2021-03-23 00:25:22 +01:00
\documentclass [../../script.tex] { subfiles}
% !TEX root = ../../script.tex
\begin { document}
\section { Logic}
\begin { defi} [Statements]
2021-12-05 19:20:22 +01:00
A statement is a sentence (mathematical or colloquial) which can be either true or false.
2021-03-23 00:25:22 +01:00
\end { defi}
\begin { eg}
Statements are
\begin { itemize}
\item Tomorrow is Monday
\item $ x > 1 $ where $ x $ is a natural number
\item Green rabbits grow at full moon
\end { itemize}
No statements are
\begin { itemize}
\item What is a statement?
\item $ x + 20 y $ where $ x, y $ are natural numbers
\item This sentence is false
\end { itemize}
\end { eg}
\begin { defi} [Connectives]
When $ \Phi , \Psi $ are statements, then
\begin { enumerate} [(i)]
\item $ \neg \Phi $ (not $ \Phi $ )
\item $ \Phi \wedge \Psi $ ($ \Phi $ and $ \Psi $ )
\item $ \Phi \vee \Psi $ ($ \Phi $ or $ \Psi $ )
\item $ \Phi \implies \Psi $ (if $ \Phi $ then $ \Psi $ )
\item $ \Phi \iff \Psi $ ($ \Phi $ if and only if (iff.) $ \Psi $ )
\end { enumerate}
are also statements. We can represent connectives with truth tables
\begin { center}
\begin { tabular} { c|c||c|c|c|c|c }
$ \Phi $ & $ \Psi $ & $ \neg \Phi $ & $ \Phi \wedge \Psi $ & $ \Phi \vee \Psi $ & $ \Phi \implies \Psi $ & $ \Phi \iff \Psi $ \\
\hline
t & t & f & t & t & t & t\\
t & f & f & f & t & f & f\\
f & t & t & f & t & t & f\\
f & f & t & f & f & t & t\\
\end { tabular}
\end { center}
\end { defi}
\begin { rem} \leavevmode
\begin { enumerate} [(i)]
\item $ \vee $ is inclusive
\item $ \Phi \implies \Psi $ , $ \Phi \impliedby \Psi $ , $ \Phi \iff \Psi $ are NOT the same
\item $ \Phi \implies \Psi $ is always true if $ \Phi $ is false (ex falso quodlibet)
\end { enumerate}
\end { rem}
\begin { defi} [Hierarchy of logical operators]
2021-12-05 19:20:22 +01:00
$ \neg $ binds stronger than $ \wedge $ and $ \vee $ , which bind stronger than $ \implies $ and $ \iff $ .
2021-03-23 00:25:22 +01:00
\end { defi}
\begin { eg} \leavevmode
\begin { align*}
\neg \Phi \wedge \Psi ~& \cong ~ (\neg \Phi ) \wedge \Psi \\
\neg \Phi \implies \Psi ~& \cong ~ (\neg \Phi ) \wedge \Psi \\
\Phi \wedge \Psi \iff \Psi ~& \cong ~ (\Phi \wedge \Psi ) \iff \Psi \\
\neg \Phi \vee \neg \Psi \implies \neg \Psi \wedge \Psi ~& \cong ~ ((\neg \Phi ) \vee (\neg \Psi )) \implies ((\neg \Psi ) \wedge \Psi )
\end { align*}
We avoid writing statements like $ \Phi \wedge \Psi \vee \Theta $ . A statement that is always true is called a tautology. Some important equivalencies are
\begin { align*}
\Phi ~& \text { equiv.} ~ \neg (\neg \Phi )) \\
\Phi \implies \Psi ~& \text { equiv.} ~ \neg \Psi \implies \neg \Phi \\
\Phi \iff \Psi ~& \text { equiv.} ~ (\Phi \implies \Psi ) \wedge (\Psi \implies \Phi ) \\
\Phi \vee \Psi ~& \text { equiv.} ~ \neg (\neg \Phi \wedge \neg \Psi )
\end { align*}
Logical operators are commutative, associative and distributive.
\end { eg}
\begin { defi} [Quantifiers]
Let $ \Phi ( x ) $ be a statement depending on $ x $ . Then $ \forall x ~ \Phi ( x ) $ and $ \exists x ~ \Phi ( x ) $ are also statements. The interpretation of these statements is
\begin { itemize}
\item $ \forall x ~ \Phi ( x ) $ : "For all $ x $ , $ \Phi ( x ) $ holds."
\item $ \exists x ~ \Phi ( x ) $ : "There is (at least one) $ x $ s.t. $ \Phi ( x ) $ holds."
\end { itemize}
\end { defi}
\begin { rem} \leavevmode
\begin { enumerate} [(i)]
\item $ \forall x ~x \ge 1 $ is true for natural numbers, but not for integers. We must specify a domain.
\item If the domain is infinite the truth value of $ \forall x ~ \Phi ( x ) $ cannot be algorithmically determined.
\item $ \forall x ~ \Phi ( x ) $ and $ \forall y ~ \Phi ( y ) $ are equivalent.
\item Same operators can be exchanged, different ones cannot.
2021-12-05 19:20:22 +01:00
\item $ \forall x ~ \Phi ( x ) $ is equivalent to $ \neg ( \exists x ~ \neg \Phi ( x ) ) $ .
2021-03-23 00:25:22 +01:00
\end { enumerate}
\end { rem}
\end { document}