
\item $\forall x ~\Phi(x)$ and $\forall y ~\Phi(y)$ are equivalent.
|
||||
\item Same operators can be exchanged, different ones cannot.
|
||||
\item $\forall x ~\Phi(x)$ is equivalent to $\neg\exists x ~\neg\Phi(x)$.
|
||||
\item $\forall x ~\Phi(x)$ is equivalent to $\neg(\exists x ~\neg\Phi(x))$.
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue