2021-03-29 19:48:35 +00:00
% !TeX root = ../../script.tex
\documentclass [../../script.tex] { subfiles}
\begin { document}
\section { Contents and Measures}
\begin { defi}
A set $ M $ is said to be countable if there exists a surjective mapping from $ \natn $ to $ M $ , i.e.
\[
\exists \seq { x} \subset M: ~~\forall y \in M ~\exists n \in \natn : ~~x_ n = y
\]
A set $ M $ is said to be countably infinite if it is countable and unbounded.
\end { defi}
2021-03-30 16:10:35 +00:00
\begin { rem}
\begin { enumerate} [(i)]
\item Countably infinite sets are the smallest kind of infinite sets.
\item Subsets of countable sets are countable.
\item The union of two countable sets is countable.
Let $ \anyseqdef { M } , \anyseqdef [ y ] { K } $ by surjective sequences, then
\[
(x_ 1, y_ 1, x_ 2, y_ 2, \cdots )
\]
is a surjective sequence for $ M \subset K $ . This argument can be used to prove $ \intn $ is countable.
\item The union of countably many countable sets is countable. Let $ M $ be a countable set of countable sets,
and $ \anyseqdef [ A ] { M } $ a surjective sequence. Then $ \forall n \in \natn $ exists a surjective mapping $ ( x _ { n _ k } ) _ { k \in \natn } \subset A _ n $
\begin { center}
\begin { tikzpicture}
\foreach \y in { 1,...,3}
\foreach \x in { 1,...,3}
\node at (\x , -\y ) { $ x _ { { \y } _ { \x } } $ } ;
\foreach \y in { 1,...,3} \node at (4, -\y ) { $ \cdots $ } ;
\foreach \x in { 1,...,3} \node at (\x , -4) { $ \vdots $ } ;
\node at (4, -4) { $ \ddots $ } ;
\node [above right, red] at (1, -1) { \tiny $ 1 $ } ;
\node [above right, red] at (2, -1) { \tiny $ 2 $ } ;
\node [above right, red] at (1, -2) { \tiny $ 3 $ } ;
\node [above right, red] at (3, -1) { \tiny $ 4 $ } ;
\node [above right, red] at (2, -2) { \tiny $ 5 $ } ;
\node [above right, red] at (1, -3) { \tiny $ 6 $ } ;
\end { tikzpicture}
\end { center}
This sequence is surjective on
\[
\bigcup _ { A \in M} A
\]
Especially, for countable $ M, K $ we have
\[
M \times K = \bigcup _ { x \in M} \set [y \in K] { (x, y)}
\]
Thus $ \natn \times \natn $ , $ \natn $ , $ \intn $ and $ \ratn $ are countable.
\item There exist uncountable sets, like $ [ 0 , 1 ] $ , $ \realn $ and $ \powerset ( \realn ) $ .
\end { enumerate}
\end { rem}
\begin { defi}
Let $ \Omega $ be a set. A family of subsets
\[
(A_ i)_ { i \in I} \subset \powerset (\Omega ) ~~(I \text { denotes the index set} )
\]
is said to be pairwise disjoint is
\[
A_ i \cap A_ j = \varnothing ~~\forall i, j \in I, ~i \ne j
\]
\end { defi}
\begin { rem}
\begin { enumerate} [(i)]
\item Let $ \setfam \subset \powerset ( \realn ^ n ) $ be a family of sets. A mapping
\[
\mu : \setfam \rightarrow [0, \infty ]
\]
is said to be the content of $ \setfam $ , if $ \forall A _ 1 , \cdots , A _ k \in \setfam $ pairwise disjoint the following holds:
\[
A_ 1 \cup \cdots \cup A_ k \in \setfam \implies \mu (A_ 1 \cup \cdots \cup A_ k) = \sum _ { l=1} ^ k \mu (A_ l)
\]
The content is a generalization of the concept of length ($ \realn $ ), area ($ \realn ^ 2 $ ), volume ($ \realn ^ 3 $ ) etc.
\item In the context of contents, measures and integrals we define
\begin { gather*}
c + \infty = \infty ~~\forall c \in \realn \cup \set { \infty } \\
c \cdot \infty = \infty ~~\forall c \in (0, \infty ] \\
0 \cdot \infty = 0
\end { gather*}
\item The goal is to choose the domain of the content as big as possible. Ideal would be $ \setfam = \powerset { \realn ^ n } $ .
This introduces the Banach-Tarski paradox:
\begin { itemize}
\item Let $ \oball [ 1 ] ( 0 ) \subset \realn ^ 3 $ be the unit sphere
\item One can show: There exists a disjoint decomposition
\[
A_ 1 \cup \cdots \cup A_ P \cup B_ 1 \cup \cdots \cup B_ Q = \oball [1] (0)
\]
and a set of translations and rotations
\[
D_ 1, \cdots , D_ P, \cdots T_ 1, \cdots , T_ Q
\]
such that
\begin { align*}
D_ 1A_ 1 \cup D_ 2A_ 2 \cup \cdots \cup D_ PA_ P & = \oball [1] (0) \\
T_ 1B_ 1 \cup T_ 2B_ 2 \cup \cdots \cup T_ QB_ Q & = \oball [1] (0)
\end { align*}
\end { itemize}
\end { enumerate}
\end { rem}
\begin { defi}
Let $ \Omega $ be a set, $ \setfam $ a family of subsets of $ \Omega $ (so $ \setfam \subset \powerset ( \Omega ) $ ). $ \setfam $ is sait to be a $ \sigma $ -algebra, if
\begin { enumerate} [(i)]
\item $ \varnothing \in \setfam $
\item $ A \in \setfam \implies A ^ C = \Omega \setminus A \in \setfam $
\item For a countable subset $ \set { A _ 1 , \cdots , A _ n } \subset \setfam $ follows
\[
\bigcup _ { i \in \natn } A_ i \subset \setfam
\]
\end { enumerate}
A mapping
\[
\mu : \setfam \rightarrow [0, \infty ]
\]
is said to be a measure, if
\[
\mu \left (\bigcup _ { i \in \natn } A_ i \right ) = \sum _ { i \in \natn } \mu (A_ i) ~~\text { (} \sigma \text { -additivity)}
\]
for pairwise disjoint $ ( A _ i ) _ { i \in \natn } \subset \setfam $ and $ \mu ( \varnothing ) = 0 $ .
The pair $ ( \Omega , \setfam ) $ is called a measureable space, and $ ( \Omega , \setfam , \mu ) $ is called measure space.
\end { defi}
\begin { eg}
\begin { enumerate} [(i)]
\item Let $ \Omega $ be an arbitrary set, and let there be a disjoint decomposition
\[
A_ 1 \cup \cdots \cup A_ n = \Omega
\]
Then
\[
\set [I \subset \set{1, \cdots, n}] { \bigcup _ { i \in I} A_ i}
\]
is a $ \sigma $ -algebra.
\item Let $ \Omega $ be arbitrary and $ x \in \Omega $ . Then
\begin { align*}
\delta _ x: \powerset (\Omega ) & \longrightarrow [0, \infty ] \\
A & \longmapsto \begin { cases}
1, & x \in A \\
0, & x \notin A
\end { cases}
\end { align*}
is a measure.
\item Let $ \Omega $ be arbitrary, then
\begin { align*}
\# : \powerset (\Omega ) & \longrightarrow [0, \infty ] \\
A & \longmapsto \begin { cases}
\text { Number of elements in } A, & A \text { finite} \\
\infty , & A \text { infinite}
\end { cases}
\end { align*}
is the so called counting measure. It is useful for finite, countable sets.
\item Let $ \Omega $ be countable and $ ( a _ w ) _ { w \in \realn } \subset [ 0 , \infty ] $ . Then
\begin { align*}
\mu : \powerset (\Omega ) & \longrightarrow [0, \infty ] \\
A & \longmapsto \sum _ { w \in A} a_ w
\end { align*}
a measure.
\item Let $ \measure $ be a measure space and $ A \in \setfam $ . Define the to $ A $ confined $ \sigma $ -algebra
\[
\setfam \vert _ A := \set [B \in \setfam] { B \cap A}
\]
Then $ ( A, \setfam \vert _ A, \mu ) $ is a measure space.
\end { enumerate}
\end { eg}
\begin { rem}
For countable subsets $ \setfam = \set { A _ 1 , \cdots , A _ n, \cdots } \subset \sigma \text { - algebra } $ we have
\[
\bigcap _ { i \in \natn } A_ i = \left (\bigcup _ { i \in \natn } A_ i^ C\right )^ C \subset \setfam
\]
If $ A, B \in \setfam \implies A \setminus B \in \setfam $ then we can write
\[
A \setminus B = A \cap B^ C
\]
A measure $ \mu $ is monotonic, which means if $ A, B \in \setfam $ and $ A \subset B $ , then
\[
\mu (B) = \mu (B \setminus A) + \mu (A) \ge \mu (A)
\]
\end { rem}
\begin { defi}
A mapping $ \mu : \powerset ( \Omega ) \rightarrow [ 0 , \infty ] $ is said to be an outer measure, if $ \mu ( \varnothing ) = 0 $ and
\[
A \subset \bigcup _ { i \in \natn } A_ i \implies \mu (A) \le \sum _ { i \in \natn } \mu (A_ i)
\]
Just like measures, outer measures are monotonic. Let $ \intervals $ be the family of bounded intervals, i.e.
\[
\intervals = \bigcup _ { \substack { x, y \in \realn \\ x < y} } \set { [x, y], [x, y), (x, y], (x, y)}
\]
We define
\[
l([x, y]) := l([x, y)) := l((x, y]) := l((x, y)) = y - x
\]
\end { defi}
\begin { thm} \label { thm:outer}
The mapping
\begin { align*}
\lambda : \powerset (\realn ) & \longrightarrow [0, \infty ] \\
A & \longmapsto \inf \set [A \subset \bigcup_{i \in \natn} I_i, ~I_i \in \intervals ~\forall i \in \natn] { \sum _ { i=1} ^ { \infty } l(I_ i)}
\end { align*}
defines an outer measure on the real numbers. Analogously one can create outer measures on $ \realn ^ 2 , \realn ^ 3 $ .
\end { thm}
\begin { proof}
We know
\begin { equation}
\lambda (\varnothing ) \le l([0, \epsilon )) = \epsilon ~~\forall \epsilon > 0
\end { equation}
which implies $ \lambda ( \varnothing ) = 0 $ . We have to show that
\begin { equation}
A \subset \bigcup _ { k \in \natn } A_ k \implies \lambda (A) \le \sum _ { k \in \natn } \lambda (A_ k)
\end { equation}
If the right side is $ \infty $ there is nothing to show. So let $ \sum _ { k \in \natn } \lambda ( A _ k ) < \infty $ .
Let $ \epsilon > 0 $ , then $ \forall k \in \natn ~~ \exists ( I _ { k _ i } ) \subset \intervals $ such that
\begin { equation}
A_ k \subset \bigcup _ { i \in \natn } I_ { k_ i} \text { and } \sum _ { i \in \natn } l(I_ { k_ i} ) \le \left (\lambda (A_ k) + \frac { \epsilon } { 2^ k} \right )
\end { equation}
Then
\begin { equation}
A \subset \bigcup _ { k = 1} ^ { \infty } A_ k \subset \bigcup _ { i, k \in \natn } I_ { k_ i}
\end { equation}
and
\begin { equation}
\lambda (A) \le \sum _ { k, i \in \natn } l(I_ { k_ i} ) \le \sum _ { k \in \natn } \left (\lambda (A_ k) + \frac { \epsilon } { 2^ k} \right ) = \sum _ { k \in \natn } \lambda (A_ k) + \epsilon
\end { equation}
Since this inequality holds $ \forall \epsilon > 0 $
\begin { equation}
\lambda (A) \le \sum _ { k \in \natn } \lambda (A_ k)
\end { equation}
must be true. The outer measure is not additive.
\end { proof}
\begin { thm}
Let $ \mu $ be an outer measure on $ ( \Omega , \powerset ( \Omega ) ) $ .
Then the family of measureable sets
\[
\setfam := \set [\mu(E) \ge \mu(E \cap A) + \mu(E \cap A^C) ~~\forall E \in \powerset(\Omega)] { A \subset \Omega }
\]
is a $ \sigma $ -algebra, and $ \mu \vert _ A $ a measure.
\end { thm}
\begin { thm}
Firstly, we always have
\begin { equation}
\mu (E) \le \mu (E \cap A) + \mu (E \cap A^ C)
\end { equation}
which means $ A $ is measureable if and only if
\begin { equation}
\mu (E) = \mu (E \cap A) + \mu (E \cap A^ C) ~~\forall E \in \powerset (\Omega )
\end { equation}
It's easy to see that $ \varnothing $ is measurable, and that
\begin { equation}
A \text { measurable} \iff A^ C \text { measurable}
\end { equation}
We have
\begin { equation}
\begin { split}
E \cap (A \cup B) & = (E \cap A) \cup (E \cap B) \\
& = (E \cap A) \cup (E \cap B \cap A^ C)
\end { split}
\end { equation}
Which means that $ \forall A, B $ measurable and $ \forall E \in \powerset ( \Omega ) $ :
\begin { equation}
\begin { split}
\mu (E) & = \mu (E \cap A) + \mu (E \cap A^ C) \\
& = \mu (E \cap A) + \mu (E \cap A^ C \cap B) + \mu (E \cap A^ C \cap B^ C) \\
& \ge \mu (E \cap (A \cup B)) + \mu (E \cap (A \cap B)^ C) \ge \mu (E)
\end { split}
\end { equation}
So $ A \cup B $ is measurable and it follows for disjoint $ A, B $
\begin { subequations}
\begin { align}
& \mu (E \cap A) + \mu (E \cap A^ C \cap B) = \mu (E \cap (A \cup B)) \\
\implies & \mu (E \cap A) + \mu (E \cap B) = \mu (E \cap (A \cup B)) \\
\implies & \mu \text { is additive for measurable sets}
\end { align}
\end { subequations}
Then by using induction we can see that finite unions of measurable sets are measurable and that for $ A _ 1 , \cdots , A _ n $ measurable, pairwise disjoint sets
\begin { equation}
\mu \left (\bigcup _ { i=1} ^ n A_ i\right ) = \sum _ { i=1} ^ n \mu (A_ i)
\end { equation}
holds. Now let $ ( A _ i ) _ { i \in \natn } $ be pairwise disjoint measurable sets, and let
\begin { align}
S_ n := \bigcup _ { i=1} ^ n A_ i & & S := \bigcup _ { i=1} ^ { \infty } A_ i
\end { align}
Then $ \forall E \in \powerset ( \Omega ) $
\begin { equation}
\mu (E \cap S_ n) = \sum _ { i=1} ^ n \mu (E \cap A_ i)
\end { equation}
To check measurability, consider
\begin { equation}
\begin { split}
\mu (E) & \ge \mu (E \cap S_ n) + \mu (E \cap S_ n^ C) \\
& \ge \sum _ { i=1} ^ n \mu (E \cap A_ i) + \mu (E \cap S^ C)
\end { split}
\end { equation}
For $ n \rightarrow \infty $ :
\begin { equation}
\begin { split}
\mu (E) & \ge \sum _ { i=1} ^ { \infty } \mu (E \cap A_ i) + \mu (E \cap S^ C) \\
& \ge \mu \underbrace { (E \cap S)} _ { \bigcup _ { i=1} ^ { \infty } E \cap A_ i} + \mu (E \cap S^ C) \\
& \ge \mu (E)
\end { split}
\end { equation}
Thus $ S $ is measurable
\begin { equation}
\sum _ { i=1} ^ { \infty } \mu (E \cap A_ i) = \mu \left (E \cap \bigcup _ { i=1} ^ { \infty } A_ i\right )
\end { equation}
For $ E = \Omega $ the $ \sigma $ -additivity follows.
It is left to show that for measurable (but not necessarily disjoint) $ A _ i $ , that $ \bigcup _ { i = 1 } ^ { \infty } A _ i $ is also measurable.
To do that define
\begin { equation}
B_ i = A_ i \setminus \left (\bigcup _ { j=1} ^ { i-1} A_ j \right )
\end { equation}
Then the $ B _ i $ are disjoint and measurable. Thus
\begin { equation}
\bigcup _ { i=1} ^ { \infty } B_ i = \bigcup _ { i=1} ^ { \infty } A_ i
\end { equation}
is measurable.
\end { thm}
\begin { defi}
Application of the previous theorem on the outer measure from $ \Cref { thm:outer } $ gives us the $ \sigma $ -algebra
of Lebesgue-measurable sets and the Lebesgue-measure $ \lambda $ .
\end { defi}
\begin { rem}
$ A \subset \realn $ is said to be a null set if its outer measure is $ 0 $ . Obviously
\[
\lambda (\set { 0} ) = 0
\]
For countable $ A $ we have
\[
\lambda (A) = \lambda \left (\cup _ { x \in A} \set { x} \right ) \le \sum _ { x \in A} \lambda (\set { x} ) = 0
\]
So $ \natn $ , $ \intn $ and $ \ratn $ are null sets. Null sets are measurable, because
\[
\forall E \in \powerset (\realn ): ~~\underbrace { \lambda (E \cap A)} _ 0 + \lambda (E \cap A^ C) = \lambda (E \cap A^ C) \le \lambda (E)
\]
\end { rem}
\begin { thm}
Intervals are Lebesgue measurable and
\[
\lambda ([a, b]) = b - a
\]
\end { thm}
\begin { proof}
Let $ A $ be a bounded interval. Decompose $ \realn $ into the intervals
\begin { equation}
\realn = I_ L \cup A \cup I_ R
\end { equation}
For $ I \in \intervals $ we have $ I \cap I _ L, ~I \cap A, ~I \cap I _ R $ bounded (or empty) intervals.
Now let $ E \subset \powerset ( \realn ) $ and
\begin { equation}
E \subset \bigcup _ { i \in \natn } I_ i
\end { equation}
a covering. Then
\begin { align}
E \cap A \subset \bigcup _ { i \in \natn } I_ i \cap A & & E \cap A^ C \subset \bigcup _ { i \in \natn } \left ((I_ i \cap I_ L) \cup (I_ i \cap I_ R)\right )
\end { align}
are coverings of countably many intervals, and we have
\begin { equation}
\begin { split}
\sum _ { i \in \natn } l(I_ i) & = \sum _ { i \in natn} l(I_ i \cap A) + \sum _ { i \in \natn } \left (l(I_ i \cap I_ L) + l(I_ i \cap I_ R)\right ) \\
& \ge \lambda (E \cap A) + \lambda (E \cap A^ C)
\end { split}
\end { equation}
$ \lambda $ is the infimum of all possible coverings
\begin { equation}
\lambda (E) \ge \lambda (E \cap A) + \lambda (E \cap A^ C)
\end { equation}
And thus $ A $ is measurable.
It is left to show that
\begin { equation}
A = [a, b] \implies \lambda (A) = b - a
\end { equation}
So let $ \anyseqdef [ I ] { \intervals } $ such that
\begin { equation}
l = \sum _ { n \in \natn } (I_ n) < b - a
\end { equation}
First, let all $ I _ n $ be open. Choose
\begin { equation}
A_ n = A \setminus \left (\bigcup _ { i=1} ^ n I_ i \right )
\end { equation}
Those $ A _ n $ are non-empty, since $ A $ cannot be covered by finitely many intervals of length $ < b - a $ .
Choose a sequence $ x _ n \in A _ n ~~ \forall n \in \natn $ . Since $ A $ is a compact there exists a toward $ x \in A $ convergent subsequence of $ x _ n $ .
The point $ x $ cannot be contained in any $ I _ n $ , since because the $ I _ n $ are open, infinitely many $ x _ n $ would be contained in $ I _ n $ , which would
contradict the construction of $ A _ n $ .
\begin { equation}
\implies (I_ n) \text { do not cover } A
\end { equation}
For arbitrary $ I _ n $ (so not necessarily open), let $ ( x _ k ) $ be the sequence of the (countably many) boundary points of the intervals.
\begin { equation}
\epsilon = \frac { b - a - l} { 4} > 0
\end { equation}
And thus
\begin { equation}
\set [i \in \natn] { \interior { I} _ i} \cup \set [\forall k \in \natn] { \left (x_ k - \frac { \epsilon } { 2^ k} , x_ k + \frac { \epsilon } { 2^ k} \right )}
\end { equation}
is a covering of $ A $ by countably many open intervals of total length
\begin { equation}
\le l + \sum _ { k = 1} ^ { \infty } \frac { 2\epsilon } { 2^ k} = l + \frac { b - a - l} { 2} = \frac { b - a + l} { 2} < b - a
\end { equation}
which is impossible due to our construction above.
\end { proof}
\begin { thm}
Open and closed sets are Lebesgue measurable.
\end { thm}
\begin { proof}
Let $ O \subset \realn $ be open. It is to show that
\begin { equation}
O = \bigcup _ { \substack { l, r \in \ratn \\ (l, r) \subset O} } (l, r) \implies O \text { Lebesgue measurable}
\end { equation}
Let $ x \in O $ , since $ O $ is open
\begin { equation}
\exists \epsilon > 0: ~~(x - \epsilon , x + \epsilon ) \subset O
\end { equation}
Since $ \ratn $ is dense in $ \realn $
\begin { equation}
\exists l, r \in \ratn : ~~x - \epsilon < l < x \text { and } x < r < \epsilon + x
\end { equation}
So $ x \in ( l, r ) \subset O $ .
If $ C $ is a closed set, then $ \realn \setminus C $ is open and thus Lebesgue measurable.
\begin { equation}
\implies C = \realn \setminus (\realn \setminus C) \text { Lebesgue measurable}
\end { equation}
\end { proof}
\begin { rem}
The Lebesgue-$ \sigma $ -algebra contains many more sets. All sets that are "created by normal means" are Lebesgue measurable.
\end { rem}
\begin { rem}
For $ A \subset \realn $ and $ x \in \realn $ we define
\[
A + x := \set [y \in A] { y + x}
\]
A measure on $ \realn $ is said to be invariant under translation, if
\[
\mu (A) = \mu (A + x) ~~\forall A \in \setfam , ~x \in \realn
\]
Since translations of intervals result in intervals, the (outer) Lebesgue measure is invariant under translation.
One can show that the Lebesgue measure is the only translational symmetric measure on $ \realn $ , with
\[
\lambda ([0, 1]) = 1
\]
\end { rem}
\begin { thm}
Let $ \measure $ be a measure space. For a monotonically increasing sequence $ \anyseqdef [ A ] { \setfam } $ (this means $ A _ n \subset A _ { n + 1 } ~~ \forall n \in \natn $ ), we have
\[
\mu \left (\bigcup _ { n \in \natn } A_ n\right ) = \limn \mu (A_ n) = \sup _ { n \in \natn } \mu (A_ n)
\]
For a monotonically decreasing sequence $ \anyseqdef [ B ] { \setfam } $ we have
\[
\mu \left (\bigcap _ { n \in \natn } B_ n\right ) = \limn \mu (B_ n) = \inf _ { n \in \natn } \mu (B_ n)
\]
if $ \mu ( B _ N ) < \infty $ for $ N \in \natn $
\end { thm}
\begin { proof}
If $ \mu ( A _ n ) = \infty $ for some $ n \in \natn $ there is nothing to show. So let
\begin { equation}
\mu (A_ n) < \infty ~~\forall n \in \natn
\end { equation}
Set $ A _ 0 = \varnothing $ and define
\begin { equation}
C_ n := A_ n \setminus A_ { n-1}
\end { equation}
These $ C _ n $ are pairwise disjoint, and thus
\begin { equation}
\begin { split}
\mu \left ( \bigcup _ { n \in \natn } A_ n \right ) & = \mu \left ( \bigcup _ { n \in \natn } C_ n \right ) = \sum _ { n=1} ^ { \infty } \mu (C_ n) = \underbrace { \sum _ { n=1} ^ { \infty } \left ( \mu (A_ n) - \mu (A_ { n-1} ) \right )} _ { \text { Telescoping series} } \\
& = \limn \mu (A_ n) - \underbrace { \mu (A_ 0)} _ { = 0}
\end { split}
\end { equation}
Now let $ \mu ( B _ N ) < \infty \rightarrow \mu ( B _ n ) < \infty ~~ \forall n \ge N $ . Set
\begin { equation}
D_ n = B_ N \setminus B_ n ~~\forall n \ge N
\end { equation}
$ \seq { D } $ is monotonically increasing and thus
\begin { equation}
\bigcup _ { n = N} ^ { \infty } D_ n = \bigcup _ { n = N} ^ { \infty } B_ N \cap B_ n^ C = B_ N \cap { \underbrace { \left ( \bigcap _ { n = N} ^ { \infty } B_ n \right )} _ B} ^ C = B_ N \cap B^ C = B_ N \setminus B
\end { equation}
Which in turn implies
\begin { equation}
\begin { split}
\mu (B_ N) - \mu (B) & = \mu (B_ N \setminus B) = \limn \underbrace { \mu (B_ N \setminus B_ n)} _ { \mu (B_ N) - \mu (B_ n)} \\
& = \mu (B_ N) - \limn \mu (B_ n)
\end { split}
\end { equation}
\end { proof}
\begin { rem}
2021-03-30 16:16:07 +00:00
$ \mu ( B _ N ) < \infty $ for some $ N \in \natn $ is a necessarily requirement.
2021-03-30 16:10:35 +00:00
\end { rem}
2021-03-29 19:48:35 +00:00
\end { document}