Finished ODEs

This commit is contained in:
Robert 2021-04-01 18:44:29 +02:00
parent de860606fd
commit 019257f008
5 changed files with 577 additions and 1 deletions

View file

@ -326,7 +326,7 @@ We define $\metric$ to be a metric space, $x \in X$ and $A \subset X$. Then
d(x, A) = \inf\set[y \in A]{d(x, y)}
\]
\begin{thm}
\begin{thm}\label{thm:837}
Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \subset D$ and $f: D \rightarrow \realn^n$ continuous and satisfying the local Lipschitz condition in terms of $y$.
Let $a, b \in \realn \cup \set{-\infty, \infty}$ such that
\[