2021-03-23 00:25:22 +01:00
\documentclass [../../script.tex] { subfiles}
2021-12-05 19:20:22 +01:00
% !TEX root = ../../script.tex
2021-03-23 00:25:22 +01:00
\begin { document}
\section { Sets and Functions}
\begin { defi}
A set is an imaginary "container" for mathematical objects. If $ A $ is a set we write
\begin { itemize}
\item $ x \in A $ for "$ x $ is an element of $ A $ "
2021-12-05 19:20:22 +01:00
\item $ x \notin A $ for $ \neg ( x \in A ) $
2021-03-23 00:25:22 +01:00
\end { itemize}
There are some specific types of sets
\begin { enumerate} [(i)]
2021-12-05 19:20:22 +01:00
\item $ \emptyset $ is the empty set which contains no elements. Formally: $ \exists x \forall y ~y \notin x $
2021-03-23 00:25:22 +01:00
\item Finite sets: $ \left \{ 1 , 3 , 7 , 20 \right \} $
\item Let $ \Phi ( x ) $ be a statement and $ A $ a set. Then $ \left \{ x \in A \, \vert \, \Phi ( x ) \right \} $ is the set of all elements from $ A $ such that $ \Phi ( x ) $ holds.
\end { enumerate}
There are relation operators between sets. Let $ A, B $ be sets
\begin { enumerate} [(i)]
\item $ A \subset B $ means "$ A $ is a subset of $ B $ ".
\item $ A = B $ means "$ A $ and $ B $ are the same"
\end { enumerate}
Each element can appear only once in a set, and there is no specific ordering to these elements. This means that $ \{ 1 , 3 , 3 , 7 \} = \{ 3 , 1 , 7 \} $ . There are also operators between sets
\begin { enumerate} [(i)]
\item $ A \cup B $ is the union of $ A $ and $ B $ .
\[
x \in A \cup B \iff x \in A \vee x \in B
\]
\item $ A \cap B $ is the intersection of $ A $ and $ B $ .
\[
x \in A \cap B \iff x \in A \wedge x \in B
\]
This can be expanded to more than two sets ($ A \cup B \cup C $ ). We can also use the following notation. Let $ A $ be a set of sets. Then
\[
\bigcup _ { C \in A} C
\]
is the union of all sets contained in $ A $ .
\item $ A \setminus B $ is the difference of $ A $ and $ B $ .
\[
x \in A \setminus B \iff x \in A \wedge x \notin B
\]
\item The power set of a set $ A $ is the set of all subsets of $ A $ . Example:
\[
2021-12-05 19:20:22 +01:00
\mathcal { P} (\{ 1, 2\} ) = \{ \emptyset , \{ 1\} , \{ 2\} , \{ 1, 2\} \}
2021-03-23 00:25:22 +01:00
\]
\end { enumerate}
\end { defi}
\begin { thm}
Let $ A, B, C $ be sets. Then
\begin { align*}
A \setminus (B \cup C) & = (A \setminus B) \cap (A \setminus C) \\
A \setminus (B \cap C) & = (A \setminus B) \cup (A \setminus C) \\
A \cup (B \cap C) & = (A \cup B) \cap (A \cup C) \\
A \cap (B \cup C) & = (A \cap B) \cup (A \cap C)
\end { align*}
\end { thm}
\begin { proof}
2021-12-05 19:20:22 +01:00
Let $ A, B, C $ be sets. Then the first statement follows from
\begin { equation}
\begin { split}
x \in A \setminus (B \cup C) & \iff x \in A \wedge \neg (x \in B \cup C) \\
& \iff x \in A \wedge \neg (x \in B \vee x \in C) \\
& \iff x \in A \wedge (x \not \in B \wedge x \not \in C) \\
& \iff (x \in A \wedge x \not \in B) \wedge (x \in A \wedge x \not \in C) \\
& \iff x \in A \setminus B \wedge x \in A \setminus C \\
& \iff x \in (A \setminus B) \cap (A \setminus C)
\end { split}
\end { equation}
The second statement follows a similar structure, with the logical operators swapped
\begin { equation}
\begin { split}
x \in A \setminus (B \cap C) & \iff x \in A \wedge \neg (x \in B \cup C) \\
& \iff x \in A \wedge \neg (x \in B \wedge x \in C) \\
& \iff x \in A \wedge (x \not \in B \vee x \not \in C) \\
& \iff (x \in A \wedge x \not \in B) \vee (x \in A \wedge x \not \in C) \\
& \iff x \in A \setminus B \vee x \in A \setminus C \\
& \iff x \in (A \setminus B) \cup (A \setminus C)
\end { split}
\end { equation}
The third statement follows from
\begin { equation}
\begin { split}
x \in A \cup (B \cap C) & \iff x \in A \vee x \in B \cap C \\
& \iff x \in A \vee (x \in B \wedge x \in C) \\
& \iff (x \in A \vee x \in B) \wedge (x \in A \vee x \in C) \\
& \iff x \in A \cup B \wedge x \in A \cup C \\
& \iff x \in (A \cup B) \cap (A \cup C)
\end { split}
\end { equation}
The final statement is also similar to the third with the operators swapped
2021-03-23 00:25:22 +01:00
\begin { equation}
2021-12-05 19:20:22 +01:00
\begin { split}
x \in A \cap (B \cup C) & \iff x \in A \wedge x \in B \cup C \\
& \iff x \in A \wedge (x \in B \vee x \in C) \\
& \iff (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) \\
& \iff x \in A \cap B \vee x \in A \cap C \\
& \iff x \in (A \cap B) \cup (A \cap C)
\end { split}
2021-03-23 00:25:22 +01:00
\end { equation}
2021-12-05 19:20:22 +01:00
2021-03-23 00:25:22 +01:00
\end { proof}
\begin { defi}
2021-12-05 19:20:22 +01:00
Let $ A, B $ be sets. For $ x \in A $ and $ y \in B $ we call $ ( x, y ) $ the ordered pair of $ x, y $ . The Cartesian product is defined as
2021-03-23 00:25:22 +01:00
\[
A \times B = \left \{ (x, y) \, \vert \, x \in A \wedge y \in B\right \}
\]
\end { defi}
2021-12-05 19:20:22 +01:00
\pagebreak
2021-03-23 00:25:22 +01:00
\begin { rem} \leavevmode
\begin { enumerate} [(i)]
\item $ ( x, y ) $ is NOT equivalent to $ \{ x, y \} $ . The former is an ordered pair, the latter a set. It is important to note that
\[
(x, y) = (a, b) \iff x = a \wedge y = b
\]
\item This can be extended to triplets, quadruplets, ...
\[
A \times B \times C = \left \{ (x, y, z) \, \vert \, x \in A \wedge y \in B \wedge z \in C \right \}
\]
We use the notation $ A \times A = A ^ 2 $
\item For $ \realn ^ 2 $ ($ \realn $ are the real numbers) we can view $ ( x, y ) $ as coordinates of a point in the plane.
\end { enumerate}
\end { rem}
\begin { defi}
Let $ A $ , $ B $ be sets. A mapping $ f $ from $ A $ to $ B $ assigns each $ x \in A $ exactly one element $ f ( x ) \in B $ . $ A $ is called the domain and $ B $ the codomain.
2021-12-05 19:20:22 +01:00
\begin { figure} [ht]
2021-03-23 00:25:22 +01:00
\centering
\begin { tikzpicture} [ele/.style={ fill=black,circle,minimum width=.8pt,inner sep=1pt} ,every fit/.style={ ellipse,draw,inner sep=-2pt} ]
\node [ele] (a1) at (0,4) { } ;
\node [ele] (a2) at (0,3) { } ;
\node [ele] (a3) at (0,2) { } ;
\node [ele] (a4) at (0,1) { } ;
\node [ele] (b1) at (4,4) { } ;
\node [ele] (b2) at (4,3) { } ;
\node [ele] (b3) at (4,2) { } ;
\node [ele] (b4) at (4,1) { } ;
\node [draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] { } ;
\node [draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] { } ;
\draw [->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4);
\draw [->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3);
\draw [->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1);
\draw [->,thick,shorten <=2pt,shorten >=2] (a4) -- (b4);
\end { tikzpicture}
\caption { A mapping $ f: A \rightarrow B $ }
\label { fig:mapping}
\end { figure}
As shown in figure \ref { fig:mapping} , every element from $ A $ is assigned exactly one element from $ B $ , but not every element from $ B $ must be assigned to an element from $ A $ , and elements from $ B $ can be assigned more than one element from $ A $ . The notation for such mappings is
\[
f: A \longrightarrow B
\]
A mapping that has numbers ($ \natn $ , $ \realn $ , $ \cdots $ ) as the codomain is called a function.
\end { defi}
2021-12-05 19:20:22 +01:00
2021-03-23 00:25:22 +01:00
\begin { eg} \leavevmode
\begin { enumerate} [(i)]
\item
\begin { align*}
f: \natn & \longrightarrow \natn \\
n & \longmapsto 2n + 1
\end { align*}
\item
\begin { align*}
f: \realn & \longrightarrow \realn \\
x & \longmapsto
\begin { cases}
0 & x \text { rational} \\
1 & x \text { irrational}
\end { cases}
\end { align*}
\item Addition on $ \natn $
\[
f: \natn \times \natn \longrightarrow \natn
\]
Instead of $ f ( x, y ) $ we typically write $ x + y $ for addition.
\item The identity mapping is defined as
\begin { align*}
\idf _ A: A & \longrightarrow A \\
x & \longmapsto x
\end { align*}
\end { enumerate}
\end { eg}
\begin { rem} [Mappings as sets]\leavevmode
\begin { enumerate} [(i)]
\item A mapping $ f: A \rightarrow B $ corresponds to a subset of $ F = A \times B $ , such that
\begin { align*}
2021-12-05 19:20:22 +01:00
\forall x \in A ~\forall y, z \in B& : \quad (x, y) \in F \wedge (x, z) \in F \implies y = z \\
\forall x \in A ~\exists y \in B& : \quad (x, y) \in F
2021-03-23 00:25:22 +01:00
\end { align*}
\item Simply writing "Let the function $ f ( x ) = x ^ 2 $ ..." is NOT mathematically rigorous.
\item
\[
f \text { is a mapping from } A \text { to } B \iff f(x) \text { is a value in } B
\]
\item
\[
2021-12-05 19:20:22 +01:00
f, g: A \longrightarrow B \text { are the same mapping} \iff \forall x \in A: \quad f(x) = g(x)
2021-03-23 00:25:22 +01:00
\]
\end { enumerate}
\end { rem}
\begin { defi}
We call $ f: A \rightarrow B $
\begin { itemize}
2021-12-05 19:20:22 +01:00
\item injective if $ \forall x, \tilde { x } \in A: \quad f ( x ) = f ( \tilde { x } ) \implies x = \tilde { x } $
2021-03-23 00:25:22 +01:00
2021-12-05 19:20:22 +01:00
\item surjective if $ \forall y \in B ~ \exists x \in A: \quad f ( x ) = y $
2021-03-23 00:25:22 +01:00
\item bijective if $ f $ is injective and surjective
\end { itemize}
2021-12-05 19:20:22 +01:00
\begin { figure} [ht]
2021-03-23 00:25:22 +01:00
\centering
\begin { subfigure} [b]{ 0.45\textwidth }
\begin { tikzpicture} [ele/.style={ fill=black,circle,minimum width=.8pt,inner sep=1pt} ,every fit/.style={ ellipse,draw,inner sep=-2pt} ]
\node [ele] (a1) at (0,4) { } ;
\node [ele] (a2) at (0,3) { } ;
\node [ele] (a3) at (0,2) { } ;
\node [ele] (a4) at (0,1) { } ;
\node [ele] (b1) at (4,4) { } ;
\node [ele] (b2) at (4,3.25) { } ;
\node [ele] (b3) at (4,2.5) { } ;
\node [ele] (b4) at (4,1.75) { } ;
\node [ele] (b5) at (4, 1) { } ;
\node [draw,fit= (a1) (a2) (a3) (a4),minimum width=2cm, label=below:$A$] { } ;
\node [draw,fit= (b1) (b2) (b3) (b4) (b5),minimum width=2cm, label=below:$B$] { } ;
\draw [->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4);
\draw [->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3);
\draw [->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1);
\draw [->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5);
\end { tikzpicture}
\caption { Injective mapping. There is at most one arrow per point in $ B $ }
\end { subfigure}
\hfill
\begin { subfigure} [b]{ 0.45\textwidth }
\centering
\begin { tikzpicture} [ele/.style={ fill=black,circle,minimum width=.8pt,inner sep=1pt} ,every fit/.style={ ellipse,draw,inner sep=-2pt} ]
\node [ele] (b1) at (4,4) { } ;
\node [ele] (b2) at (4,3) { } ;
\node [ele] (b3) at (4,2) { } ;
\node [ele] (b4) at (4,1) { } ;
\node [ele] (a1) at (0,4) { } ;
\node [ele] (a2) at (0,3.25) { } ;
\node [ele] (a3) at (0,2.5) { } ;
\node [ele] (a4) at (0,1.75) { } ;
\node [ele] (a5) at (0, 1) { } ;
\node [draw,fit= (a1) (a2) (a3) (a4) (a5),minimum width=2cm, label=below:$A$] { } ;
\node [draw,fit= (b1) (b2) (b3) (b4),minimum width=2cm, label=below:$B$] { } ;
\draw [->,thick,shorten <=2pt,shorten >=2pt] (a1) -- (b4);
\draw [->,thick,shorten <=2pt,shorten >=2] (a2) -- (b3);
\draw [->,thick,shorten <=2pt,shorten >=2] (a3) -- (b1);
\draw [->,thick,shorten <=2pt,shorten >=2] (a4) -- (b5);
\draw [->,thick,shorten <=2pt,shorten >=2] (a5) -- (b2);
\end { tikzpicture}
\caption { Surjective mapping. There is at least one arrow per point in $ B $ }
\end { subfigure}
\caption { Visualizations of injective and surjective mappings}
\end { figure}
\end { defi}
\begin { eg} \leavevmode
\begin { enumerate} [(i)]
\item
\begin { align*}
f: \natn & \longrightarrow \natn \\
n & \longmapsto n^ 2
\end { align*}
2021-12-05 19:20:22 +01:00
is not surjective (e.g. $ \nexists n \in \natn : \quad n ^ 2 = 3 $ ), but injective.
2021-03-23 00:25:22 +01:00
\item
\begin { align*}
f: \intn & \longrightarrow \natn \\
n & \longmapsto n^ 2
\end { align*}
is neither surjective nor injective.
\item
\begin { align*}
f: \natn & \longrightarrow \natn \\
n & \longmapsto
\begin { cases}
2021-12-05 19:20:22 +01:00
\frac { n} { 2} & n \text { even} \\
\frac { n+1} { 2} & n \text { odd}
2021-03-23 00:25:22 +01:00
\end { cases}
\end { align*}
is surjective but not injective.
\end { enumerate}
\end { eg}
\begin { defi} [Function compositing]
Let $ A, ~B, ~C $ be sets, and let $ f: A \rightarrow B, ~g: B \rightarrow C $ . Then the composition of $ f $ and $ g $ is the mapping
\begin { align*}
g \circ f : A & \longrightarrow C \\
x & \longmapsto g(f(x))
\end { align*}
\end { defi}
\begin { rem}
Compositing is associative (why?), but not commutative. For example let
2021-12-05 19:20:22 +01:00
\begin { align*}
& \begin { aligned}
2021-03-23 00:25:22 +01:00
f: \natn & \longrightarrow \natn \\
n & \longmapsto 2n
2021-12-05 19:20:22 +01:00
\end { aligned} &
& \begin { aligned}
2021-03-23 00:25:22 +01:00
g: \natn & \longrightarrow \natn \\
n & \longmapsto n + 3
2021-12-05 19:20:22 +01:00
\end { aligned}
\end { align*}
2021-03-23 00:25:22 +01:00
Then
\begin { align*}
2021-12-05 19:20:22 +01:00
& (f \circ g)(n) = 2(n + 3) = 2n + 6 \\
& (g \circ f)(n) = 2n + 3
2021-03-23 00:25:22 +01:00
\end { align*}
\end { rem}
\begin { thm}
2021-12-05 19:20:22 +01:00
Let $ f: A \rightarrow B $ be a bijective mapping. Then there exists another mapping $ \inv { f } : B \rightarrow A $ such that $ f \circ \inv { f } = \emph { \idf } _ B $ and $ \inv { f } \circ f = \emph { \idf } _ A $ . $ \inv { f } $ is called the inverse function of $ f $ .
2021-03-23 00:25:22 +01:00
\end { thm}
\begin { proof}
Let $ y \in B $ and $ f $ bijective. That means $ \exists x \in A $ such that $ f ( x ) = y $ . Due to $ f $ being injective, this $ x $ must be unique, since if $ \exists \tilde { x } \in A $ s.t. $ f ( \tilde { x } ) = f ( x ) = y $ , then $ x = \tilde { x } $ . We define $ f ( x ) = y $ and $ \inv { f } ( y ) = x $ , therefore
\begin { equation}
f \circ \inv { f} (y) = f(\inv { f} (y)) = f(x) = y = \idf _ B(y) \implies f \circ \inv { f} = \idf _ B
\end { equation}
and equivalently
\begin { equation}
\inv { f} \circ f(x) = \idf _ A(x) \implies \inv { f} \circ f = \idf _ A
\end { equation}
\end { proof}
\end { document}