Finished surface integrals
This commit is contained in:
parent
6e95b496bb
commit
194c9ec1eb
|
@ -7,4 +7,5 @@
|
|||
\pagebreak
|
||||
|
||||
\subfile{sections/line_integrals.tex}
|
||||
\subfile{sections/surface_integrals.tex}
|
||||
\end{document}
|
272
chapters/sections/surface_integrals.tex
Normal file
272
chapters/sections/surface_integrals.tex
Normal file
|
@ -0,0 +1,272 @@
|
|||
% !TeX root = ../../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\section{Surface Integrals}
|
||||
|
||||
In this section we will exclusively look at surfaces in $\realn^3$.
|
||||
|
||||
\begin{defi}
|
||||
Let $V \subset \realn^2$ be open. A mapping $\phi: V \rightarrow \realn^3$ is said to be a parametrized surface if it is $C^1$ and if
|
||||
$\partial_1 \phi(t), ~\partial_2 \phi(t)$ are linearly independent $\forall t \in V$.
|
||||
A subset $S \subset \realn3$ is said to be a regular surface, if there exist:
|
||||
\begin{itemize}
|
||||
\item open subsets $U_1, \cdots, U_n \subset \realn^3$
|
||||
\item open subsets $V_1, \cdots, v_n \subset \realn^2$
|
||||
\item mappings $\phi_i: V_i \longrightarrow U_i \cap S$
|
||||
\end{itemize}
|
||||
such that the $\phi_i$ are parametrized surfaces, bijective and have a continuous $\inv{\phi}$.
|
||||
These $S$ are also said to be embedded, two-dimensional manifolds, and the $\phi_i$ are then called maps.
|
||||
The collection of all maps $\phi_i$ are called atlas.
|
||||
|
||||
$S \subset \realn^3$ is said to be a piecewise regular surface if there exist parametrized surfaces $\phi_1, \cdots, \phi_n$,
|
||||
parametrized paths $\gamma_1, \cdots, \gamma_k$ and points $P_1, \cdots, P_l$ such that
|
||||
\[
|
||||
S = \phi_1(V_1) \cup \cdots \cup \phi_n(V_n) \cup \gamma(I_1) \cup \cdots \cup \gamma(I_k) \cup \set{P_1, \cdots, P_l}
|
||||
\]
|
||||
\end{defi}
|
||||
|
||||
\begin{eg}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Consider
|
||||
\begin{align*}
|
||||
\phi: (0, \infty) \times \realn &\longrightarrow \realn^3 \\
|
||||
(s, t) &\longmapsto (s \cos t, s \sin t, t)
|
||||
\end{align*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[axis equal]
|
||||
\addplot3 [surf, domain=0:10, y domain=0:2*pi, samples=20, z buffer=sort]
|
||||
(
|
||||
{x * cos(y / (2*pi) * 360)}, {x * sin(y / (2*pi) * 360)}, {y}
|
||||
);
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\item The set
|
||||
\[
|
||||
S^2 := \set[x^2 + y^2 + z^2 = 1]{(x, y, z) \in \realn^3}
|
||||
\]
|
||||
is a regular surface. A map describing this surface would be
|
||||
\begin{align*}
|
||||
\phi: (0, 2\pi) \times (0, \pi) &\longrightarrow \realn^3 \\
|
||||
(s, t) &\longmapsto (\cos(s)\sin(t), \sin(s),\sin(t), \cos(t))
|
||||
\end{align*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[axis equal]
|
||||
\addplot3 [surf, domain=0:360, y domain=0:180, samples=20, z buffer=sort]
|
||||
(
|
||||
{cos(x)*sin(y)}, {sin(x)*sin(y)}, {cos(y)}
|
||||
);
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\item The unit cube
|
||||
\[
|
||||
\set[\max\set{\abs{x}, \abs{y}, \abs{z}}]{(x, y, z) \in \realn^3}
|
||||
\]
|
||||
is a piecewise regular surface.
|
||||
\end{enumerate}
|
||||
\end{eg}
|
||||
|
||||
\begin{rem}
|
||||
Our definition of regular curves is not equal to the definition of one-dimensional embedded manifolds, because regular curves are not allowed to intersect themselves.
|
||||
\end{rem}
|
||||
|
||||
\begin{defi}[Cross Product]
|
||||
Define the vectors $v = (v_1, v_2, v_3)$ and $w = (w_1, w_2, w_3) \in \realn^3$. Then
|
||||
\[
|
||||
v \times w = \begin{pmatrix}
|
||||
v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1
|
||||
\end{pmatrix}^T
|
||||
\]
|
||||
is the cross product of $v$ and $w$.
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
\begin{enumerate}[(i)]
|
||||
\item The cross product is linear in $v$ and $w$, with
|
||||
\[
|
||||
v \times w = w \times v
|
||||
\]
|
||||
\item $v \times w$ is orthogonal to $v$ and $w$.
|
||||
\item The cross product is not associative, but it fulfils the Jacobi-identity:
|
||||
\[
|
||||
u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0
|
||||
\]
|
||||
\item $v$ and $w$ are linearly dependent if and only if $v \times w = 0$
|
||||
\item The definition depends on the coordinates of $v$ and $w$. So the choice of a basis matters. In reality the cross product depends on the scalar product.
|
||||
\item Consider the space of anti-symmetric matrices
|
||||
\begin{align*}
|
||||
V = \set[A^T = -A]{A \in \realn^{n \times n}} && \dim V = \frac{1}{2} n (n - 1)
|
||||
\end{align*}
|
||||
The cross product is an outer product on $V$. $V$ can be interpreted as an anti-symmetric bilinear form,
|
||||
or as the space of infinitesimal rotations (Lie-algebra to the Lie-group of rotations). This is not relevant.
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
|
||||
\begin{defi}
|
||||
Let $V \subset \realn^2$ be open and $\phi: V \rightarrow \realn^3$ a parametrized surface. Then
|
||||
\[
|
||||
\sigma_{\phi}(t) = \partial_1\phi(t) \times \partial_2\phi(t)
|
||||
\]
|
||||
is said to be a vector surface element of $\phi$, and $\norm{\sigma_{\phi}(t)}$ is the scalar surface element at the point $\phi(t)$.
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
The surface element can be defined for arbitrary $C^1$-mappings. $\phi$ is a parametrized surface if and only if
|
||||
$\sigma_{\phi}(t) \ne 0$ or $\norm{\sigma_{\phi}(t)} \ne 0 ~~\forall t \in V$.
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Consider the unit sphere
|
||||
\begin{align*}
|
||||
\phi: (0, 2\pi) \times (0, \pi) &\longrightarrow \realn^3 \\
|
||||
(s, t) &\longmapsto (\cos(s)\sin(t), \sin(s),\sin(t), \cos(t))
|
||||
\end{align*}
|
||||
The derivatives of $\phi$ are
|
||||
\begin{align*}
|
||||
\partial_1 \phi(s, t) &= (-\sin(t)\sin(s), \sin(t)\cos(s), \cos(t)) \\
|
||||
\partial_2 \phi(s, t) &= (\cos(t)\cos(s), \cos(t)\sin(s), -\sin(t))
|
||||
\end{align*}
|
||||
Then the surface elements are
|
||||
\begin{align*}
|
||||
\sigma_{\phi}(s, t) &= (-\sin^2(t)\cos(s), -\sin^2(t)\sin(s), -\sin(t)\cos(t)) \\
|
||||
\norm{\sigma_{\phi}(s, t)} &= \sin(t)
|
||||
\end{align*}
|
||||
|
||||
\item Let $U \subset \realn^2$ be open, and $f: U \rightarrow \realn$ a continuously differentiable function. Then
|
||||
\[
|
||||
\phi(s, t) = (s, t, f(s, t))
|
||||
\]
|
||||
is a parametrization of the graph of $f$. The derivatives are
|
||||
\begin{align*}
|
||||
\partial_1 \phi(s, t) = (1, 0, \partial_1 f(s, t)) && \partial_2 \phi(s, t) = (0, 1, \partial_2 f(s, t))
|
||||
\end{align*}
|
||||
And the surface elements are
|
||||
\begin{align*}
|
||||
\sigma_{\phi}(s, t) &= (-\partial_1 f(s, t), -\partial_2 f(s, t), 1) \\
|
||||
\norm{\sigma_{\phi}(s, t)} &= \sqrt{(\partial_1 f(s, t))^2 + (\partial_2 f(s, t))^2 + 1}
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
\end{eg}
|
||||
|
||||
\begin{defi}
|
||||
Let $V \subset \realn^2$ be open, $\phi: V \rightarrow \realn^3$ a parametrized surface and $f: \phi(V) \rightarrow \realn$. Then
|
||||
\[
|
||||
\iint_{\phi} f \dd{\sigma} := \iint_V f(\phi(t)) \norm{\sigma_{\phi}(t)} \dd{\lambda^2(t)}
|
||||
\]
|
||||
is said to be the scalar surface integral of $f$ over $\phi$.
|
||||
The integral
|
||||
\[
|
||||
\iint_{\phi} \dd{\sigma}
|
||||
\]
|
||||
is said to be the surface of $\phi(V)$.
|
||||
\end{defi}
|
||||
|
||||
\begin{lem}
|
||||
Let $V, \tilde{V} \subset \realn^2$ be open, $\phi: V \rightarrow \realn^3$ a parametrized surface and $T: \tilde{V} \rightarrow V$ a diffeomorphismus.
|
||||
Set $\psi = \phi \circ T$, then the surface element is
|
||||
\[
|
||||
\sigma_{\psi}(t) = \det(DT(t)) \cdot \sigma_{\phi}(T(t))
|
||||
\]
|
||||
\end{lem}
|
||||
\begin{proof}
|
||||
Calculate
|
||||
\begin{equation}
|
||||
D\psi(t) = D\phi(T(t)) DT(t)
|
||||
\end{equation}
|
||||
Or if we consider each column of the derivative separately
|
||||
\begin{subequations}
|
||||
\begin{equation}
|
||||
\partial_1 \psi = \partial_1 T_1 \cdot \partial_2 \phi + \partial_1 T_2 \cdot \partial_2 \phi
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\partial_2 \psi = \partial_2 T_1 \cdot \partial_1 \phi + \partial_2 T_2 \cdot \partial_1 \phi
|
||||
\end{equation}
|
||||
\end{subequations}
|
||||
Then
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\sigma_{\psi} = \partial_1 \psi \times \partial_2 \psi &= (\partial_1 T_1)(\partial_2 T_2) \partial_1 \phi \times \partial_2 \phi + (\partial_1T_2)(\partial_2 T_1)\partial_2 \phi \times \partial_1 \phi \\
|
||||
&= (\det DT) \sigma_{\phi}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
\end{proof}
|
||||
|
||||
\begin{rem}
|
||||
Let there be the same notation as above, and $f: \phi(V) \rightarrow \realn$
|
||||
\begin{align*}
|
||||
\iint_{\psi} f \dd{\sigma} &= \iint_{\tilde{V}} f(\psi(t)) \norm{\sigma_{\theta}(t)} \dd{\lambda^2(t)} \\
|
||||
&= \iint_{\tilde{V}} f(\phi \circ T(t)) \norm{\sigma_{\psi}(T(t))} \det(DT(t)) \dd{\lambda^2(t)} \\
|
||||
&= \iint_V f(\phi(s)) \norm{\sigma_{\phi}(s)} \dd{\lambda^2(s)} = \iint_{\phi} f \dd{\sigma}
|
||||
\end{align*}
|
||||
In general we have to decompose a (piecewise) regular surface into disjoint regular pieces and parametrize them.
|
||||
The surface integral – so the sum of integrals over the pieces – is independent of the chosen decomposition and parametrization.
|
||||
Structures of lower dimensions (curves, points) don't contribute to surface integrals.
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
\begin{enumerate}[(i)]
|
||||
\item We want to calculate the surface of the unit sphere. Using the parametrization we established earlier, we can get
|
||||
\begin{align*}
|
||||
\iint_{\phi} \dd{\sigma} = \iint_{(0, 2\pi) \times (0, \pi)} \sin(t) \dd{\lambda^2(s, t)} &= \int_0^{\pi} \int_0^{2\pi} \sin(t) \dd{s}\dd{t} \\
|
||||
&= \int_0^{\pi} 2\pi \sin(t) \dd{t} \\
|
||||
&= 4\pi
|
||||
\end{align*}
|
||||
|
||||
\item Let $U \subset \realn^2$ be open and
|
||||
\begin{align*}
|
||||
\phi: U &\longrightarrow \realn^3 \\
|
||||
(s, t) &\longmapsto (s, t, 0)
|
||||
\end{align*}
|
||||
Then $\norm{\sigma_{\phi}} = 1$, and let $f: \realn^2 \times 0 \rightarrow \realn$:
|
||||
\[
|
||||
\iint_{\phi} f \dd{\sigma} = \iint_U f(s, t, 0) \dd{\lambda^2(s, t)}
|
||||
\]
|
||||
\end{enumerate}
|
||||
\end{eg}
|
||||
|
||||
\begin{defi}
|
||||
Let $V \subset \realn^2$ be open, $\phi: V \rightarrow \realn^3$ a parametrized surface and let $E: \phi(V) \rightarrow \realn^3$. Then
|
||||
\[
|
||||
\iint_{\phi} \innerproduct{E}{\dd{\sigma}} := \iint_V \innerproduct{E(\phi(t))}{\sigma_{\phi}(t)} \dd{\lambda^2(t)}
|
||||
\]
|
||||
is said to be the vector surface integral of $E$ over $\phi$.
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
This integral is independent from the parametrization if the determinant $\det DT$ is positive. Then $T$ is said to conserve orientation.
|
||||
Otherwise the integral is switching signs.
|
||||
|
||||
For general (piecewise) regular surfaces one has to watch out that the parametrizations are consistent.
|
||||
There are surfaces (regular surfaces even) where that isn't possible (so called non-orientable surfaces).
|
||||
For these kinds of surfaces the vector surface integral isn't properly defined.
|
||||
|
||||
If a surface splilts $\realn^3$ into an "outside" and an "inside", then we typically choose the parametrization where the surface elements point outwards.
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
We want to integrate
|
||||
\[
|
||||
E(x, y, z) := \left(0, 0, \rec{1 + z^2}(x \sin y + y \cos x)\right)
|
||||
\]
|
||||
over the surface of the unit cube. $E$ points in $z$-direction, so the integrals over the sides disappear.
|
||||
So we can parametrize the "lid"
|
||||
\[
|
||||
(s, t) \longmapsto (s, t, 1) \quad s, t \in [-1, 1]
|
||||
\]
|
||||
and calculate the integral
|
||||
\[
|
||||
\iint \innerproduct{E}{\dd{\sigma}} = \iint_{(-1, 1)^2} \frac{1}{2} (s \sin t + t \cos s) \dd{\lambda^2(s, t)}
|
||||
\]
|
||||
Doing this for the base yields the same result, just with a different sign.
|
||||
So the surface integral over the cube is $0$.
|
||||
\end{eg}
|
||||
\end{document}
|
26272
script.pdf
26272
script.pdf
File diff suppressed because it is too large
Load diff
Loading…
Reference in a new issue