#include #include #include #include #include #include #include typedef unsigned short WORD; typedef unsigned char BYTE; const constexpr unsigned WIDTH = 64; const constexpr unsigned HEIGHT = 32; const constexpr unsigned RAM = 4096; // 4kB RAM const constexpr unsigned FONTSET_SIZE = 16 * 5; const constexpr unsigned SCALE = 20; sf::RenderWindow window(sf::VideoMode(WIDTH * SCALE, HEIGHT * SCALE), "CHIP-8 Interpreter, x86", sf::Style::Close); sf::Event event; sf::Uint8* pixels = new sf::Uint8[WIDTH * HEIGHT * 4]{}; BYTE fontset[FONTSET_SIZE] = { 0xF0, 0x90, 0x90, 0x90, 0xF0, // 0 0x20, 0x60, 0x20, 0x20, 0x70, // 1 0xF0, 0x10, 0xF0, 0x80, 0xF0, // 2 0xF0, 0x10, 0xF0, 0x10, 0xF0, // 3 0x90, 0x90, 0xF0, 0x10, 0x10, // 4 0xF0, 0x80, 0xF0, 0x10, 0xF0, // 5 0xF0, 0x80, 0xF0, 0x90, 0xF0, // 6 0xF0, 0x10, 0x20, 0x40, 0x40, // 7 0xF0, 0x90, 0xF0, 0x90, 0xF0, // 8 0xF0, 0x90, 0xF0, 0x10, 0xF0, // 9 0xF0, 0x90, 0xF0, 0x90, 0x90, // A 0xE0, 0x90, 0xE0, 0x90, 0xE0, // B 0xF0, 0x80, 0x80, 0x80, 0xF0, // C 0xE0, 0x90, 0x90, 0x90, 0xE0, // D 0xF0, 0x80, 0xF0, 0x80, 0xF0, // E 0xF0, 0x80, 0xF0, 0x80, 0x80 // F }; std::unordered_map keymap = { { 0x1, sf::Keyboard::Num1 },{ 0x2, sf::Keyboard::Num2 },{ 0x3, sf::Keyboard::Num3 },{ 0xC, sf::Keyboard::Num4 }, { 0x4, sf::Keyboard::Q },{ 0x5, sf::Keyboard::W },{ 0x6, sf::Keyboard::E },{ 0xD, sf::Keyboard::R }, { 0x7, sf::Keyboard::A },{ 0x8, sf::Keyboard::S },{ 0x9, sf::Keyboard::D },{ 0xE, sf::Keyboard::F }, { 0xA, sf::Keyboard::Y },{ 0x0, sf::Keyboard::X },{ 0xB, sf::Keyboard::C },{ 0xF, sf::Keyboard::V } }; class Chip8 { public: bool interrupt; bool drawFlag; BYTE delay_timer; BYTE sound_timer; ////////////////////////////////////////////// /// \brief Intializes registers and memory /// ////////////////////////////////////////////// void Initialize() { pc = 0x200; // Program counter starts at 0x200 opcode = 0; // Reset opcode I = 0; // Reset index register sp = 0; // Reset stack pointer std::fill(std::begin(gfx), std::end(gfx), 0x00); // Clear display std::fill(std::begin(stack), std::end(stack), 0x00); // Clear stack std::fill(std::begin(memory), std::end(memory), 0x00); // Clear RAM std::fill(std::begin(V), std::end(V), 0x00); // Clear Registers for (int i = 0; i < FONTSET_SIZE; i++) // Load fontset memory[i] = fontset[i]; interrupt = false; drawFlag = false; } ////////////////////////////////////////////// /// \brief Loads a ROM into memory /// /// \param filepath The path to the ROM ////////////////////////////////////////////// void LoadGame(std::string filepath) { // Open File std::ifstream file(filepath, std::ios::binary); // All bytes in the file will be stored at 0x200 in memory int offset = 0; while (file.good()) { memory[0x200 + offset++] = (BYTE)file.get(); } } ////////////////////////////////////////////// /// \brief Returns the current display /// ////////////////////////////////////////////// BYTE* getDisplay() { return gfx; } ////////////////////////////////////////////// /// \brief Goes through one emulation cycle /// ////////////////////////////////////////////// void EmulateCycle() { // Fetch opcode opcode = (memory[pc] << 8) | memory[pc + 1]; std::cout << std::uppercase << std::hex << opcode << ": "; BYTE x = (opcode & 0x0F00) >> 8; BYTE y = (opcode & 0x00F0) >> 4; BYTE n = (opcode & 0x000F); BYTE kk = (opcode & 0x00FF); WORD nnn = (opcode & 0x0FFF); // Decode opcode // Execute opcode switch (opcode & 0xF000) { case 0x0000: // Multi case opcode switch (opcode & 0x00FF) { case 0xE0: // Clear display CLS(); break; case 0xEE: // Return from subroutine RET(); break; default: std::cerr << "Unknown OpCode" << std::endl; interrupt = true; //interrupt = true; break; } break; case 0x1000: // 1NNN: Set Program counter to NNN JP(nnn); break; case 0x2000: // 2NNN: Calls subroutine at NNN CALL(nnn); break; case 0x3000: // 3XKK: If VX == KK, skip next instruction SE(x, kk); break; case 0x4000: // 4XKK: If VX != KK, skip next instruction SNE(x, kk); break; case 0x6000: // 6XKK: Sets VX to KK LD(x, kk); break; case 0x7000: // 7XKK: Adds KK to the value of VX ADD(x, kk); break; case 0x8000: // Multi case opcode switch (opcode & 0x000F) { case 0x0: // 8XY0: Set VX = VY LD_XY(x, y); break; case 0x1: // 8XY1: Set VX = VX | VY OR(x, y); break; case 0x2: // 8XY2: VX = VX & VY AND(x, y); break; case 0x3: // 8XY3: VX = VX ^ VY XOR(x, y); break; case 0x4: // 8XY4: VX = VX + VY; Carry = overflow ADD_XY(x, y); break; case 0x5: // 8XY5: VX = VX - VY, set VF = NOT borrow SUB(x, y); break; case 0x6: // 8XY6: VX = VX >> 1. VF = VX least significant bit SHR(x, y); break; case 0x7: // 8XY7: VX = VY - VX, set VF = NOT borrow SUBN(x, y); break; case 0xE: SHL(x, y); break; default: std::cerr << "Unknown OpCode" << std::endl; interrupt = true; //interrupt = true; break; } break; case 0x9000: // 9XY0: Skip next instruction of VX != VY SNE_XY(x, y); break; case 0xA000: // ANNN: Set register I to NNN LD(nnn); break; case 0xB000: // BNNN: Jump to location NNN + V0 JP_V(nnn); break; case 0xC000: // Set VX to a random byte & kk RND(x, kk); break; case 0xD000: // DXYN: Draw the N byte long sprite stored at I at position (VX, VY). Set VF = 1 if collision DRW(x, y, n); break; case 0xE000: // Multi case opcode switch (opcode & 0x00FF) { case 0x9E: // EX9E: Skip next instruction is key with value VX is pressed SKP(x); break; case 0xA1: // EXA1: Skip next instruction is key with value VX is not pressed SKNP(x); break; default: std::cerr << "Unknown OpCode" << std::endl; interrupt = true; //interrupt = true; break; } break; case 0xF000: // Multi case opcode switch (opcode & 0x00FF) { case 0x07: // FX07: Set VX = delay_timer LD_X(x); break; case 0x0A: // FX0A: Halt program until key is pressed. Save key to VX LD_K(x); break; case 0x15: // FX15: Set delay_timer = VX LD_DT(x); break; case 0x18: // FX18: Set sound:timer = VX LD_ST(x); break; case 0x1E: // FX1E: Set I = I + VX ADD_I(x); break; case 0x29: // FX_29: Set I to font according to VX LD_F(x); break; case 0x33: // FX33: Store BCD representation of VX in memory locations I, I+1 and I+2 LD_B(x); break; case 0x55: // Fill memory starting at I with values from V0 to VX LD_55(x); break; case 0x65: // FX65: Fill V0 - VX with memory values starting at I LD_65(x); break; default: std::cerr << "Unknown OpCode" << std::endl; interrupt = true; //interrupt = true; break; } break; default: std::cerr << "Unknown OpCode" << std::endl; interrupt = true; //interrupt = true; break; } // Update timers } private: WORD opcode; BYTE memory[RAM]; BYTE V[16]; WORD I; WORD pc; BYTE gfx[WIDTH * HEIGHT]; WORD stack[16]; WORD sp; BYTE key[16]; private: // Opcodes ///////////////////0x00E0/////////////////// /// \brief Clears display /// //////////////////////////////////////////// void CLS() { std::fill(std::begin(gfx), std::end(gfx), 0); pc += 0x02; std::cout << "Screen cleared" << std::endl; } ///////////////////0x00EE/////////////////// /// \brief Returns from subroutine /// //////////////////////////////////////////// void RET() { pc = stack[--sp] + 0x02; std::cout << "Returned from subroutine" << std::endl; } ///////////////////0x1NNN/////////////////// /// \brief Jumps to NNN /// /// \param address NNN /// //////////////////////////////////////////// void JP(WORD address) { pc = address; std::cout << "Jumped to 0x" << address << std::endl; } ///////////////////0x2NNN/////////////////// /// \brief Calls subroutine at NNN /// /// \param address NNN //////////////////////////////////////////// void CALL(WORD address) { stack[sp++] = pc; pc = address; std::cout << "Called subroutine at 0x" << address << std::endl; } ///////////////////0x3XKK/////////////////// /// \brief Skip next instr if VX = KK /// /// \param regX X /// \param byte KK /// //////////////////////////////////////////// void SE(BYTE regX, BYTE kk) { if (V[regX] == kk) { pc += 0x04; std::cout << "Skipped instruction because V" << (WORD)regX << " == " << (WORD)kk << std::endl; } else { pc += 0x02; std::cout << "Didn't skip instruction because V" << (WORD)regX << " != " << (WORD)kk << std::endl; } } ///////////////////0x4XKK/////////////////// /// \brief Skip next instr if VX != KK /// /// \param regX X /// \param byte KK /// //////////////////////////////////////////// void SNE(BYTE regX, BYTE kk) { if (V[regX] != kk) { pc += 0x04; std::cout << "Skipped instruction because V" << (WORD)regX << " != " << (WORD)kk << std::endl; } else { pc += 0x02; std::cout << "Didn't skip instruction because V" << (WORD)regX << " == " << (WORD)kk << std::endl; } } ///////////////////0x6XKK/////////////////// /// \brief Sets VX to KK /// /// \param regX X /// \param byte KK //////////////////////////////////////////// void LD(BYTE regX, BYTE byte) { V[regX] = byte; pc += 0x02; std::cout << "Set V" << (WORD)regX << " to 0x" << (WORD)byte << std::endl; } //////////////////0x7XKK/////////////////// /// \brief Adds KK to VX /// /// \param regX X /// \param byte KK //////////////////////////////////////////// void ADD(BYTE regX, BYTE byte) { V[regX] += byte; pc += 0x02; std::cout << "Added 0x" << (WORD)byte << " to V" << (WORD)regX << std::endl; } //////////////////0x8XY0/////////////////// /// \brief Stores value of VY in VX /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void LD_XY(BYTE regX, BYTE regY) { V[regX] = V[regY]; pc += 0x02; std::cout << "V" << (WORD)regY << "(0x" << (WORD) V[regY] << ") => V" << (WORD)regX << std::endl; } //////////////////0x8XY1/////////////////// /// \brief VX = VX | VY /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void OR(BYTE regX, BYTE regY) { V[regX] |= V[regY]; pc += 0x02; std::cout << "V" << (WORD)regX << " |= V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") => " << (WORD)V[regX] << std::endl; } //////////////////0x8XY2/////////////////// /// \brief VX = VX & VY /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void AND(BYTE regX, BYTE regY) { V[regX] &= V[regY]; pc += 0x02; std::cout << "V" << (WORD)regX << " &= V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") => " << (WORD)V[regX] << std::endl; } //////////////////0x8XY3/////////////////// /// \brief VX = VX ^ VY /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void XOR(BYTE regX, BYTE regY) { V[regX] ^= V[regY]; pc += 0x02; std::cout << "V" << (WORD)regX << " ^= V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") => " << (WORD)V[regX] << std::endl; } //////////////////0x8XY4/////////////////// /// \brief VX = VX + VY, VF = carry /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void ADD_XY(BYTE regX, BYTE regY) { if (V[regY] > 0xF - V[regX]) V[0xF] = 1; else V[0xF] = 0; V[regX] = (V[regX] + V[regY]) & 0xFF; pc += 0x02; std::cout << "V" << (WORD)regX << " += V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") => " << (WORD)V[regX] << ", Carry = " << (WORD)V[0xF] << std::endl; } //////////////////0x8XY5/////////////////// /// \brief VX = VX - VY, VF = NOT borrow /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void SUB(BYTE regX, BYTE regY) { if (V[regX] > V[regY]) V[0xF] = 1; else V[0xF] = 0; V[regX] = (V[regX] - V[regY]) & 0xFF; pc += 0x02; std::cout << "V" << (WORD)regX << " -= V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") => " << (WORD)V[regX] << ", Carry = " << (WORD)V[0xF] << std::endl; } //////////////////0x8XY6/////////////////// /// \brief VX = VX >> 1, VF = LSB of VX /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void SHR(BYTE regX, BYTE regY) { V[0xF] = V[regX] & 0x1; V[regX] >>= 1; pc += 0x02; std::cout << "Shifted V" << (WORD)regX << " right once. VF = " << (WORD)V[0xF] << std::endl; } //////////////////0x8XY7/////////////////// /// \brief VX = VY - VX, VF = NOT borrow /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void SUBN(BYTE regX, BYTE regY) { if (V[regY] > V[regX]) V[0xF] = 1; else V[0xF] = 0; V[regX] = (V[regY] - V[regX]) & 0xFF; pc += 0x02; std::cout << "V" << (WORD)regX << " = V" << (WORD)regY << "(0x" << (WORD)V[regY] << ") - V" << (WORD)regX << " => " << (WORD)V[regX] << ", Carry = " << (WORD)V[0xF] << std::endl; } //////////////////0x8XYE/////////////////// /// \brief VX = VX >> 1, VF = LSB of VX /// /// \param regX X /// \param regY Y //////////////////////////////////////////// void SHL(BYTE regX, BYTE regY) { V[0xF] = V[regX] & 0x80; V[regX] <<= 1; pc += 0x02; std::cout << "Shifted V" << (WORD)regX << " left once. VF = " << (WORD)V[0xF] << std::endl; } ///////////////////0x9XY0/////////////////// /// \brief Skip next instr if VX != VY /// /// \param regX X /// \param regY Y /// //////////////////////////////////////////// void SNE_XY(BYTE regX, BYTE regY) { if (V[regX] != V[regY]) { pc += 0x04; std::cout << "Skipped instruction because V" << (WORD)regX << " != V" << (WORD)regY << std::endl; } else { pc += 0x02; std::cout << "Didn't skip instruction because V" << (WORD)regX << " == V" << (WORD)regY << std::endl; } } ///////////////////0xANNN/////////////////// /// \brief Sets I to NNN /// /// \param address NNN //////////////////////////////////////////// void LD(WORD address) { I = address; pc += 0x02; std::cout << "Set I to 0x" << address << std::endl; } ///////////////////0xBNNN/////////////////// /// \brief Jump to location NNN + V0 /// /// \param address NNN //////////////////////////////////////////// void JP_V(WORD address) { pc = address + V[0x0]; std::cout << "Jumped to adress " << (WORD)pc << std::endl; } ///////////////////0xCXKK/////////////////// /// \brief Sets VX to a random byte ANDed with KK /// /// \param regX X /// \param byte KK //////////////////////////////////////////// void RND(BYTE regX, BYTE byte) { static std::default_random_engine engine(std::chrono::system_clock::now().time_since_epoch().count()); static std::uniform_int_distribution range(0, 0xFF); BYTE rnd = range(engine) & byte; V[regX] = rnd; pc += 0x02; std::cout << "(Random) Set V" << (WORD)regX << " to 0x" << (WORD)rnd << std::endl; } ///////////////////0xDXYN/////////////////// /// \brief Draws sprite that is N bytes long and /// stored at I at position (VX, VY). Set /// VF = 1 if collision /// /// \param regX x /// \param regY y /// \param bytes N //////////////////////////////////////////// void DRW(BYTE regX, BYTE regY, BYTE bytes) { V[0xF] = 0x00; for (BYTE y = 0; y < bytes; y++) { BYTE line = memory[I + y]; for (BYTE x = 0; x < 8; x++) { BYTE pixel = line & (0x80 >> x); if (pixel != 0) { BYTE totalX = V[regX] + x; BYTE totalY = V[regY] + y; WORD index = totalY * 64 + totalX; if (gfx[index] == 1) { V[0xF] = 1; } gfx[index] ^= 1; } } } pc += 0x02; drawFlag = true; std::cout << "Drew Sprite at position (V" << (WORD)regX << ", V" << (WORD)regY << ")[" << std::dec << (WORD)V[regX] << ", " << (WORD)V[regY] << "]" << std::endl; } ///////////////////0xEX9E/////////////////// /// \brief Skip instruction if key of value VX is pressed /// /// \param regX X /// //////////////////////////////////////////// void SKP(BYTE regX) { if (!sf::Keyboard::isKeyPressed(keymap.find(V[regX])->second)) { pc += 0x02; std::cout << "Didn't skip instruction because key " << (WORD)V[regX] << " was not pressed" << std::endl; } else { pc += 0x04; std::cout << "Skipped instruction because key " << (WORD)V[regX] << " was pressed" << std::endl; } } ///////////////////0xEXA1/////////////////// /// \brief Skip instruction if key of value VX is not pressed /// /// \param regX X /// //////////////////////////////////////////// void SKNP(BYTE regX) { if (sf::Keyboard::isKeyPressed(keymap.find(V[regX])->second)) { pc += 0x02; std::cout << "Didn't skip instruction because key " << (WORD)V[regX] << " was pressed" << std::endl; } else { pc += 0x04; std::cout << "Skipped instruction because key " << (WORD)V[regX] << " was not pressed" << std::endl; } } ///////////////////0xFX07/////////////////// /// \brief Store BCD representation of X at I /// /// \param regX X /// //////////////////////////////////////////// void LD_X(BYTE regX) { V[regX] = delay_timer; pc += 0x02; std::cout << "Set V" << (WORD)regX << " to delay_timer(" << (WORD)delay_timer << ")" << std::endl; } ///////////////////0xFX0A/////////////////// /// \brief Halt program until key press. Save key to VX /// /// \param regX X /// //////////////////////////////////////////// void LD_K(BYTE regX) { std::cout << "Waiting for Key press..." << std::endl; for (BYTE key = 0x0; key < 0xF; key++) { if (sf::Keyboard::isKeyPressed(keymap.find(key)->second)) { V[regX] = key; pc += 0x02; std::cout << "Key pressed: 0x" << (WORD)key << ". Saved to V" << (WORD)regX << std::endl; break; } } } ///////////////////0xFX15/////////////////// /// \brief Set delay timer to VX /// /// \param regX X /// //////////////////////////////////////////// void LD_DT(BYTE regX) { delay_timer = V[regX]; pc += 0x02; std::cout << "Set delay timer to " << (WORD)V[regX] << std::endl; } ///////////////////0xFX18/////////////////// /// \brief Set sound timer to VX /// /// \param regX X /// //////////////////////////////////////////// void LD_ST(BYTE regX) { sound_timer = V[regX]; pc += 0x02; std::cout << "Set sound timer to " << (WORD)V[regX] << std::endl; } ///////////////////0xFX1E/////////////////// /// \brief Set I = I + VX /// /// \param regX X /// //////////////////////////////////////////// void ADD_I(BYTE regX) { I += V[regX]; pc += 0x02; std::cout << "Added V" << (WORD)regX << "(" << (WORD)V[regX] << ") to I. I = " << (WORD)I << std::endl; } ///////////////////0xFX29/////////////////// /// \brief Set I to location of font for digit VX /// /// \param regX X /// //////////////////////////////////////////// void LD_F(BYTE regX) { I = 0x0000 + (V[regX] * 5); pc += 0x02; std::cout << "Stored font \"" << (WORD)V[regX] << "\" at I" << std::endl; } ///////////////////0xFX33/////////////////// /// \brief Store BCD representation of X at I /// /// \param regX X /// //////////////////////////////////////////// void LD_B(BYTE regX) { BYTE value = V[regX]; BYTE hundreds = (value - (value % 100)) / 100; value -= hundreds * 100; BYTE tens = (value - (value % 10)) / 10; value -= tens * 10; memory[I] = hundreds; memory[I + 1] = tens; memory[I + 2] = value; pc += 0x02; std::cout << "Storing Binary Coded Decimal V" << (WORD)regX << " as {" << std::dec << (WORD)hundreds << ", " << (WORD)tens << ", " << (WORD)value << "}" << std::endl; } ///////////////////0xFX55/////////////////// /// \brief Fill memory at I with values from V0 - VX /// /// \param regX X /// //////////////////////////////////////////// void LD_55(BYTE regX) { for (int offset = 0; offset <= regX; offset++) { memory[I + offset] = V[offset]; } pc += 0x02; std::cout << "Filled memory starting at 0x" << (WORD)I << " with the values of V0 to V" << (WORD)regX << std::endl; } ///////////////////0xFX65/////////////////// /// \brief Fill V0 - VX with memory data starting at I /// /// \param regX X /// //////////////////////////////////////////// void LD_65(BYTE regX) { for (int offset = 0; offset <= regX; offset++) { V[offset] = memory[I + offset]; } pc += 0x02; std::cout << "Filled V0 through V" << (WORD)regX << " with memory values starting at 0x" << I << std::endl; } } chip8; ////////////////////////////////////////////// /// \brief Draws the pixel array to the screen /// /// \param window The render target /// \param pixels The pixel array /// ////////////////////////////////////////////// void drawGraphics() { static sf::Texture texture; static sf::Sprite sprite; BYTE* gfx = chip8.getDisplay(); for (int i = 0; i < WIDTH * HEIGHT; i++) { //printf("%i: %i\n", i, gfx[i]); pixels[4 * i + 0] = 255 * gfx[i]; pixels[4 * i + 1] = 255 * gfx[i]; pixels[4 * i + 2] = 255 * gfx[i]; pixels[4 * i + 3] = 255 * gfx[i]; } texture.create(WIDTH, HEIGHT); texture.update(pixels); sprite.setTexture(texture); sprite.setScale(sf::Vector2f(SCALE, SCALE)); window.clear(sf::Color::Black); window.draw(sprite); window.display(); chip8.drawFlag = false; } int main(int argc, char** argv) { sf::Clock timer; timer.restart(); chip8.Initialize(); chip8.LoadGame("pong2.c8"); while (!chip8.interrupt) { chip8.EmulateCycle(); if (timer.getElapsedTime().asMilliseconds() >= 1000 / 60) { if (chip8.delay_timer != 0) chip8.delay_timer--; if (chip8.sound_timer != 0) chip8.sound_timer--; timer.restart(); } if (chip8.drawFlag) { drawGraphics(); } while (window.pollEvent(event)) { if (event.type == sf::Event::Closed) { chip8.interrupt = true; window.close(); } } sf::sleep(sf::milliseconds(1)); } return 0; }