Finished ODEs
This commit is contained in:
parent
de860606fd
commit
019257f008
5 changed files with 577 additions and 1 deletions
|
@ -326,7 +326,7 @@ We define $\metric$ to be a metric space, $x \in X$ and $A \subset X$. Then
|
|||
d(x, A) = \inf\set[y \in A]{d(x, y)}
|
||||
\]
|
||||
|
||||
\begin{thm}
|
||||
\begin{thm}\label{thm:837}
|
||||
Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \subset D$ and $f: D \rightarrow \realn^n$ continuous and satisfying the local Lipschitz condition in terms of $y$.
|
||||
Let $a, b \in \realn \cup \set{-\infty, \infty}$ such that
|
||||
\[
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue